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Robust design of a machine
learning-based GNSS NLOS
detector with multi-frequency
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The robust detection of GNSS non-line-of-sight (NLOS) signals is of vital
importance for land- and close-to-land-based safe navigation applications. The
usage of GNSS measurements affected by NLOS can lead to large unbounded
positioning errors and loss of safety. Due to the complex signal conditions
in urban environments, the use of machine learning or artificial intelligence
techniques and algorithms has recently been identified as potential tools to
classify GNSS LOS/NLOS signals. The design of machine learning algorithms
with GNSS features is an emerging field of research that must, however, be
tackled carefully to avoid biased estimation results and to guarantee algorithms
that can be generalized for different scenarios, receivers, antennas, and their
specific installations and configurations. This work first provides new options
to guarantee a proper generalization of trained algorithms by means of a
pre-normalization of features with models extracted in open-sky (nominal)
scenarios. The second main contribution focuses on designing a branched
(or parallel) machine learning process to handle the intermittent presence of
GNSS features in certain frequencies. This allows to exploit measurements in
all available frequencies as compared to current approaches in the literature
based on only the single frequency. The detection by means of logistic
regression not only provides a binary LOS/NLOS decision but also an associated
probability which can be used in the future as a means to weight-specific
measurements. The detection with the proposed branched logistic regression
with pre-normalized multi-frequency features has shown better results than the
state-of-the-art algorithms, reaching 90% detection accuracy in the validation
scenarios evaluated.

KEYWORDS

global navigation satellite system, non-line-of-sight propagation, machine learning,
urban environment, local threats

1 Introduction

Global navigation satellite systems (GNSSs) are widely used in transportation
applications to localize and navigate vehicles. Compared to aviation, land and close-to-
land applications suffer from an additional challenge to GNSS positioning: the presence of
multiple local threats. These include, among others, multipath, non-line-of-sight (NLOS)
signal reception, and interference. Because of these threats, the implementation of GNSS for
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safety-related applications is still restricted almost exclusively to
aviation applications. Other means of transport like railway and
emerging applications like autonomous vehicles and urban air
mobility will also need to ensure the reliability and safety of GNSS
positioning if included in future certification standards.

This paper targets the robust detection of pseudorange
measurements affected by NLOS signals. NLOS signals are signals
received after one or several reflections but without the reception of
the direct ray. This means that they necessarily induce an additional
delay in pseudo-range estimation. On the contrary to other GNSS
error sources, such as atmospheric delays, satellite ephemeris, or
clock errors, local threats are difficult to predict and to model due
to their dependency on the environment and time, and remains a
major issueforsafeandaccurateGNSS-basedpositioningsolutions in
urban environments.The state-of-the-art algorithms largely include
NLOSdetectionandmitigation.Solutionsareproposedatthedifferent
stages of the receiver chain: from the antenna design (Suzuki et al.,
2020b)toPVTestimator(Bressler et al.,2016),orbyredundancywith
other sensors such as inertial measurement units (Crespillo et al.,
2018), LiDARs (Wen et al., 2019), or cameras (Marais et al., 2014).
These classical approaches for handling NLOS in some cases may
requireadditionalsensors,expensiveequipment,orspecificdetection
methodology highly dependent on satellite geometry and current
signal situations, whose specific performance is difficult to model.
Given the inherent complexnatureof signalpropagationandreceiver
signalprocessinginurbanscenarios,thedetectionofNLOSsignalsisa
perfectusecase forartificial intelligencealgorithmsand, inparticular,
machine learning (ML). The presence and impact of this threat
depends on multiple factors that cannot be correctly considered by
classical parametric tools to ensure conservative position estimation.
The application of ML for GNSS positioning and, in particular, for
NLOS detection represents, however, different challenges so that the
methodologies satisfy generalization.

This paper first provides a literature research study on the use
of artificial intelligence algorithms in the GNSS domain, focusing
on the detection of local GNSS threats like NLOS. In particular,
the main advantages, limitations, and specific algorithms used are
discussed and summarized.Then, a newmethodology is proposed to
normalize the featureswithrespect to thespecificantenna installation
and receiver. This generalizes the applicability of an already trained
algorithm to a different hardware setup. A new logistic regression
algorithmisproposedthathandles features frommultiple frequencies
based on the creation ofmultiple estimation branches. Finally, NLOS
detection results are shown for the normalization, training, and
validationof theproposedalgorithms incomparisonwithother state-
of-the-art approaches.The evaluations are based on several hours of
static data collected both in open-sky scenarios and two different
locations with nearby buildings.

2 Use of machine learning and
artificial intelligence for satellite
navigation

2.1 Previous work

The use of artificial intelligence (AI), in particular ML
algorithms for GNSS positioning, has increased in the last few years.

Their capacity to model complex phenomena and relationships
between parameters is very promising for multipath and NLOS
detection, characterization, and mitigation in urban areas. First
papers with ML addressed the use of classifiers for LOS/NLOS
distinction such as a binary decision tree (Yozevitch et al., 2016)
or an adaptive neuro fuzzy inference system (ANFIS) (Sun et al.,
2019a). Then, ML-related publications focused on multipath and
NLOS detection for mitigation (Hsu, 2017a; Suzuki et al., 2017)
with or without a distinction between the two states of reception.
Xia et al. (2020), for example, considered any anomaly, including
NLOS reception. Orabi et al. (2020) developed a novel NN-based
DLL (NNDLL) to mitigate multipath errors by focusing on the
autocorrelation function computed in the receiver. Some other
papers address the problem at the pseudorange error level,
developing pseudorange error models. Sun et al. (2019b) used a
gradient boosting decision tree (GBDT)-based method to predict
the pseudorange errors by considering the signal strength, satellite
elevation angle, and pseudorange residuals. For most of these
studies, the benefits are evaluated by quantifying how this knowledge
helped increase the position accuracy. Thanks to SDR, signal
processing can be accessed and used for NLOS multipath detection
(Suzuki et al., 2020a). Finally, some other applications of ML based
on GNSS measurements are mentioned: for context detection (Gao
and Groves, 2020), spoofing detection (Silvio Semanjski and Muls,
2020), the detection of GNSS ionospheric scintillation (Linty et al.,
2018), or based on signals such as the Jammer Classification of
Ferre et al. (2019) that are out of the scope of our study.

2.2 Challenges

As ML relies on data, the first step of work is to determine the
features to be exploited, as well as the technique. As introduced
previously, most of the studies rely on GNSS observables. The
carrier-to-noise ratio (C/N0) is the most popular feature used
for LOS/NLOS classification but has shown its inefficiency if
used alone due to overlay between LOS and NLOS distributions
of C/N0 (Wang et al., 2015). In 2016, Yozevitch et al. (2016)
considered adding pseudorange residuals and satellite elevation to
be combined, on one hand, in a decision tree (DT) for supervised
classification and, on the other hand, expectation maximization
(EM) as unsupervised classification. The authors have shown that
both proposed algorithms outperformed the classical binary C/N0
thresholding method.

Recent investigations explore the use of support vector
machine (SVM) such as in Xu et al (2020). New features from
the smartphone-level GNSS chip are added to C/N0: satellite
elevation, pseudorange (PR), and pseudorange rate consistency
(PRC) that provides consistency between the pseudorange rate
from pseudorange measurements and the Doppler shift. Hsu
(2017b) also relied on SVM but detected LOS/NLOS signals and
multipath, adding the difference between two consecutive errors of
the carrier-to-noise ratio (Δ C/N0) as a feature. In these techniques,
the PR is obtained after the position computation by subtracting
the estimated range and all the known terms. In case the position
estimation was conducted perfectly, the PR would equal the value
of noise and multipath, while the PRC is the difference between the
changing rate of the pseudorange measurements and the Doppler

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2023.1171255
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


García Crespillo et al. 10.3389/frobt.2023.1171255

shift. Sun et al. (2019b) also considered LOS/NLOS signals and
the multipath. This is conducted by using C/N0, satellite elevation,
and PR, while the ML technique used is the DT. Furthermore,
Tomohiro and Nobuaki (2022) used the SVM ML technique
with unique features calculated by using receiver-independent
exchange format-based information and pseudorange residual
checks.

One of the main restrictions of Yozevitch et al (2016), Xu et al
(2020), and Sun et al (2019b) is that the authors assume that
low-elevation satellites always imply NLOS signals. Although low-
elevation satellites are more likely to cause NLOS signals, this is not
always the case. Moreover, the decision of an algorithm using the
low-elevation satellite/NLOS signal feature is going to be restricted
and conditioned by the elevation of the obstacles present in the
training dataset.

Another notable restriction that occurs in Yozevitch et al.
(2016), Xu et al. (2020), Sun et al. (2019b), Hsu (2017a), and
Tomohiro and Nobuaki (2022) is their use of the pseudorange
residuals. As it has been mentioned previously, PR is computed only
after the position computation, which makes it dependent on the
algorithm used for positioning, and consequently, the detector is
not valid for different estimators. Moreover, position estimation is
directly affected by the number of satellites (alongside other satellite
properties) that are available for position estimation, which would
cause the PR to vary for each situation. This makes the detection of
LOS/NLOS a function of not only the satellite on review but also the
rest of the satellites as well.

Furthermore, another limitation to C/N0-based methods, as
explained in Yozevitch et al. (2016), is that C/N0 is strongly
dependent on the installation used for data recording. In other
words, the results are degraded when the installation used for
training differs from the later installation. Lastly, a shortcoming
of the state-of-the-art approach is the use of single-frequency
features. Exploitation ofmultiple frequencies can enhance theNLOS
detection capability. One of the reasons that the literature is limited
to single frequency may be the difficulty to handle the intermittent
presence of secondary frequencies like L2 or L5/E5 in the training
and validation process.

As the choice of the relevant features, the choice of the ML
algorithm is an important component of the proposals. Xu et al.
(2018) compared the SVM method with other ML methods
such as k-nearest neighbors (KNN), neural network (NN), and
DT and concluded that SVM offers the best performance with
commercial GNSS and decent generalization ability. Most recent
papers explored more complex ML-based processes. Zhang et al.
(2021) investigated how the combination of a fully connected
neural network (FCNN) and long–short-term memory (LSTM)
network not only allow in predicting satellite visibility but also
PR error based on GNSS measurements. The interest of LSTM
is the extraction of context information from sequential GNSS
measurements. Sun and Fu (2022) proposed a stacking ensemble
learning (SEL) method for the NLOS detection of GNSS. It also
consists of two levels of ML models. The goal is to combine the
views of different models to the measurement features to address
the shortcomings of each single model and improve the model’s
generalization.

Based on signals and thanks to SDR, Li et al. (2020) and
Munin et al. (2020) show how one can detect the multipath

contamination (not only NLOS) on the correlator output signal
based on the deep neural network (DNN) for the former and
the conventional neural network (CNN) converting the incoming
signals into images at the time and frequency domains for the latter.
These different methods and associated features are summarized in
Table 1.

2.3 Current limitations

If ML and deep learning are promising tools to model
complex phenomena as the GNSS local effects in urban areas,
the state-of-the-art algorithm is quite recent and still needs to
be completed with deeper analyses and better accuracy of the
models.

With respect to the selection of features for the ML/AI
algorithms, we see the possible limitations and challenges of the
state-of-the-art algorithms:

• Elevation: Using elevation as a feature may bias the model
with respect to the training data. For instance, if training data
were obtained in scenarios where buildings are predominately
of a certain altitude, the model may not represent well
other circumstances with lower or taller buildings that block
the LOS signal at different elevations. If the training data
consist of data covering in many and different scenarios (quite
challenging in practice), then the elevation, as a feature, may
not include such important information. Therefore, including
elevation as a feature should be treated with care or completely
avoided.
• Number of visible satellites: Although the limited visibility of
the satellite may be the indication of being in an urban canyon,
similar as with the elevation case, a model trained with data
predominantly in given scenarios may bias the model for a
general situation.
• Pseudorange PVT residuals: This information is a result
of the PVT estimation process, which depends on many
different factors like the number of visible satellites, number
of constellations used, current geometry, and the specific error
model used for each of the satellite measurements. Therefore, it
may be very difficult to cover with enough training data in every
possible situation of residuals. This may lead again to biased
model estimation in many scenarios different from those that
the training data represented.
• C/N0: Specific behavior of C/N0 is dependent on a specific
satellite or constellation transmitted power, specific antenna
gain diagram and spatial response, and a specific GNSS receiver
C/N0 estimation method. Using a trained model with a specific
setup and satellite data may not be properly extrapolated
to other frequencies, constellations, antenna installation, or
specific receivers.
• Training dataset availability: The limit of supervised learning
algorithms is the availability of labeled datasets for training
or their building. Indeed, the knowledge with certainty of
the satellite state of reception LOS or NLOS still remains an
issue (Xia et al., 2020), in particular in kinematic measurement
campaigns. In the literature, some datasets are labeled, thanks
to 3D models and comparison of the satellite positions
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TABLE 1 S, supervised; US, unsupervised; DT, decision tree; EM, expectationmaximization; SVM, support vector machine; DNN, deep neural network; CNN,
convolutional neural network; FCNN, fully connected neural network; LSTM, long short-termmemory; N, number of received satellites; (N)PR, (normalized)
pseudorange residual; PRP, pseudorange residual percentage; PRC, pseudorange consistency; EL, elevation; AZ, azimuth; PDOP, precision of dilution; SFM, SNR
fluctuationmagnitude; ACF, autocorrelation function.

Purpose Method Technique Feature vector Reference

LOS/NLOS Classification. S DT [C/N0 L1, EL, PR] Yozevitch et al. (2016)

US EM [C/N0 L1, EL, PR] Yozevitch et al. (2016)

S SVM [C/N0 L1, EL, NPR, PRC] Xu et al. (2020)

S SVM [C/N0 L1, ΔC/NO, PR, PRC] Hsu (2017b)

S SVM [C/N0, EL, NPR, PRC, SFM] Tomohiro and Nobuaki (2022)

S DT [C/N0 L1, EL, PR] Sun et al. (2019b)

S KNN, NN, SVM, and DT [C/N0 L1, N, EL, PR, PRP, NPR] Xu et al. (2018)

Multipath detection S SVM [C/N0 L1, ΔC/NO, PR, PRC] Hsu (2017a)

S DT [C/N0 L1, EL, PR] Sun et al. (2019b)

S NNDLL [ACF] Orabi et al. (2020)

S DNN [PRN code, I/Q Samples] Li et al. (2020)

S CNN [ Image of Signal in Time and Frequency] Munin et al. (2020)

Signal anomaly detection S Clustering [C/N0 L1, PR, PDOP, N, PRC] Xia et al. (2020)

Scintillation S DT [ ̄SI, σSI , cov(I2,Q2)] Imam and Dovis (2020)

Code error estimation S FCNN + LSTM [C/N0 L1, EL, AZ, PR, PR2] Zhang et al. (2021)

with the model. It requires the accurate knowledge of
the user position inside the model. Some others rely on
fish-eye images of the surroundings. This requires a good
calibration of the fish-eye lens and synchronized GNSS/image
acquisition if used in a kinematic mode. A specific attention
highlighted by Xu et al. (2020) concerns the classification
of satellites located at the boundaries between masks and
the sky. As an alternative, Xia et al. (2020) implemented an
unsupervised clustering-based anomaly detection technique
(HDBSCAN) that intends to detect and classify NLOS (but
also other anomalous errors) and construct labeled offline
training. Unsupervised methods solve this issue, but in the
methods tested by Yozevitch et al. (2016), the unsupervised
EM method shows much larger NLOS error rates than the
supervised DT.
• Generalization ability is another challenge. Indeed, as the
NLOS effects are directly dependent on the close surroundings
of the receiver, one needs to ensure that the training
dataset can represent the different cases and configurations
that will be encountered while using the model (Xia et al.,
2020).

Independently of the feature choice, some other issues need
to be considered in the following. A rigorous analysis of the
performance of such algorithms is still difficult for LOS/NLOS
detection because of the difficulty to have a ground truth,
and for the deep learning algorithms, it is difficult because of
hidden layers. Lastly, in all these satellite states of reception
prediction or measurement predictions, the transitions over time
are neglected and do not consider the filtering techniques used

by the receiver that will introduce latency on the GNSS feature
variation.

3 Non-line-of-sight (NLOS) signals

A LOS signal has a direct geometric line of sight between
the satellite and the receiver, while NLOS signals occur when
the LOS between the satellite and the receiver is partially or
entirely obstructed by one or multiple objects. However, despite
the obstruction, some reflected signals still reach and are tracked
by the receiver. Since the carrier frequency of NLOS GNSS signals
experiences an additional attenuation due to the reflections, the
carrier-to-noise power ratio metric is typically also affected by this
effect.

However, one difficultywhen usingC/N0 for signal classification
is that a strong GNSS signal is a very likely indicator of a LOS
signal, while a week signal is not exclusively an indicator of a NLOS
signal. The reception of weak signals can be caused by a variety of
other factors such as longer travel distance of the signal through
the atmosphere (typically at lower elevation angles), antenna specific
gain diagram, installation and specific placement, or the presence
of interference. Additionally, a NLOS signal can be received under
certain conditions, without being largely attenuated. As an example,
Figure 1 shows a typical estimated distribution of C/N0 in the GPS
L1 frequency under LOS and NLOS conditions. It can be observed
that LOS signals have a probability distribution of higher values,
while the probability distribution of NLOS signals is more focused
on the possible C/N0 values. Moreover, one can see the overlap
between the two distributions for a large range of C/N0 values.
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FIGURE 1
PDF of C/N0L1 for LOS and NLOS signals.

4 Branched machine learning-based
NLOS detection methodology

This paper proposes a methodology for the application of
ML algorithms for GNSS measurement processing that targets its
generalization and exploitation of intermittent GNSS measurement
in certain frequencies in challenging environments. Figure 2 shows
a general diagram considering the following main elements:

1. The introduction of an off-line modeling step to characterize the
performance of features in open-sky (nominal) scenarios that is
used as a reference model for feature normalization.

2. The typical ML training and validation/testing step.
3. The pre-normalization of features before its use in the ML

algorithm.
4. The design of branched or parallel ML algorithms in training

and validation to handle different situations of measurement
availability in certain frequencies.

In the following sections, the details about feature selection,
pre-normalization, and the selected logistic regression algorithm for
GNSS NLOS detection are introduced.

4.1 Feature selection

Based on the literature review in Section 2, this section presents
the selected features for this work.

4.1.1 Carrier-to-noise ratio (C/N0)
C/N0 is expected to be one of the main descriptors for the

LOS/NLOS prediction. The use of C/N0 in multiple bands is
included as features. In particular, for GPS, L1, L2, and L5 have been
taken into account, while for Galileo, E1, E5a, and E5b.The levels of
C/N0 are dependent, on one hand, on the elevation of the satellite
since a lower elevation implies a larger distance traveled through the
atmosphere from the satellite to the receiver. On the other hand, the

antenna gain and immediate installation setup plays a crucial role in
the signal attenuation and multipath (Kliman and Crespillo, 2022),
which affects the C/N0 level. Finally, the specific receiver tracking
loop configuration may also be a factor. In order to generalize the
designed ML algorithms, a pre-normalization of C/N0 is, therefore,
introduced in order to decouple the ML algorithm from the specific
antenna, installation, and receiver setup.

The normalization is performed assuming a Gaussian model
distribution for each satellite elevation:

C/N0i,j =
C/N0i,j − μj (θi)

σj (θi)
, (1)

where C/N0i,j and C/N0i,j are the normalized and measured C/N0
of the satellite i and frequency j measured in dB/Hz, respectively.
μj(θi) and σj(θi) are the mean and standard deviation of the nominal
reference Gaussianmodel for elevation θ, respectively.The reference
nominal model parameters can be extracted from data recorded
in an open-sky scenario. In this situation, GNSS threats like high
multipath or NLOS signals are considered negligible so that it is
possible to isolate the C/N0 level purely due to the installation.

4.1.2 Pseudorange rate consistency (PRC)
Code and Doppler measurements are affected at different levels

by NLOS. A modified version of the PRC defined in Xu et al. (2020)
is, therefore, also included as a feature:

PRC = |
Δρ
Δt
− (−λ fD)| , (2)

where Δρ is the time difference of pseudorange measurement, Δt
is the time interval between measurements, λ is the wavelength of
the signal frequency, and fD is its Doppler frequency. Our primary
goal in this paper is detecting the impact of NLOS on the primary
constellation frequency (i.e., L1 for GPS and E1 for Galileo), and
therefore, the PRC is computed based on the code and Doppler
measurements of the corresponding frequency.

4.1.3 Lock time
In different situations of signal re-acquisition after, for instance,

exiting tunnels or a bridge, the receivermay first track aNLOS signal
instead of the LOS signal. The lock time information Tlock is usually
provided by receivers andmay provide useful information about the
probability of NLOS. Since the relevance of the lock time is at the
beginning of signal tracking, and in order to avoid overfitting, the
lock time is considered to be a feature in the following way:

T′lock =
{
{
{

Tlock, if Tlock < Tmin.

Tmin, otherwise.
(3)

The threshold value Tmin = 15s has been set heuristically in this
work, and it is expected to play a bigger role in future work in
dynamic scenarios. As for the case of PRC, we considered the lock
time of the primary constellation frequency (i.e., L1/E1) since it has
been observed that it is the frequency that is typically first tracked
by receivers.

4.1.4 Complete feature vector
The signals and measurements from different constellations

have to be considered separately since each constellation provides
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FIGURE 2
Block diagram of the pre-normalized and branched machine learning algorithm.

information on different frequencies. For GPS and Galileo, the
following feature vector is considered:

xGPS = [C/N0L1,C/N0L2,C/N0L5,PRCL1,T
′
lock,L1] (4)

and

xGAL = [C/N0E1,C/N0E5a,C/N0E5b,PRCE1,T
′
lock,E1] . (5)

4.2 Branched logistic regression

Themain goal of this work is to classify a satellite measurement
as LOS or NLOS. Depending on how this information is later used
in a positioning algorithm, it may also be important to know the
likelihood of the classification result. For the users to have the
flexibility to exclude a NLOS signal or include this measurement

with a lower weight, we have chosen a logistic regression algorithm
for this work. The logistic regression uses a sigmoid mapping
function to estimate a probability of the target classification of
LOS/NLOS signals. The probability of receiving a LOS signal is
mathematically expressed as

Pr (x;β) = 1
1+ e−β

Tx
, (6)

where x is the vector of features used as input and β is the vector of
coefficients that must be fitted.

If a final binary classification is desired, the criteria Pr(x) < 0.5
can be used to determine NLOS reception and Pr(x) ≥ 0.5 for the
LOS reception. The training of the algorithm is usually conducted
by fitting the parameters βwith the followingmean square error cost
function:

J (β) = 1
M

M

∑
i=1
(Pr(xi;β) − yi)

2, (7)
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where M is the size of the training dataset and yi is the label
of the data. The typical approach to tackle this optimization
problem is to use a gradient descent algorithm, as in Mitchell
(1997).

In challenging GNSS scenarios where the reception of NLOS
signals is expected, the tracking of the GNSS signals is stressed by
multiple possible effects like multipath and intermittent shadowing.
In this situation, it is common for the receiver to only be
able to provide measurements in some of the received signal
frequencies. It is found in general that the tracking of L1/E1
signals (and therefore the computation of code and carrier-
phase measurements) is normally the most available, while the
tracking of L2 and L5/E5 suffers for intermittent availability in
urban scenarios. The possible presence or absence of certain
measurements (i.e., features) at different moments challenges the
design, training, and validation of ML algorithms that normally
need a fixed number of features. On the other hand, the fact
that certain frequency channels cannot be tracked can contain by
itself important information about the expected reception of NLOS
signals on the main channel L1/E1. In this work, in order to be able
to exploit the C/N0 measurements from all available frequencies
and to perform the LOS/NLOS as well in cases where partial
frequency measurements are available, we proposed a branched
model training and validation methodology. For this, we consider
the training of different models with a different number of features
from Eq. 4 and Eq. 5, which we called here branched logistic
regression. In particular, we consider, in total, five different models
for the GPS and Galileo constellation with the following number of
features:

• Model A: xGPS,A = [C/N0L1,C/N0L2,C/N0L5,PRCL1,T
′
lock,L1].

• Model B: xGPS,B = [C/N0L1,C/N0L2,PRCL1,T
′
lock,L1].

• Model C: xGPS,C = [C/N0L1,C/N0L5,PRCL1,T
′
lock,L1].

• Model D: xGAL,D = [C/N0E1,C/N0E5a,C/N0E5b,PRCE1,T
′
lock,E1].

• Model E: xGAL,E = [C/N0E1,PRCE1,T
′
lock,E1].

For the validation (and real application) of the proposed
approach, only one model per constellation is used at a time.
This would be the one that uses features from more frequencies
depending on the available data provided by the GNSS receiver in
a given epoch.

4.3 Labeling methodology

In order to train and validate the proposed branched logistic
regression solution, the determination of true LOS or NLOS
satellite signals is determined by discrimination based on horizon
information. The process considers, first, the determination of
open-sky horizon determination from the antenna point of
view. For each of the satellite measurements provided by the
receiver, the elevation and azimuth of the respective satellite are
computed. Finally, the elevation and azimuth are compared with
the previously determined horizon to determine whether a satellite
is in direct LOS or not. In Section 5.2, more details about the
experimental horizon determination process used in this work are
provided.

FIGURE 3
Antenna installation.

5 Experimental methodology

5.1 Measurement setup and campaign

The training and validation of the algorithm in this work
was performed with measurements collected with a DLR-designed
antenna and Septentrio mosaic-X5 receiver.

The antennawas placed on a tripod,while the receiver andpower
source were placed in a plastic box to be protected from weather
conditions, as shown in Figure 3. The measurement campaign took
place for several days and in a total of three measuring locations.
In order to ensure a full repeating orbit cycle (of at least the GPS
constellation), more than 24 consecutive hours were recorded at
every location.The sampling rate was set to 10 Hz. All locations used
were within the premises of the DLR facility, as shown in Figure 4.

The first dataset was collected in an open-sky environment
to support the derivation of the nominal reference C/N0 models
(on Figure 4 labeled as “Open sky location”). The location was
chosen for its good visibility of satellites for all elevation and
azimuth calculations. Some pre-screening has been applied as
the data preparation pre-processing step to avoid low-elevation
effects.

The two other datasets were collected under locations chosen
because of the challenging scenarioswith surrounding buildings that
blocked parts of the sky visibility (on Figure 4 labeled as “Training
location” and “Validation location”). The panoramic view from the
standpoint of the receiver for both the training and validation
locations is shown in Figure 5.

The following Table 2 gives an overview of the used datasets.The
locations are used to collect them, the usage, and their total length.
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FIGURE 4
Locations of the open-sky location, training location, and validation
location.

5.2 Horizon determination

The horizon determination for the training and validation
locations is the first step to determine the LOS/NLOS label of the
signal. The horizon was determined considering the angle and the
distance to the upmost edge of every obstacle on the horizon around
the measuring location. The buildings shape allows for them to be
modeledwith only the angle and the distance to their corners, as well
as the length of the building itself. The location of the antenna was
determined in post-processing with multi-pass Kalman filtering.

TABLE 2 Description of collected datasets.

Dataset Location Usage of
the dataset

Length

Dataset 1 Open-sky location Nominal model +
validation of
normalization

22 h

Dataset 2 Training location Training of the
model

87 h

Dataset 3 Validation location Validation of the
model

46 h

In Yozevitch et al. (2016), a mobile application was used for
determining the horizon, while, in this paper, we opted for a
geodetic total station (TS), with a higher expected accuracy. A total
station is an instrument that uses an electronic optical distance
meter for determining distances and an electronic angle meter
for measuring horizontal and vertical angles. The total station
used is a Leica TPS1200 alongside a 360° prism, as shown in
Figure 6.

When using a 360° prism, the angles are determined with an
accuracy of 1, while the distances, with an accuracy of 2 mm +
2 ppm. In addition, the accuracy of the ground truth is not relevant
when using TS since a local coordinate system was set up and all
distances and angles were determined relatively with respect to the
measurement location. The obtained sky plots of the training and
validation locations can be seen in Figure 7.

6 Results

This section provides information about the labeling and
normalization data results and the performance of the NLOS

FIGURE 5
(A) Panoramic view of the training location. (B) Panoramic view of the validation location.
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FIGURE 6
(A) Leica total station and (B) 360° prism.

FIGURE 7
(A) Horizon training location. (B) Horizon validation location.

detector in comparison with other state-of-the-art algorithms. The
detector is ultimately a classification algorithm whose performance
is evaluated by means of a confusion matrix where the accuracy
of true(t)-false(f) and positive(p)-negative(n) classifications is
computed normalized with respect to the label category. Note that
in terms of the confusion matrix, a positive classification is defined
as the classification of a signal as LOS. The overall accuracy is
defined as

Accuracy =
tp+ tn

tp+ fp+ tn+ fn
. (8)

6.1 Pre-normalization evaluation

Figure 8 (left) shows the recorded C/N0 for the GPS L1 band
in the open-sky location. From these data, the reference model
parameters μL1(θ) and σL1(θ) were computed for each elevation.
Figure 8 (right) presents the same data after the normalization
process. The dependency with the elevation and the installation
has been clearly reduced. This justifies the necessity of normalizing
C/N0 in order to avoid a high rate of false alarm at low
elevation.
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FIGURE 8
Normalization of the C/N0 feature (example for GPS L1). (A) Nominal open-sky C/N0 data. (B) Normalized open-sky C/N0 feature.

TABLE 3 Confusionmatrix of the detector in open sky for GPS.

Label Without pre-normalization With pre-normalization

LOS NLOS LOS NLOS

LOS 74% 26% 91% 9%

NLOS - - - -

Accuracy 74.2% 90.7%

In order to highlight the importance of normalization, we
compare the detector with and without normalization in an open-
sky scenario where the LOS probability should be always pLOS > 0.5.
Table 3 exhibits the confusion matrix for GPS in this scenario
whereas Figure 9 shows its respective skyplot. As expected, the not
normalized version considers NLOS satellites as those with low

elevation. This is caused by the reduction of C/N0 just because
of the elevation. As shown numerically in Table 3, the normalized
branched LR clearly outperforms the not normalized LR. The
difference in terms of accuracy could potentially be even higher, but
in practice, it is difficult that the scenario for recording the data is
perfectly open sky.

6.2 Training and validation evaluations

In order to make a comparison between the state-of-the-
art algorithm and the design presented in this work, we have
trained a detector according to the algorithms and features that
can be found in the literature. In particular, the most used ML
algorithms in the state-of-the-art algorithm are the DT and the

FIGURE 9
Estimated LOS probability using LR in open sky for GPS. (A) Not normalized LR. (B) Gaussian-normalized LR.
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TABLE 4 GPS and Galileo confusionmatrix results for state-of-the-art
algorithms.

Label GPS Galileo

SVM detector DT detector SVM detector DT detector

LOS NLOS LOS NLOS LOS NLOS LOS NLOS

LOS 76% 24% 83% 17% 86% 14% 76% 24%

NLOS 14% 86% 21% 79% 21% 79% 17% 83%

Accuracy 80.8% 82.1% 80.6% 81.2%

linear SVM, as shown in Table 1, and they are, here, used as a
reference for comparison. These algorithms do not consider either
the normalization step or the use of measurements from multiple
frequencies. Therefore, an adapted model and feature vector have
been used for these algorithms. Details about the design of the
chosen state-of-the-art algorithms can be found in Supplementary 
Appendix A.

Table 4 shows the performance of the DT and SVM algorithms
over the training dataset for GPS andGalileo, respectively.TheDT is
slightly better than the SVM in terms of accuracy.However, the SVM
has amore balanced distribution of error.This is more noticeable for
the case of GPS.

Table 5 presents the confusion matrices for GPS and Galileo for
the proposed algorithm in this work for the training and validation
datasets.The results show that the inclusion of C/N0 from additional
bands clearly outperforms the state-of-the-art algorithm results in
Table 4.

Figure 10 provides further insight about the performance of the
LOS probability determination by showing the skyplot results in the
training scenario.

TABLE 5 Confusionmatrix of the proposed detector with training and
validation datasets.

Label Training Validation

GPS Galileo GPS Galileo

LOS NLOS LOS NLOS LOS NLOS LOS NLOS

LOS 89% 11% 91% 9% 88% 12% 92% 8%

NLOS 14% 86% 14% 86% 20% 80% 10% 90%

Accuracy 87.6% 88.9% 84% 91.4%

Figure 11 illustrates the skyplot results of the LOS probability
determination of the predictions for GPS and Galileo over the
validation dataset.

The algorithm outperforms in the state-of-the-art algorithm.
The accuracy obtained over the validation scenario is lower than
the scenario used to train the model. Although this is typically the
normal situation with ML algorithms, it could also be caused by
additional factors such as a higher error labeling, the data due to
the difficulties for modeling, and the validation scenarios. Despite
the efforts made in the location choice, some complex elements to
model such as trees remained were not taken into account for the
horizon determination.

Finally, we show the classification results over two C/N0
features of interest to get an insight about the regions in
which the classification considers LOS or NLOS. We consider
Eq. 6 with the threshold probability of the classification on the
left-hand side of pLOS = 0.5. Under that restriction, we solve
Eq. 6 leading

βTx = 0. (9)

FIGURE 10
Estimated LOS probability in the training location for GPS and Galileo. (A) Prediction for GPS. (B) Prediction for Galileo.
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FIGURE 11
Estimated LOS probability in the validation location for GPS and Galileo. (A) Prediction for GPS. (B) Prediction for Galileo.

FIGURE 12
Decision areas for different branches of the model for GPS. (A) Branch of L1 and L2. (B) Branch of L1 and L5.

Eq. 9 represents a hyper-surface with respect to the input
features (over training dataset) given in the model parameters β. We
fix all the input features to the mean values from the datasets except
for the two features of interest. Figure 12 depicts the point cloud of
two C/N0 features along with the detection regions separated by a
black line of probability of 0.5. In particular, Figure 12A shows the
features of the branch tracking only L1 and L2 (Model B), while
Figure 12B considers the case of only L1 and L5 (Model C).

The figure shows how, despite some outliers, most of the points
are correctly split into two regions. Moreover, observing the slant of
the pLOS = 0.5 line, it is appreciated that all C/N0 values are useful
for differentiating between LOS and NLOS signals.

7 Conclusion

This paper presents a LOS/NLOS detector for GPS and
Galileo that introduces two novel characteristics. First, the
inclusion of multiple C/N0 from different bands in a branched
scheme gives additional sustainable information that allows
outperforming the current detectors in the literature to the
best of the authors’ knowledge. Second, the normalization
methodology proposed increases the robustness of the detector
against changes in the installation or the location, as shown by the
performance in the validation scenario. Additionally, the utilization
of logistic regression admits the estimation of a LOS probability
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and not only the predicted label LOS or NLOS as it does to the
DT and the SVM. This property, combined with the fact that the
LR is more tractable mathematically than the DT and the SVM,
allows obtaining some insights about the behavior of the detector.
Moreover, the estimated LOS probability might provide helpful
information for applications such as the position computation.
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APPENDIX: STATE-OF-THE-ART NLOS
DETECTION IMPLEMENTATION

A Adapted Model Feature Vector

Algorithms based on decision trees and SVM
for the LOS/NLOS classification proposed in the
literature do not make use of measurement from
multiple frequencies and do not consider a pre-
normalization step. The feature vectors used for
the GPS and Galileo model for those algorithms are
respectively:

X ′
GPS = [C/N0L1, T

′
lock,L1, PRCL1], (1)

and

X ′
GAL = [C/N0E1, T

′
lock,E1, PRCE1]. (2)

B Decision Trees

The decision tree is a supervised algorithm for
classification or regression. It is widely used
because the final flowchart of the trained model
can be visually analyzed. This allows extracting
insights about the behavior of the algorithm.

As its name indicates, the structure of this
algorithm is a tree where each leaf node represents
a condition or decision rule. This decision rule
is generally a threshold for a feature fitted as a
function of the dataset. The more depth the tree
has, the better the tree will be fitted. However,
a very deep tree could cause overfitting to the
training dataset losing generalization and, therefore,
accuracy in the validation dataset.

The main advantages of decision trees are not
only their visual representation but also their
robustness against outliers. Moreover, decision
trees give insights into which features are the most
important. However, they can not seize all the
features simultaneously, but instead, they prioritize
only the main important ones. Another problem of
this algorithm is its propensity to overfitting and the
resulting unstable models where a slight variation
in the input can entirely modify the output.

C Support Vector Machines

The SVM (Support Vector Machine) is a
supervised algorithm which can work both for
regression and classification. In contrast to the
decision tree, this algorithm can consider a large
number of features to obtain the best possible
prediction. This is done by finding a hyperplane
with the same dimensionality as the number
of features that divides the two possible labels.
Moreover, this can be extended to multiple classes
by computing more hyperplanes.

Although the aforementioned hyperplane is the
decision bound between both labels, multiple
hyperplanes can be fitted with the same data by
slight rotations or shifting. As this is not convenient,
an additional criterial is included to find the optimal
hyperplane. It consists in finding the hyperplane for
which the distance with the closest points for each
label must be maximal. An example for the case of
two dimensions is shown in Fig. 1.

𝑋1

𝑋2

Figure 1. Example of SVM fitting for two
dimensions.

If the most accurate bound is not linear, other
shapes can be used as quadratic or radials by
processing the features with the corresponding
functions called kernels. However, computing
complexity will increase with kernels different from
the linear. In any case, even with the linear kernel,
complexity is one of the main disadvantages of
SVM and this restricts the amount of data that can
be used for training.
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