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a b s t r a c t

Energy system models are widely used to inform the political decisions required to successfully
mitigate climate change in the energy sector. The energy system optimization models (ESOMs) used
to identify cost-minimal transformation pathways assume the perfect behavior of market participants
from a central planner’s perspective. Neglecting the decision-making under uncertainties or biased
perceptions and attitudes leads to inaccurate assumptions regarding the requirements of a successful
energy transition. In particular, ESOMs underestimate the required capacities for power generation,
storage, and transmission compared with real-world energy systems, a phenomenon known as the
‘‘economic granularity gap’’. Agent-based models (ABMs) are helpful tools for capturing the behavior
of market actors. Hence, attempts have been made to identify and alleviate this phenomenon through
the coupling of ESOMs and ABMs. In this paper, we propose an automated workflow for such model
coupling and quantify the economic granularity gap for the case of photovoltaic-prosumer self-
consumption. Our results show that the current business models and regulatory frameworks affecting
prosumer self-consumption patterns require the adaptation of cost-minimal energy system designs.
However, if correctly implemented, instruments such as dynamic tariffs could narrow the economic
granularity gap, shifting real-world energy systems closer to their ideal counterparts.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Background

To successfully mitigate climate change, it is important for
he energy sector to understand how future energy supplies can
e realized in a secure, affordable, and sustainable manner. In
his sense, a multitude of aspects need to be considered, such as
he electrification of energy demand sectors (IPCC, 2022), secu-
ity of supply even in time periods that lack renewable power
eneration (Lund et al., 2015), and a highly diverse, econom-
cally feasible mix of technologies. Hence, identifying suitable
olicy measures to incentivize the transformation of the en-
rgy supply system is a complex task. Models are often applied
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to gain insights into possible future scenarios for the energy
system (e.g., to serve as decision support in energy policy and
industry Pfenninger et al., 2014). To investigate the uptake of
renewable power generation and the deregulation of power mar-
kets from a macro-perspective, a broad variety of so-called energy
system models has evolved, each having different strengths for
addressing the abovementioned aspects (Ringkjøb et al., 2018;
Horschig and Thrän, 2017). One prominent category is energy
system optimization models (ESOMs) (Hawker and Bell, 2020),
which are applied to observe the possible operation of power
plants and technologies for balancing the intermittent power
supply of renewable energy sources. Due to the clear specification
of an objective function and constraints, they provide an easy-to-
use framework for modeling decision processes and simulating
investment decisions when multiple solutions are conceivable
(i.e., different technologies for load-balancing). Moreover, they
are used to design future energy systems subject to the rel-
evant political targets (e.g., greenhouse gas (GHG) mitigation
targets) (Sasanpour et al., 2021). The purpose of drafting such
ideal system designs is to provide templates for navigating the
transformation of the system, e.g., by setting incentives. However,

at this point, obvious discrepancies between the ideal scenario
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nd the real world occur. We refer to these discrepancies as the
ranularity gaps that are revealed across several dimensions of a
odel. For example, Prina et al. (2020) identified four dimensions
f interest in this regard, which they refer to as resolution in
ime, in space, in techno-economic detail, and in sector-coupling.
imilarly, we have defined four model dimensions where gran-
larity gaps occur (Cao et al., 2021), but propose, in addition to
he distinction of the temporal, spatial, technological scale, the
onsideration of an economic scale.

.2. Economic granularity gap

The economic granularity gap comprises different aspects. In
eneral, similar to the well-studied granularity gaps in the spatial,
emporal, and technological dimensions (Fleischer, 2020; Pon-
elet et al., 2016), it includes the error made by abstracting
rocesses and phenomena of the real world in a model (ab-
traction bias). This may relate to the assumption of perfect
nd equal information of market participants, thus neglecting
ecision-making under uncertainty or ignoring distortions due
o regulatory framework conditions. The obvious solution for
ridging the economic granularity gap in this regard relates to
he calibration of a model. This calibration may be based on
bservations of the real world or, if this is not possible, with
odels that simulate the real world with greater accuracy. A
ore specific aspect concerning the economic granularity gap

eflects the differences between a hypothetical macroeconomic
ptimum and the entirety of decisions of heterogeneous actors
n the real world. This is particularly important in liberalized
nergy markets under the absence of large integrated energy util-
ties (Hawker and Bell, 2020), where a multitude of stakeholders
nd decision-makers, each having diverging levels of knowledge
r economic rationale, may lead to significant economic efficiency
osses compared with the desired system optimum (aggregation
ias).
The aggregation bias is a notable weakness of the above-

entioned ESOMs. Other modeling approaches are more accu-
ate in this regard, but have drawbacks elsewhere. Consequently,
odel-coupling frameworks are popular for compensating the
eaknesses of different modeling approaches. In this context, it
ecomes obvious that granularity gaps also exist between mod-
ling approaches, so we can study different gaps depending on
ur reference point. Maintaining the perspective of a partial-
quilibriummodel, such as an ESOM, an economic granularity gap
xists when compared with a macroeconometric model, which
escribes the entire economy. Studying this ‘‘upper economic
ranularity gap’’ is a typical research subject in energy economics.
or example, this relates to so-called hybrid modeling (Catenazzi,
009) (realized by coupling bottom-up and top-down models).
n this paper, we focus on the less-studied ‘‘lower economic
ranularity gap’’, which concerns discrepancies between a cen-
ral, technology-rich planning approach and the microeconomic
ecision-making of individuals.

.3. Research questions

Given the existence of the lower economic granularity gap in
he context of transforming the energy system, several questions
rise. They concern, for instance, the technological composition
f desired energy systems (e.g., in terms of the required expan-
ion of energy storage, power grids, or other so-called flexibility
ervices). As shown by Neumann and Brown, diverse system
ompositions exist near the macroeconomic optimum (Neumann
nd Brown, 2021). Accordingly, the two research questions to be
nswered in this study are as follows:
1860
1. Does the economic granularity gap significantly affect sys-
tem designs that result from an ESOM?

2. If this is the case, how can the economic granularity gap be
bridged?

Answering these questions is relevant because, from a cen-
tral planner’s perspective, it would help improve the quality of
an ESOM in terms of the plausibility of ideal system designs.
From a policy-making perspective, the answers would offer op-
portunities for evaluating the system-friendliness of regulatory
frameworks or incentives. However, both questions come down
to one key requirement: the capability to quantify effects that can
be summarized as the lower economic granularity gap.

1.4. How to quantify the economic granularity gap?

To quantify the lower economic granularity gap in the context
of energy system design, we seek approaches that extend or
complement the capabilities of central planning by modeling real-
world processes at greater detail in terms of decision-making
in liberalized markets. This includes the possibility to influence
these processes by the application of policy measures. Data-
driven approaches allow such models to be calibrated according
to empirical data (e.g., by comparing investment decisions from
before and after the liberalization of power markets). Against
the background of fundamental changes in the existing energy
system (which are poorly reflected by empirical data), we con-
sider data-driven approaches to be insufficient. In other words,
they are limited to effects that are assumed to be crucial in
energy futures with unprecedented power generation from re-
newable energy sources. A large spectrum of different model
types can simulate liberalized markets with asymmetric behavior,
each having strengths and weaknesses. In the field of decentral-
ized electricity markets, several simulation approaches have been
established. For instance, System Dynamics is a suitable approach
because it enables the modeling of imperfections and allows
the dynamic influencing of individuals’ decision-making (Teufel
et al., 2013). From a technological bottom-up perspective, agent-
based models (ABMs) are similar (Macal, 2010). Accordingly, they
are useful when considering the bounded rationality of actors
and understanding the impact of self-organized actions on the
overall energy system (Deissenroth et al., 2017). In contrast to
ESOMs, ABMs have no superior, centrally specified objective func-
tion and each actor is modeled as a self-interested agent with
the aim of maximizing their own utility. This property enables
the evolution of the energy system to be simulated, in which
agents act autonomously based on their microeconomic interests,
but are affected by external factors such as regulatory frame-
works. Compared with ESOMs, simulation approaches have sev-
eral drawbacks. From a microeconomic perspective, estimating
the feedback of the overall system to the multitude of indi-
vidual decisions and anticipating the behavior of other actors
becomes very complex. This requires more profound knowledge
about actors on the micro-level, and thus, more data. Accordingly,
modeling anticipations across a large diversity of actor groups,
and particularly decision-making on investments into competing
flexibility options, becomes as challenging as stand-alone microe-
conomic simulation models. The substantial data demand also
complicates the development of energy simulation models with
broad system boundaries (i.e., for sector-coupling in an inter-
national context) needed to draft comprehensive energy system
designs.

To conclude, simulation approaches are a valuable building
block for quantifying the lower economic granularity gap. How-
ever, simulating aspects that are easily modeled in ESOMs
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e.g., investments into competing technologies) is somewhat dif-
icult. Therefore, instead of extending existing models to inte-
rate the strengths of other model types, the coupling of both
acroeconomic system optimization and microeconomic sim-
lation provides an alternative means of studying the lower
conomic granularity gap within broad system boundaries. In the
iterature, such model setups have been applied by Torralba-Diaz
t al. (2020), who coupled the ESOM E2M2 with the ABM AMIRIS
o investigate the effect of increasing the share of renewable
nergy sources on the lower economic granularity gap. They
emonstrated the suitability of this methodological approach
or the analysis of energy policy instruments, and revealed the
mportance of a harmonized model-coupling setup. Additionally,
orralba-Díaz and her co-authors recommend bidirectional model
ouplings for studying the impact of policy measures on the
ranularity gap. Few studies have examined a combination of
acroeconomic system optimization and microeconomic sim-
lation to investigate the effects of different policy measures.
ne example is the study of Fraunholz et al. who used the
SOM ELMOD for multi-regional dispatch optimization and the
BM PowerACE to analyze the long-term effects of splitting the
erman electricity market into two zones (Fraunholz et al., 2021).
heir key result was the negative welfare effect of splitting into
orthern and southern price zones from benchmarking against a
ingle price zone. Hence, in a very simplified way, this means that
arket splitting under the assumptions used by Fraunholz et al.
ontributes to an increase in the lower economic granularity gap.

.5. Scope and contribution

Granularity gaps in energy system designs are known. How-
ver, in the domain of energy system analysis, they are mainly
tudied with regard to spatial and temporal model dimensions.
he economic dimension has been the focus of economic re-
earch, where the granularity gap between macroeconometric
nd partial-equilibrium models is investigated. However, there
re few model-coupling frameworks that quantify the biases be-
ween central planning and decentralized decision-making in
iberalized energy markets using only bottom-up models. Accord-
ngly, this study considers the question of how to implement an
ptimal overall energy system in an environment with a multi-
ude of decentralized decision-makers. For this purpose, we set
p a modeling framework that combines two bottom-up energy
ystem models: (1) a partial-equilibrium model, represented by
n ESOM, for designing future energy systems and (2) an ABM
or simulating the individual decision-making behavior of mar-
et participants. In this way, we combine the strengths of both
odeling approaches: the capability of determining the globally

equired investment decisions across a broad set of technolog-
cal options ensures mitigation of GHG emissions for a future
arget year, while the influence of specific policy measures on
ecision-makers in a market and the impact on optimal en-
rgy system design can be investigated. The framework retains
holistic perspective by ensuring a broad technological and spa-
ial scope. Therefore, our analysis focuses on Germany, which is
mbedded in the European power system, while pan-European
ower exchange and hourly operation planning of competing
oad-balancing technologies are optimized, and further energy
emand sectors are interfaced. As an example for a specific pol-
cy instrument, we investigate dynamic tariffs for photovoltaic
PV)-prosumers.

To summarize, our contributions are as follows:

1. We present a modeling framework based on the coupling
of an ESOM and an ABM implemented via automatized
and reproducible workflows. This allows the market align-
ment (Klein et al., 2019) of defined technologies in inter-
action with a transforming European energy system to be
studied.
 m
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2. We quantify the lower economic granularity gap in energy
system design in terms of changes in system costs and un-
derlying model-endogenous investment decisions induced
by the different modeling perspectives. This answers re-
search question 1.

3. We demonstrate and assess the different effects that cause
model-specific deviations in system costs starting from a
fully harmonized modeling framework.

4. For an exemplary real-world application, we examine how
the implementation of frequently discussed instruments
(e.g., real-time pricing) influences the economic granularity
gap. This answers research question 2.

We do not claim to study all aspects of the economic granu-
larity gap in detail (i.e., uncertainty or distortions due to changing
framework conditions).

The remainder of this paper is structured as follows. Section 2
describes how we quantify the economic granularity gap, and
briefly introduces the specific energy system models used. Next,
we detail the crucial aspects of how to establish and calibrate
a stable model-coupling system and introduce our case-study
and the underlying assumptions and data, before presenting our
results on the influence of actor behavior and, thus, the operation
strategy of PV-prosumers on the economic granularity gap. The
corresponding evaluations are presented in Section 3 and criti-
cally discussed in Section 4. Section 5 concludes this paper. A list
of acronyms and abbreviations used in this paper is presented in
Appendix A.

2. Methodology

2.1. Overall workflow

The core of our methodology is the coupling of two existing
energy system models, i.e., REMix, an ESOM with a geographical
focus on Europe and Maghreb (EUMA), and AMIRIS, an ABM of the
German electricity market. These models are introduced in Sec-
tion 2.2. We perform our analysis in four phases. Fig. 1 schemat-
ically illustrates these phases and the proposed model-coupling
workflow. We prepare the model-coupling setup in phases A
and B of the overall workflow. The complete model-coupling
workflow is then applied in phases C and D to investigate the
case of PV-prosumers. In the following, we give an overview of
the proposed workflows, followed by a more in-depth description
in Sections 2.3 and 2.4.

In general, our analysis relies on the definition of an observ-
able deviation ∆ that allows us to measure a quantity we refer to
as the economic granularity gap ∆econ. In Section 2.4, we propose
an indicator for quantifying these deviations (i.e., to calculate
∆). The overall workflow begins with the harmonization of both
models. In phase A, we configure the models with a set of equal
values for parameters that describe the same quantities in order
to produce identical results. This means that if AMIRIS is config-
ured with a macroeconomic ideal energy system expansion and
system-cost-minimizing storage dispatch (resulting from REMix),
the power system operation of both models will be congruent (no
deviation, i.e., ∆ = 0). Therefore, the techno-economic input data
are unified, and the power generation capacities, cross-border
power exchange, and dispatch of all storage technologies are
fed from REMix into AMIRIS. To select and process the input
parameters for AMIRIS, we use iog2x2 (see Section 2.4.1 for a
detailed explanation of the harmonization phase). In contrast
to the harmonization phase, where the operation of all storage

2 iog2x is a Python-based software tool that uses the open-source workflow
anager ioproc (Fuchs et al., 2020).
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Fig. 1. Schematic overview of the overall and model-coupling workflow. In phase A, both models are harmonized. In phase B, the modeling delta between REMix and
AMIRIS is measured. In phases C and D, stakeholder behavior is enabled and different tariffs for prosumers are compared. In the proposed model-coupling workflow
(applied in phases C and D), data are exchanged between REMix and AMIRIS through a Python tool called iog2x.
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technologies is determined in REMix, phase B optimizes the dis-
patch of the selected storage technology in AMIRIS. While the
storage systems in both models are optimized to minimize the
system costs, the resulting deviation is caused by different model
implementations of the storage operation in REMix and AMIRIS.
In our analysis, we call this deviation the modeling delta ∆model.
f ∆model is sufficiently small, we conclude that the ∆ observed
or the following application of the model-coupling setup mainly
epresents the economic granularity gap, rather than deviations
aused by different real-world abstractions of energy storage
∆model

≪ ∆econ). The derivation of ∆model is further detailed
n Section 2.4.2. In phase C, stakeholder behavior is enabled in
MIRIS. For the specific use-case investigated in Section 2.5, this
eans that instead of minimizing total system costs, storage units
imic actor behavior under current market and regulatory condi-

ions. In particular, AMIRIS simulates PV-battery storage systems
n households (PV-prosumers) in Germany. Next, we run REMix
or the second time, while constraining the dispatch of the PV-
torage system according to the PV-prosumer behavior given by
MIRIS. This allows us to assess the impact of PV-prosumer self-
onsumption patterns on the optimal system design (i.e., system
xpansion), and thus on the economic granularity gap (∆ ≈
econ). How this gap can be influenced is finally demonstrated
y exposing the PV-prosumers to different market implementa-
ions of dynamic tariffs (phase D). To integrate the required data
rocessing into an automated, executable workflow, the Remote
omponent Environment (RCE) software is used (Seider et al.,
012).

.2. Models

This section describes the energy system models used in this
tudy. Table 1 provides an overview of the model scopes and
eatures that are relevant to our methodological approach. Note
hat the model characteristics listed in Table 1 are limited to their
pplication in this paper.

.2.1. REMix
REMix is a modeling framework used for setting up ESOMs

hat optimize the capacity and hourly dispatch of technologies
nder perfect foresight for one target year by minimizing to-
al system costs. The total system costs are represented by in-
estment (i.e., costs for new renewable power generators, grid
nd storage technologies) and operational expenditure (e.g., fuel
osts). Accordingly, power plants are only built and dispatched

f this contributes to a least-cost solution within the operation S
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orizon of one year. The modeled power sector is represented
y various power plant technologies, energy storage facilities,
nd power transmission capacities, and includes the electricity
emand for conventional consumers, heat pumps, heat boilers,
nd electric vehicles. Typical applications of REMix are scenario
tudies for interconnected countries (Gils et al., 2017). The model
nput includes techno-economic parameters for each technology,
eed-in time series, and potential data for renewable power gen-
ration, such as from wind and solar radiation. Besides prescribed
nd maximal capacities for power generation, storage, and trans-
ission, the costs for CO2 certificates are part of the scenario
ataset (see Section 2.5.2).

.2.2. AMIRIS
AMIRIS is an ABM that simulates the operational behavior of

he actors in the energy-only market with an hourly resolution
nd uses a merit order model to calculate the electricity prices.3

n AMIRIS, the power plants offer their generated electricity based
n their marginal costs, which are calculated based on power
lant-specific techno-economic parameters (such as efficiency
nd variable costs) as well as fuel and CO2 prices. Depending
n the implemented policy regimes, renewable power generators
ay be entitled to receive financial support.
Based on information from fossil-fired and renewable power

lants, the forecaster agent in AMIRIS provides a prediction of
lectricity prices for a certain period in the future (e.g., the next
4 h). In the following analysis, we assume that forecasts do not
ontain any errors. This forecast can then be used by storage oper-
tors to optimize the bidding strategy and maximize their utility
unction. The model setup allows the implementation and strate-
ic optimization of one storage entity. In other words, in our case
tudy (see Section 2.5), one flexibility option is operated accord-
ng to stakeholder behavior: PV-prosumers (remaining flexibility
ptions mimic the macroeconomic optimal dispatch in REMix).
or the purpose of this study, two new agents are modeled and
ntroduced to AMIRIS: prosumers and aggregator agents. The role
nd functionality of these agents are described in Section 2.5.
he structure of AMIRIS and the interactions among agents are
chematically illustrated in Appendix B.

3 A basic version of AMIRIS is open-source. The model developments made
n this study are not part of the open-source model at the time of publication.
ee also Appendix B.



S. Sarfarazi, S. Sasanpour and K.-K. Cao Energy Reports 9 (2023) 1859–1874

c
o
i
d
i
e
c
i
a
i
c
T
p
o

s

o
e

Table 1
Model comparison between REMix and AMIRIS based on the model setups used in this study.

REMix AMIRIS

Primary purpose Planning of large-scale energy systems Simulation of actors’ behavior with limited information
Model type Linear optimization Agent-based simulation
Economic scope System perspective: Central planner minimizes total system cost Actor perspective: Each actor minimizes its own costs
Temporal scope One year with hourly resolution One year with hourly resolution
Spatial scope Country-specific Country-specific
Geographical focus Europe and Maghreb Germany
Specific features Investment planning, cross-border power exchange, power sector

coupling to heat and transport sector
Actor behavior under different policy regimes
,

2.3. Model coupling

To perform our analysis, multiple datasets need to be pro-
essed and exchanged between REMix and AMIRIS. Depending
n the individual phase of our overall workflow, this is done
n a unidirectional or bidirectional manner. In the following, we
escribe the four steps required for bidirectional data exchange
n phases C and D of the overall workflow. The unidirectional data
xchange in phases A and B require only steps 1–3 of the model-
oupling workflow. Note that this model-coupling methodology
s independent of the specific use-case analyzed in this paper
nd can therefore be used to investigate a large variety of pol-
cy regimes. Fig. 2 provides a more detailed overview of the
orresponding model-coupling workflow implemented in RCE.
he advantage of this workflow implementation is that all data
rocessing steps can be executed without specialist knowledge
f the models or data processing tools involved.
The model-coupling workflow consists of four data processing

teps:

1. The reference energy system (REF) is determined. There-
fore, energy system optimization is executed in REMix
to provide the optimal expansion and dispatch of power
plants, storage technologies, and the electricity grid for
a GHG mitigation scenario on the European level. After
optimization of REMix, the outputs and input parameters,
such as CO2 and fuel prices, are passed on to iog2x.

2. The iog2x module filters and processes the REMix out-
puts into AMIRIS inputs. This includes unit conversions,
changing data formats, and data aggregation, such as bal-
ancing power demand and power exchange time series. We
describe the data aggregation process in Section 2.4.1. Ap-
pendix C provides a more detailed overview of all technol-
ogy-specific modifications of the REMix outputs.
The processed data representing the cost-optimal energy
system design are then sent to AMIRIS over a peer-to-peer
network connection using RCE.

3. The processed data together with additional parameters
that describe the regulatory framework and business model
are used to simulate the electricity market for one year
in AMIRIS. In the harmonization phase, the storage agent
imitates the determined optimal storage dispatch in REMix.
To determine the modeling delta in phase B, the storage
agent in AMIRIS minimizes the system costs. In our case
study, the AMIRIS market simulation includes PV-storage
optimization that minimizes the PV-prosumers’ costs.

4. In the last step, we pass the time-series back to REMix. The
energy system is then optimized for a second time, with
the dispatch of selected technologies constrained according
to the AMIRIS results. Regarding the specific case study
of this paper (see Section 2.5), we fix the charging and
discharging profiles4 of the batteries that belong to Ger-
man prosumers with the PV-storage dispatch obtained by

4 In other words, we set the lower and upper bounds of the storage
ptimization variables, i.e., hourly amounts of charged and discharged electricity,
qual to a fixed value.
 b
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AMIRIS. In doing so, we ensure that the corresponding stor-
age technology in REMix reflects the PV-prosumer stake-
holder behavior derived from AMIRIS. Concerning genera-
tion and storage expansion, the capacity values are directly
prescribed according to REF for all regions except that for
which dispatch is constrained.

2.4. Setup for measuring the granularity gap

In this section, we describe the measures necessary to achieve
a modeling setup that can quantify the economic granularity
gap. In particular, we perform model harmonization and measure
what we refer to as the modeling delta.

2.4.1. Harmonization
Harmonization requires that, for a certain set of identical

input parameters, both involved models produce identical results.
However, this is only possible in the absence of model-specific
features. Accordingly, in phase A of the overall workflow, the
power plants in AMIRIS bid at their marginal costs, and the
dispatch of storage systems resembles that from REMix. Fur-
thermore, influences that stem from unequal technological and
geographical scopes need to be treated. In particular, this trans-
lates into balancing the hourly demand time-series that is input
to AMIRIS to consider technologies that are not simulated there.
Based on the REMix outputs for Germany, Dtotal

t is calculated as
follows:

Dtotal
t =Dconv

t + Dhp
t + DeBoiler

t + DeCars
t + Eexport

t − E import
t

+ ZC,stor
t − ZD,stor

t + Ltranst , ∀t,
(1)

where Dconv
t represents the electricity demand of conventional

consumers and Dhp
t , DeBoiler

t , and DeCars
t represent the power con-

sumption of heat pumps, electric boilers, and electric vehicles,
respectively. Moreover, electricity imports to Germany E import

t ,
and the discharging of storage technologies, ZD,stor

t , are deducted,
whereas electricity export from Germany, Eexport

t , charging of stor-
age technologies, ZC,stor

t , and power transmission losses, Ltranst , are
added to the total hourly electricity demand of Germany. Due to
the different representations of storage self-discharge in AMIRIS
and REMix, this feature is deactivated in both models, i.e., we
neglect self-discharge in all storage technologies. Due to the very
low self-discharge rate and short charge cycle (less than one day)
of the PV-storage systems, this assumption does not significantly
impact the results.

To achieve successful harmonization, two indicators that can
be directly obtained from the model outputs are useful: electricity
prices and costs. The former is the more intuitive choice, but dif-
ferent mechanisms for determining wholesale market electricity
prices with REMix and AMIRIS render a direct comparison diffi-
cult.5 Although an appropriate model configuration would allow

5 To derive the electricity prices in REMix, the dual variables of the power-
alance constraint (so-called shadow prices) are used. However, this common
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the model harmonization to be assessed, numerical issues still
complicate a meaningful comparison. In particular, these issues
can be traced back to the non-differentiability of the merit-order
curve. Considering a vertical demand curve, the price cannot be
precisely determined for supply amounts that lie at the transition
between two price levels. At this point, minor numerical differ-
ences in demand can cause significant differences in the resulting
electricity prices. Unlike the prices, the value of the operational
system costs, represented by the area under the price curve, is
insensitive to these complications. For this reason, we evaluate
the operational system costs of our models instead.6

2.4.2. Modeling delta
In phase B of the overall workflow, we determine the modeling

delta ∆model. In general, we define the modeling delta as the
deviation between results from REMix and AMIRIS that cannot
be treated by harmonization. In other words, it is the difference
between operational system costs if the dispatch of energy stor-
age is modeled individually in both REMix and AMIRIS (even if
storage agents still aim to minimize system costs in AMIRIS).7 In
this phase of the overall workflow, our target is to keep ∆model as
mall as possible, which calls for additional adjustments of our
odel-coupling setup. This relates to the reference quantity of
storage component’s capacity.8 To resolve the corresponding
iscrepancies, the REMix source code adapts the constraints for
he capacity cap and storage-balancing so that the converter

interpretation of shadow prices is distorted if the costs for storage operations
or capacity expansion are considered in the energy system optimization. A
consequence of this circumstance would be additional price levels in the
resulting merit-order, which do not formally occur in the real market. In
contrast, AMIRIS correctly models the price-building procedure, and thus the
merit-order based on individual bids in the day-ahead market.
6 Note that the compared operational system costs for the harmonization of

the models are only one part of the total system costs. As we will explain in
Section 2.4.3, we use the total system costs as an indicator for quantifying the
economic granularity gap.
7 Hence, in phase B, ZD,stor

t and ZC,stor
t are no longer considered in Eq. (1) for

he storage technology modeled in AMIRIS.
8 Initially, the capacities of both power converters (e.g., pumps and turbines)
nd storage (e.g. a water basin) are provided in terms of electricity in REMix.
his is not the case for AMIRIS, where converter and storage capacities refer to
heir chemical or potential values. As the charging and discharging capacities
re identical in both models, they cannot be harmonized if one model considers
lectrical and the other chemical/potential values.
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and storage capacities in REMix represent chemical or potential
values, similar to AMIRIS. Additionally, the storage level in REMix
is fixed to zero for the last time step of the operational time
horizon. This is to replicate the behavior of the storage in AMIRIS,
which sees no economic advantage in stored energy at the end of
the operation period.

When it comes to modeling energy storage technologies, a
further aspect is crucial: the storage operators in AMIRIS use
a forecast of the upcoming market prices to optimize the stor-
age dispatch. However, in this model, the competition among
storage systems is neglected, meaning that one operator does
not anticipate the strategy of other operators. Thus, exposing
more than one flexibility option to the same electricity market
forecast leads to an overreaction of the storage entities. This
model artifact, which is referred to as the avalanche effect in the
literature (Ensslen et al., 2018), results in extreme price peaks.
Hence, we optimize the operation of only one storage system
in AMIRIS and fix the dispatch of all other storage technologies
according to the results of REMix.

Nevertheless, the operational system costs vary between the
models. The final modeling delta comprises several effects: REMix
operates storage technologies with variable costs and has perfect
foresight over the whole modeled year, whereas AMIRIS does not
consider variable costs for a storage agent’s business model. In
contrast to REMix, the operation foresight horizon is limited to
48 h, and (dis-)charging is modeled for discrete storage levels.

2.4.3. Granularity gap indicator
As mentioned before, we measure the economic granularity

gap in terms of total system costs. The total system costs consist
of all expenses for electricity supply in one year of a future
scenario, which includes both operational costs (COPEX

k ) and amor-
tization charges (CCAPEX

k ) for investments in new infrastructure.
Accordingly, we measure ∆model and ∆econ by comparing the
otal system costs for REF in REMix C1 (step 1 of the model-
oupling workflow, see Fig. 2), with C4, which is observable after
onstraining REMix according to the results from AMIRIS in step
of the model-coupling workflow:

= C4 − C1. (2)

he total system costs Ck in step k of the model-coupling work-
low are composed of

k = C fuels
k + CO&M

k + CCO2
k  

OPEX

+CCAPEX
k , ∀k ∈ {1, 4}.

(3)

=Ck
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Fig. 3. Schematic overview of qualitative system cost relations: System costs of the reference energy system (C1 , blue bars), the modeling delta (∆model , gray bars),
nd the economic granularity gap (∆econ , orange bars) in the different phases of the overall workflow. (For interpretation of the references to color in this figure
egend, the reader is referred to the web version of this article.)
he operational system costs, COPEX
k , comprise the costs for fuel

fuels
k , operation and maintenance (O&M) costs of the power sys-
em components CO&M

k , and costs for emission allowances CCO2
k .

ig. 3 illustrates the different cost components for each phase
f our overall workflow. While the operational system costs in
MIRIS and REMix are equal in the harmonization step, a mod-
ling delta (∆model, shown in gray) can be observed in phase B.
he prosumer operation strategy in phases C and D of the overall
orkflow increases the operational system costs and amortiza-
ion charges in Germany, resulting in the economic granularity
ap (∆econ, shown in orange).9

.5. Case study

The model-coupling setup is now ready to be applied. There-
ore, we consider the battery storage used to moderate the inter-
ittency of the power supply from rooftop PV as the technology

o be investigated. In other words, given the successful comple-
ion of phases A and B in the overall workflow, we are ready to
uantify the impact of stakeholder behavior on energy system
esign for one particular technology.

.5.1. PV-prosumers in Germany
The levelized cost of electricity from PV systems has fallen

elow the retail electricity price in many countries worldwide,
development that has incentivized investment in PV rooftop

ystems for many households (Lang et al., 2016; Bazilian et al.,
013). Similar to PV systems, battery storage has experienced a
ignificant reduction in system prices. Several studies indicate
hat this trend will continue in the next few years (Agnew and
argusch, 2015). As a result, storage systems for rooftop PV
PV-prosumers) have become economically viable for households
nder certain support schemes and generation potentials (Hopp-
ann et al., 2014; Bertsch et al., 2017). The available storage
apacity gives PV-prosumers the flexibility to store electricity at
pecific times (e.g., when self-generated PV electricity exceeds
he electricity demand or when grid electricity is cheap) and

9 Note that, for a simple illustration, the operational system cost differences
aused by the modeling delta and the economic granularity gap are stacked in
his figure. This might not be the case in reality.
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discharge it at later times (e.g., to cover the electricity demand
or sell to the grid) (Sarfarazi et al., 2023).

From an overall systems perspective, self-consumption with
PV-storage systems is neither desirable nor detrimental (Günther
et al., 2021). While the flexibility of PV-prosumers can contribute
to the integration of renewable energies, current business models
and regulatory frameworks are unable to incentivize a system-
beneficial dispatch of PV-prosumers (Sarfarazi et al., 2020; Klein
et al., 2019). Moreover, to untap the potential of the residential
demand-side flexibility, an entity should undertake the aggre-
gation of the small prosumer capacities (Plaum et al., 2022).
Therefore, we investigate how the operation of aggregated PV-
prosumers leads to an economic granularity gap under the cur-
rent regulatory framework and business models in Germany,
and how it could be decreased. Accordingly, assessing alternative
policy instruments is part of our analysis.

Next, we introduce the energy scenarios and input data used
in our case study (Section 2.5.2). In Section 2.5.3, we describe the
investigated business models and regulatory framework for two
different use-cases: static pricing (phase C of the overall work-
flow) and several implementations of dynamic pricing (phase
D). How PV-prosumers are modeled in AMIRIS is discussed in
Section 2.5.4.

2.5.2. Scenarios, input data, and modeling assumptions
The starting point for our analysis is a dataset of the European

power system from the year 2020 and the aim for GHG mitigation
of 55% compared with 1990. The REMix inputs are based on a
previous study by Cao et al. (2020), where the corresponding
scenario is referred to as ‘‘55% Base: Trend’’. However, instead of
a CO2 cap, we apply penalties to achieve the emissions reduction
target. Therefore, a price of 50 euros per ton of CO2 is assumed.10
While the energy system optimization is conducted for EUMA on
a national level, the electricity market simulation and the model
coupling are carried out for Germany only. According to this
scenario, system planning comprises the capacity expansion of
wind turbines, PV, pumped-hydro storage, lithium-ion batteries

10 In our scenarios, the focus is on the power sector. The study by Cao et al.
(2020) shows that, within this model setup, a CO2 price of 50 euros per ton can
achieve GHG mitigation of 55% in the power sector.
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nd power transmission lines. In addition, the current model
etup considers a technology split for both lithium-ion batteries
nd PV to distinguish rooftop PV with and without storage, utility
V, and stand-alone stationary battery storage, each of which
as individual techno-economic parameters. For Germany, this
eans that the scenario’s minimal total generation capacity of
V (46.8 GW) comprises 34.9 GW rooftop PV, which is equally
plit and assigned to systems with and without storage. In the
ollowing, we refer to former as ‘‘PV-prosumers’’. In considering
heir capacity expansion in REMix, we assume a fixed capacity
atio between PV generators and battery power (factor 2), and
or the energy-to-power-ratio of the battery (factor 3).11 Fur-
thermore, the electricity demand is split to distinguish between
PV-prosumers and other power consumers:

• Aggregated prosumers (AP) consist of virtually aggregated
PV-prosumer households whose hourly power consump-
tion is calculated using typical household demand pro-
files. These are scaled by the annual electricity demand of
PV-prosumers. The former come from a dataset contain-
ing measured load profiles of 74 different German house-
holds (Tjaden et al., 2015). The annual electricity demand
DAP
t is estimated by assuming that a household with an

annual demand of 750 kWh installs 1 kW of PV rooftop
capacity. Accordingly, the total value for Germany depends
on the resulting capacity expansion of rooftop PV systems
in step 1 of the model-coupling workflow.

• Other power consumers (OPC) represent all electricity de-
mand except that of AP. This includes PV-rooftop systems
without integrated battery systems. Accordingly, we calcu-
late the electricity demand by subtracting the electricity
demand of the prosumers DAP

t from the total electricity
demand of Germany Dtotal

t :

DOPC
t = Dtotal

t − DAP
t , ∀t. (4)

In other words, in contrast to model harmonization (phase
A of the overall workflow), data for the prosumer systems
are treated separately in AMIRIS.

oreover, we assume that conventional and renewable power
lants always bid with their marginal costs, i.e., no mark-ups or
ark-downs for conventional power plants and no feed-in incen-

ives for renewable power plants, except for PV-prosumers. More-
ver, as mentioned above, large-scale storage systems (e.g., pump
torage systems) have the system-optimal dispatch calculated
n REMix. Regarding prosumer self-consumption, we consider
omplete relief from regulatory-induced charges for behind-the-
eter use of self-generated electricity.

.5.3. Use-cases under investigation
In this section, we define the use-cases for phases C and D of

ur overall workflow. In phase C, the electricity retail price (pst )
and the price of purchasing electricity from prosumers (ppt ) are
fixed over a year. In this case, ppt adopts the value of the feed-in
remuneration (FiT ). Taxes and levies, which make up over 70% of
the retail electricity price in Germany, are fixed over a year and
do not include any time-varying component. This static pricing
approach is referred to as the business-as-usual (BAU) use-case.
Accordingly, the retail electricity price can be written as

pst = (pelect + r + ptax + pnc + plev + peegt ) · (1 + VAT ), (5)

where pelect is the cost of acquiring electricity, r is the aggregator’s
profit margin, ptax are the associated taxes, pnc are the volu-
metric network charges. peegt and plev are respectively levies to

11 This means, for instance, that a PV-prosumer with a 10 kWp PV system is
quipped with 5 kW battery power and 15 kWh battery storage.
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Table 2
Regulatory framework and business model parameters.
Parameter Symbol Value Source

Taxes [¢/kWh] ptax 2.05 BDEW (2022)
Network charges [¢/kWh] pnc 7.65 BDEW (2022)
EEG levies [¢/kWh] peegt 3.72 BDEW (2022)
Other support levies [¢/kWh] plev 4.1 BDEW (2022)
Value added tax [%] VAT 19 BDEW (2022)
Feed-in remuneration [¢/kWh] FiT 7.69 BSW (2021)
Market price upper cap [¢/kWh] pm 30 o.a.a

Aggregator’s profit margin [¢/kWh] r 2 o.a.
Scaling factor in RTP tariff [–] κ 0.88 o.c.b

Scaling factor for vFiT [–] θ 1.28 o.c.
Scaling factor for dEEG [–] ι 0.53 o.c.

aOwn assumption.
bOwn calculation (see Appendix D).

support the renewable energy feed-in (according to the German
renewable energy act, EEG12) and other mechanisms. VAT is the
value-added tax.

In phase D of the overall workflow, we study different lev-
els of dynamism in the retail and purchase electricity prices
via real-time pricing. The basic idea behind this is that ppt or
certain components of pst follow the fluctuating market prices
and therefore, the demand and supply in the market to better
align the distributed decisions made by PV-prosumers. Based on
suggestions discussed in the literature, the following instruments
are considered:

1. Real-time pricing (RTP) (Hogan, 2014). The resulting dy-
namic prices include variable procurement costs (pelect ),
which are proportional13 to the electricity wholesale
prices.

2. Variable feed-in tariff (vFiT) (Ossenbrink, 2017; Klein et al.,
2019). This instrument denotes remuneration for PV elec-
tricity feed-in proportional to the wholesale prices.

3. Dynamic EEG levy (dEEG) (Economics and BET, 2016; Freier
et al., 2019). The EEG levy (peegt ) in this instrument varies
hourly according to the market prices.14

For these dynamic instruments, the values of pelect , ppt , and peegt
are determined such that their cumulative monetary effect over
the course of a year compared with the static equivalent for a
benchmark user is zero (i.e., the instruments do not affect the
annual cost or revenue of a benchmark user). The choice of bench-
mark users and the calculation of the used scaling factors for this
calibration, κ (for RTP), θ (for vFiT), and ι (for dEEG), are explained
in Appendix D. The assumed values for the parameterization of
the electricity tariffs are given in Table 2.

Considering the introduced instruments and their combina-
tions, in addition to BAU, we build three use-cases with the
naming conventions given in Table 3. For example, the instrument
mix of RTP and vFiT would be called ‘‘RTP + vFiT’’.

2.5.4. PV-prosumer modeling in AMIRIS
As explained in Section 2.5.2, we assume that all PV-prosumers

in AMIRIS are virtually aggregated to a single agent. An aggregator
is responsible for managing the electricity load and feed-in of
PV-prosumers. The aggregation of prosumers without PV-storage

12 Based on the German government’ decision, the EEG levy was eliminated
recently to lower the cost burden of power consumers.
13 Read as: wholesale market price times a constant.
14 Despite the omission of the EEG levy, this instrument is still relevant as it
can be applied to other regulated elements of the retail electricity price.
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Table 3
Naming convention of the use-cases under investigation.
Use-case RTP vFiT dEEG

BAU – – –
RTP ✓ – –
RTP + vFiT ✓ ✓ –
RTP + vFiT + dEEG ✓ ✓ ✓

Fig. 4. Schematic overview of the prosumer’s model.

ystems and using community energy storage systems instead
as already been investigated with AMIRIS (Safarazi et al., 2020).
or the current analysis, we further develop the aggregator and
rosumer agents as follows:

ggregator: The aggregator agent receives a forecast of the up-
coming market prices and related policy-related information,
such as electricity price elements induced by the government.
Based on the chosen instrument, the aggregator agent creates and
sends two sets of prices, i.e., retail and purchase prices (ps and
p), to the prosumers. Note that the market price forecasts are
enerated based on the electricity demand and generation of all
arket actors except the prosumers.

rosumer: This prototype agent represents an aggregated PV-
rosumer entity15 with a conventional household load, genera-
ion from a PV rooftop system, and battery storage system. In
eaction to the aggregator price signals, the PV-prosumer uses
dynamic programming approach to optimize the dispatch of

he PV-storage system. Fig. 4 schematically illustrates the virtual
ower flows in the PV-prosumer model and between the PV-
rosumer and aggregator. The prosumer’s electricity load and
eneration are managed by an energy management system (EMS),
hich determines the amount of battery charge (zC ) or dis-
harge (zD) as well as grid usage (es) and grid feed-in (ep) on
n hourly basis according to the prosumer’s generation (GAP )

and demand (DAP ). In Appendix E, we provide a more detailed
explanation of the mathematical model employed for prosumer
storage optimization.

3. Results

3.1. Model harmonization and modeling delta

In phase A of the overall workflow, AMIRIS does not operate
any PV-storage and adopts the optimized dispatch of its counter-
parts in REMix. The hourly sum of all discrepancies in operational
system costs between REMix and AMIRIS is 26800 e for Germany,
which (considering overall German operational system costs of
around 5.96 Be) corresponds to a relative deviation of 0.00045%.
The root-mean-square error is 1900 e. With this marginal differ-
ence, we consider the models to be harmonized and phase A to
be complete.

15 The model can also be parameterized for individual prosumers. Due to
omputational impracticality and lack of data, we consider an aggregated
rosumer entity.
 a
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Table 4
Cost components of the EUMA and GER in the Reference energy system.
Cost component Cost–EUMA [Be] Cost–GER [Be]

CAPEX 114.73 3.07
O&M cost 27.86 0.55
Fuel cost 18.94 2.57
CO2 cost 8.19 2.85

To calculate ∆model, PV-prosumers operate such that opera-
tional system costs are minimized by AMIRIS (phase B).16 The
nnual sum of the hourly differences between the operational
osts of the first and third steps of the model-coupling workflow
s ∆model

= 899 300 e. The corresponding root-mean-square
error is 13500 e. In other words, due to the modeling delta, our
indicator for measuring the granularity gap increases by 0.015%
compared with the reference energy system17 (see Fig. 3). This
indicates that the modeling delta is negligibly small.

3.2. Economic granularity gap

In this section, the economic granularity gap is quantified
for the case of PV-prosumers in the German electricity market.
The indicator used is the difference in total system costs (see
Section 2.4.3). We distinguish the system costs for two spatial
scopes: (i) EUMA and (ii) Germany (GER). Therefore, based on
Eq. (2), the economic granularity gap to be observed in this
case-study is
∆econ

c,s = Cc,s − CREF,s,

c ∈ {BAU, RTP, RTP+vFiT, RTP+vFiT+dEEG},
s ∈ {EUMA, GER},

(6)

where c is the set of studied use-cases and s is the spatial scope.
Cc,s represents the total system costs considering the stakeholder
behavior of PV-prosumers and CREF ,s is the total system costs
for the cost-minimal reference energy system design (REF) (step
1 of the model-coupling workflow, see Fig. 2). By considering
EUMA as well as GER, we can differentiate between the impacts
of the instruments on the overall and German energy systems.
The tariffs are only applied in Germany. However, by modeling
the whole EUMA region, we can consider the electricity grid and
observe changes in imports and exports. This allows us to analyze
the German energy system in a more dynamic setup.

In general, high retail electricity prices in comparison to feed-
in remunerations make self-consumption of electricity profitable.
However, in the BAU use-case, this self-consumption is scheduled
independently from market signals. Therefore, it is likely that the
system operation deviates from the macroscopic cost minimum
of REF, which may also affect the optimal energy system design.
In contrast, introducing instruments such as RTP, vFiT, and dEEG
increases the alignment of the operations of PV-prosumers, and
should thus decrease the economic granularity gap.

Table 4 lists the cost components on the EUMA level and
in Germany for REF. The macroeconomic optimum is at 169.71
Be of total system costs in REF. For Germany, system costs com-
prise 0.55 Be for O&M of the power system, with 2.57 Be and
2.85 Be of fuel and CO2 costs, respectively. Amortization charges
(CAPEX) for additional power system components are 3.07 Be.

16 Note that the modeling delta is determined between REMix (REF) and
AMIRIS, but it finally affects the economic granularity gap measured against
a second energy system optimization with REMix. Therefore, we estimate an
upper bound for the modeling delta because, even if constrained to the AMIRIS
output, the operational system costs observed in step 4 of the model-coupling
workflow can be further minimized in REMix, e.g., by re-dispatching storage
technologies other than PV-prosumers.
17 If the optimized PV-prosumer dispatch from AMIRIS is implemented in
REMix, CAPEX increases by 128000 e, corresponding to an increase of 0.0042%,
nd OPEX increases by 54000 e, an increase of 0.00091%.
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Fig. 5. Differences in the cost components of EUMA and GER compared with REF for different tariff options. In the BAU scenario, the cost increase in Germany is
the highest at almost 400 Me. With the RTP tariff, the additional investment cost decreases in Germany by around two-thirds, shifting costs abroad. With a more
lexible vFiT the additional costs in Germany increase, while the overall system costs decrease.
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Fig. 6. Capacity differences in GER compared with REF for different tariff
options. The BAU scenario leads to the highest additional capacities in GER.
In the RTP scenario, the capacity of central PV decreases significantly. With an
additional vFiT, the capacity of the grid decreases. The additional flexibility of
the EEG results in comparably low additional lithium-ion battery capacities.

Fig. 5(a) shows the economic granularity gaps for the EUMA
cope, and thus, the cost components and total system costs in
he overall energy system compared with REF. As the power gen-
ration and storage capacities are similar to REF in all countries
ut Germany (see Section 2.3), the relative changes in total sys-
em costs on the EUMA level are rather low. However, differences
an be observed depending on the tariff implemented for PV-
rosumers: higher flexibility of the prosumer tariff produces a
maller economic granularity gap on the EUMA level. For BAU
nd RTP, similar additional system costs can be observed, while
ntroducing a variable feed-in-tariff leads to a marginal improve-
ent in RTP+vFiT. The additional implementation of dynamic
EG has a rather strong influence on the economic granular-
ty gap. RTP+vFiT+dEEG reduces the deviation of system costs
ignificantly.
For a better understanding of the impact of PV-prosumer

ehavior on energy system design in Germany, Fig. 5(b) illustrates
conomic granularity gaps for the German scope and thus, the
ost components in Germany compared with the least-cost REF.
n all use-cases, the energy system design changes in a way that
ncreases investment costs, which dominates the effect on the
otal system costs. As expected, this is striking in BAU, where
dditional investment costs are at 428 Me. In particular, Fig. 6
hows that the economic granularity gap is mainly visible in
he form of an additional need for stationary lithium-ion battery
apacity in Germany and, for all use-cases but RTP, utility PV. The
nstalled capacities in Germany in the REF are listed in Table F.1.

In general, the above results indicate that, in the case of PV-
rosumers, the economic granularity gap is mainly driven by
he nonaligned, and thus, inflexible operation of the associated
V-storage systems. They do not fully exploit their capability to
alance power supply and demand. This is underestimated in the
1868
Fig. 7. Differences in power generation in GER compared with REF for different
tariff options. In the BAU and RTP+vFiT+dEEG scenarios, the power generation
f central PV increases significantly, leading to less power generation and
mports from abroad. In the RTP+vFiT scenario, the power generation shifts
lightly to Germany. With the RTP tariff, the central PV power generation
ecreases significantly in Germany, resulting in additional imports from abroad.

ptimal energy system design of REF, which ignores PV-prosumer
ehavior. Therefore, the resulting inflexibility needs to be bal-
nced by further installations of technologies having the same
apabilities. However, with a sufficiently dynamic electricity re-
ail tariff and feed-in remuneration, and with additional energy
torage capacity, the granularity gap in Germany can be reduced,
.g., down to 242 Me in the RTP+vFiT+dEEG case. If the share of
ynamic price components in the prosumer tariff becomes larger,
uch as in RTP+vFiT+dEEG, the need for temporal energy balanc-
ng in the form of lithium-ion batteries is minimized (+0.7 GW
ompared with REF) and the need for spatial energy balancing
s reduced. This is even more significant for RTP+vFit, where
he grid transfer capacity between Germany and its neighbors is
educed by 0.7 GW compared with REF.

As shown in Fig. 5(b), RTP gives the smallest economic gran-
larity gap for Germany due to considerably lower investments
n additional power generation and storage capacity. Fig. 6 illus-
rates that considering RTP18 causes a displacement of 4.9 GW
f utility PV compared with REF. However, carbon emission costs
ecrease across all use-cases except RTP. The reason is that, in the
TP use-case, the cost savings observed for Germany are compen-
ated by shifting power generation to other countries. Although
he additional costs in Germany decrease with the RTP tariff com-
ared with the BAU tariff, the additional costs in EUMA are almost
he same, indicating higher additional costs abroad. This becomes
vident when looking at Fig. 7, which shows the changes in power
eneration in GER compared with REF. The power generation in
EF is listed in Table F.2. Given the significant additional imports
f about 5.5 TWh for RTP, it becomes clear that the missing

18 According to our methodology, only in the German electricity market.
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olar power is mainly compensated by both greater renewable
nd fossil-fired power generation outside Germany. This leads
o the most extensive GHG emissions across the analyzed use-
ases, even at the EUMA scope, with 33 Me for additional CO2
mission allowances compared with REF. At the same time, while
he additional costs of the German energy system decrease with
he RTP tariff, Germany’s import dependency increases.

Furthermore, Fig. 7 shows that BAU and RTP+vFiT+dEEG are
ery similar in terms of power generation: the power generation
rom utility PV increases significantly, while imports from abroad
ecrease and less fossil-fired power plants are operated, both in
ermany and abroad, leading to lower fuel and CO2 costs, as
ndicated in Fig. 5. However, due to the more efficient usage of
V-storage systems in the RTP+vFiT+dEEG use-case, a decrease
n imports to Germany can be achieved with less infrastructure
n the form of additional lithium-ion battery capacity.

. Discussion

.1. Results summary

Our case-study has quantified the economic granularity gap
hat arises, from a central planner’s perspective, when stake-
older behavior is considered in the optimization of large-scale
nergy systems. In particular, we studied the case of PV-prosumers
iming to optimize the dispatch of PV-storage systems at the
ousehold level in Germany. Under the actual pricing regime,
hich we refer to as BAU, we observed an economic granularity
ap in Germany represented by an increase of 389 Me. To put
his into context, designing future energy systems with an opti-
ization model implies an underestimation of costs, whereas the
bsolute value of 389 Me is rather interesting from a technical
oint of view. However, the novelty of our study is that we were
ble to quantify these costs, which are usually hidden if stake-
older behavior is ignored. In addition, we studied the influence
f different prosumer tariffs, which are supposed to increase the
lignment of PV-prosumer dispatch decisions according to price
ignals from the electricity market. We showed that a larger share
f dynamic components in electricity retail prices and feed-in
emunerations results in lower additional total system costs at
he overall system level. Accordingly, the economic granularity
ap could be reduced. In the case of variable procurement prices
RTP use-case), the additional cost in Germany decreases to 150
e, but at the cost of increasing GHG emissions and additional
ower generation outside Germany, resulting in a higher import
ependency.19 In contrast, for a prosumer tariff that addition-
lly considers variable feed-in-tariffs and a dynamic EEG levy
RTP+vFiT+dEEG use-case), we observed a very similar annual
lectricity mix as in BAU. However, this could be realized with
ess investment, and thus at lower total system costs, while also
ecreasing GHG emissions.
In summary, replacing the static components of the prosumer

lectricity prices with time-varying elements that contain signals
rom the wholesale market reduces the total system costs at
he overall system level. Looking at Germany, considering only
ystem costs may provide an incomplete picture. Therefore, addi-
ional factors such as power exchange with neighboring countries
eed to be considered when quantifying the economic granularity
ap.

19 In this particular case, a greater utilization of fossil-fired power plants and
urchasing emission allowances at 50 e/t turned out to be more cost-efficient

than greater investment in new PV plants.
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4.2. Limitations

One limitation of our modeling setup is the isolated consid-
eration of stakeholder behavior for a single electricity market
(Germany) and solely for one technology. This limits the scope
for studying the economic granularity gap from an overall system
perspective and causes inaccuracies. In particular, when evaluat-
ing system costs in Germany, the profits and expenses of power
exchange are not considered because they cannot be directly
derived from REMix, which calculates the total system costs
across Europe and Maghreb. Additionally, it is clear from the
relative cost deviations that the granularity gaps are rather low
compared with the absolute total system costs. This effect is
a consequence of our methodology, where expenses for power
plants and storage outside Germany cannot be changed after
determining the reference energy system. In this way, we con-
sider policy instruments to be solely implemented for individual
countries. This severe limitation of the solution space fosters
more significant changes in the German energy system caused
by stakeholder behavior. In our study, this refers to investments
in technologies, which are directly affected by the dispatch deci-
sions of PV-prosumers’ lithium-ion batteries. Accordingly, further
improvements in the context of quantifying the economic gran-
ularity gap require the consideration of stakeholder behavior for
more than one decentralized actor, necessitating more technolo-
gies in the market. This includes the optimization of diverse
storage technologies, each of which is suitable for a specific
system need.

4.3. Policy implications of the case-study

The implementation of retail prices with dynamic compo-
nents based on perfect forecasts of wholesale market prices is
still largely hypothetical. Despite the associated simplifications,
the results of our case-study provide valuable insights into the
system impacts of different implementation levels of dynamic
pricing instruments for prosumers. In this context, we conclude
that dynamic electricity tariffs and remuneration schemes are
not a ‘‘system-friendly’’ policy instrument by default. Against our
expectations, the total system costs in Germany did not alter con-
sistently with the increasing market alignment of PV-prosumers.
Whether dynamic pricing mechanisms are beneficial depends on
the specific implementation (i.e., which price components are
dynamic) and also where it is introduced. Therefore, we can
confirm that the desired effects are possible in terms of both
reducing GHG emissions and the need for energy infrastructure.
Concerning the observed additional GHG emissions in one of our
use-cases, we recommend further research to cross-check our
findings with sensitivity analysis of CO2 costs.

In this context, our results show that replacing more than one
component of the electricity retail price with time-varying ele-
ments significantly increases the effectiveness of the instrument.
However, the remaining distortions caused by other static taxes
and levies prevent complete alignment of the prosumer operation
with the electricity market, and so complete elimination of the
economic granularity gap is not achieved (these findings are
similar to the results of Klein et al. (2019) and Sarfarazi et al.
(2020)). The implementation of other instruments, such as fixed
network charges (Borenstein, 2016), that reduce the share of fixed
volumetric components of the electricity retail price may further
improve the system impacts of prosumer operations. Moreover,
for the ‘‘system-friendly’’ operation of prosumers, besides fluctu-
ations in wholesale market prices, the condition of the physical
infrastructure, e.g., congestion in the distribution grid, should also
be signaled to the prosumers.
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. Conclusion and outlook

How can a climate neutral overall energy system be imple-
ented in a society with a multitude of decentralized decision-
akers? This was the overall research question that motivated

he study described in this paper. As an extension to existing
esearch in energy system analysis, we have introduced different
conomic perspectives with regard to the transformation of large-
cale energy systems that affect the potential gains from model-
ased analyses on energy system design. In particular, we applied
he energy system optimization model REMix and the agent-
ased electricity market model AMIRIS to explore different eco-
omic perspectives. We described the economic granularity gap
s a metric for bringing these two perspectives closer together. In
eneral, this approach was useful in identifying effective policy
easures in terms of system-friendliness. From a technical point
f view, we set up an automated and reproducible modeling
orkflow by coupling the energy systemmodels in a bidirectional
anner. This technical implementation is an essential novelty
ompared with the state-of-the-art. We demonstrated the use-
ulness of this formulation in a case-study for PV-prosumers,
roviding an example of how unaligned stakeholder behavior
ffects energy system designs provided by ESOMs.
In the case-study, we analyzed a set of different policy mea-

ures that affect the deviation of simulated operation decisions
f PV-prosumers in the German power market and compared
hem with optimal decisions from the overall system perspective.
e found that the developed modeling workflow was capable
f investigating the influence of different policy instruments for
ridging the economic granularity gap, and was thus able to
educe costs, which are usually underestimated when designing
nergy systems. From a practical point of view, the strength
f the established modeling workflow is its adaptability to a
arge spectrum of further research questions that go beyond our
articular case-study. Therefore, an intuitive next step would be a
oll-out to further stakeholder groups, such as operators of other
torage technologies. It is expected that, when a large variety
f stakeholders are covered, the economic granularity gap will
ncrease. Thus, research on effective policy measures for bridging
his gap becomes even more important. Accordingly, examples for
urther research are analyses of the market premium (Frey et al.,
020), the interaction of markets due to increasing coupling of
nergy demand sectors, or the impact of the strategic behavior of
takeholders on the economic granularity gap. In this context, an
mportant topic for future research is modeling policy measures
hat directly influence investment decisions.
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Table A.1
List of abbreviations and acronyms.
Shortened form Description

ABM Agent-based model
AP Aggregated prosumers
BAU Business-as-usual
CAPEX Capital expenditure
EEG Renewable energy act (Erneuerbare-Energien-Gesetz)
EMS Energy management system
ESOM Energy system optimization model
EUMA Europe and Maghreb
dEEG Dynamic EEG levy
GER Germany
GHG Greenhouse gas
O&M Operation and maintenance
OPC Other power consumers
OPEX Operational expenditure
PV Photovoltaic
REF Reference energy system
RTP Real-time pricing
VAT Value-added tax
vFiT Variable feed-in tariff
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Appendix A. Abbreviations

Table A.1 presents a list of the acronyms and abbreviations
used in this paper.

Appendix B. Structure of AMIRIS

The structure of the ABM AMIRIS and the financial, informa-
tion, and power flows among the enabled agents in this study are
illustrated in Fig. B.1. A more detailed description of AMIRIS can
be found in Deissenroth et al. (2017). AMIRIS has already been
used in several electricity market studies (Torralba-Diaz et al.,
2020; Frey et al., 2020; Nitsch et al., 2021; Safarazi et al., 2020).

For the assessment of PV-prosumer stakeholder behavior, we
have further developed the model and added two new agents,
i.e., prosumer and aggregator agents. The aggregator agent pro-
vides electricity tariffs for the prosumers and trades according
to their electricity excess or deficit in the wholesale market. The
prosumer agent reacts to the electricity prices and optimizes the
operation of the storage system to minimize their costs. Note that,
at the time of publishing this paper, the developed aggregator and
prosumer models for this analysis are not part of the open-source
model.

Appendix C. Data exchange details

As shown in Fig. 2, the data from REMix are processed within
iog2x before being sent to AMIRIS. Table C.1 lists the data types
and units that REMix and AMIRIS require and how they are
translated by iog2x.

Appendix D. Calculation of market constants

The instruments under investigation are determined in such a
way that their implementation disadvantages a benchmark user.
In the case of RTP and dEEG, the benchmark user is assumed to
be a household with no storage and generation potential. For the
calibration of the vFiT instrument, we consider a stand-alone PV
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Fig. B.1. Schematic structure of AMIRIS in this study.
Table C.1
Data exchange from REMix to AMIRIS within iog2x.

Parameter REMix Transformation AMIRIS

Global
CO2 price Scalar [ke/t] Scalar to time series Time series [ke/t]
Fuel price Scalar [ke/MWhth] Scalar to time series Time series [ke/MWhth]
Specific CO2 emissions per fuel Scalar [t/MWhth] – Scalar [t/MWhth]

Demand
Demand Germany (Dtotal

t ) Time series [GWh] (Dconv
t + Dhp

t + DeBoiler
t + DeCars

t + Eexport
t −

E import
t + ZC,stor

t − ZD,stor
t + Ltranst ) ∗ 103

Time series [MWh]

Demand Prosumer (DAP
t ) Time series [GWh] * 103 Time series [MWh]

Demand OPC (DOPC
t ) – Dtotal

t − DAP
t Time series [MWh]

Storages

Storage converter capacity Scalar [GW] (* 103) to time series Time series [MW]
Energy-to-power-ratio Scalar [TWh] * 106/storage converter capacity [MW] Scalar [h]
Charge efficiency Scalar [–] – Scalar [–]
Discharge efficiency Scalar [–] – Scalar [–]

Power plants

Installed power Scalar [GW] (* 103) to time series Time series [MW]
RE yield profile Time series [GWh] (power generation + curtailment) *

103/installed power [MW]
Time series [–]

Variable O&M cost Scalar [ke/MWh] * 103 Scalar [e/MWh]
Availability factor Scalar [–] Scalar to time series Time series [–]
Minimum efficiency Scalar [–] Scalar to time series Time series [–]
Maximum efficiency Scalar [–] Scalar to time series Time series [–]
{

system as the benchmark user. We derive the scaling factor χ of
he instruments in its general form as follows:
x
t = χpmc

t , (D.1a)

χ =
pmc
avg

∑Z
t=1 m

AP
t∑Z

t=1 p
mc
t mAP

t

. (D.1b)

The scaling factor χ and the price pxt respectively represent κ ,
ι, θ , and pelect , peegt , ppt for the RTP, dEEG, and vFiT instruments.
pmc
avg is the average market price and pmc

t is the capped market
price with lower and upper bounds (zero and pm). mAP

t is the
ormalized electricity demand of the prosumers (dAPt ) in the RTP
nd dEEG calculations and the normalized generation profile (gAP

t )
in the vFit calibration. We carry out the calculation with an hourly
resolution and for a simulation time of one year (Z = 8760 h).

Appendix E. Prosumer optimization model

Eqs. (E.1a)–(E.1f) describe the EMS logic, i.e., the cost function
and the optimization constraints of the prosumer.

Minimize
ξ

C =

T∑(
pste

s
t − ppt e

p
t
)

(E.1a)

t=1
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subject to: at = at−1 + ECzCt −
zDt
ED , ∀t ̸= 0, (E.1b)

0 ≤ at ≤ ϕς, ∀t ̸= 0, (E.1c)

at = A0, t = 0, (E.1d)

GAP
t − DAP

t = est − ept − zCt + zDt , ∀t ̸= 0, (E.1e)

GAP
t = γ APgAP

t , ∀t ̸= 0, (E.1f)

0 ≤ zCt ≤
ϕ

EC , ∀t ̸= 0, (E.1g)

0 ≤ zDt ≤ ϕED, ∀t ̸= 0. (E.1h)

ξ in Eq. (E.1a) is the set of prosumer decision variables ξ =

est , e
p
t , at , zCt , zDt }. C is the cost of the prosumer agent during one

optimization period (T ), calculated based on the grid usage (est )
and grid feed-in (ept ) of the prosumer. Note that the investment,
operation, and maintenance costs of PV-storage systems are not
considered in the cost function. In Eq. (E.1b), which represents
the storage state of the charge constraint to the prosumer’s op-
timization problem, at is the energy content of the battery in
time step t . The storage technical parameters EC and ED are
the battery’s charging and discharging efficiency, respectively.
Constraint (E.1c) ensures that the energy content of the battery

remains between the minimum (zero) and maximum allowed
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Fig. E.1. Prosumer dispatch for an exemplary 36 h simulation time for the BAU (A) and RTP (B) use-cases. Positive electricity amounts correspond to residual load
and grid usage, negative amounts are residual generation and grid feed-in.
limits, i.e., maximum battery capacity, which is represented by
the battery’s installed power (ϕ) multiplied by its energy to
power ratio (ς ). Moreover, Eq. (E.1d) updates the initial battery
energy content (A0) in every optimization period. Note that the
value of A0 depends on the previous optimization result and
therefore, needs to be updated before every optimization. The
constraint formulated as Eq. (E.1e) balances the hourly power
flows managed by the EMS. Based on this equation, we assume
that the prosumer primarily utilize the electricity generation to
cover the electricity demand. We make this assumption due to
the near-zero marginal costs of produced solar energy and the
exemption of the self-consumed electricity from the regulatory-
induced charges. Electricity generated by prosumer is calculated
according to Eq. (E.1f) from the average PV generation profile
(gAP

t ) and installed PV rooftop capacity (γ AP ). Finally, the electric-
ty charged (zCt ) or discharged (zDt ) from the battery in each time
tep is limited in Eqs. (E.1g) and (E.1h). Note that in our modeling,
e neglect the grid restrictions and losses.
Fig. E.1 shows the dispatch of PV-storage systems in the BAU

A) and RTP (B) use-cases in AMIRIS. As can be seen, the intro-
uction of a dynamic electricity tariff scheme influences the self-
onsumption pattern of prosumers. The most prominent change
n the usage of battery storage happens from 20:00 to 22:00.
n the case of an RTP tariff, the prosumer takes advantage of
ow retail prices in these hours and covers the electricity de-
and from the grid. The battery discharges later, from 00:00 to
4:00, to cover the electricity demand. In BAU, in contrast, the
attery discharges as soon as the electricity demand exceeds the
eneration.

ppendix F. Reference energy system in Germany

Table F.1 presents the installed capacities in Germany in REF

s a reference for the capacity differences shown in Fig. 6.
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Table F.1
Installed capacities in GER in REF.
Technology Capacity [GW]

Gas 11.14
Coal 8.36
Lignite 9.71
Oil 0.37
Hydro run-of-river 4.38
PV central 23.23
PV decentral 34.94
Wind onshore 49.64
Wind offshore 6.42
Grid 118.69
Lithium-ion battery 8.74
Pumped hydro-storage 6.49

Table F.2
Annual power generation in GER in REF.
Technology Power generation [TWh]

Gas 22.64
Coal 19.78
Lignite 39.00
Oil 0.05
Hydro run-of-river 21.80
PV central 27.54
PV decentral 25.39
Wind onshore 97.50
Wind offshore 18.96
Import 306.82

Table F.2 presents the power generation and imports in Ger-
many in REF as reference for the deviations in the use-cases in
Fig. 7.
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