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Abstract
To tackle the domain specific challenges spacecraft operations poses on anomaly detection methods, the
Automated Telemetry Health Monitoring System (ATHMoS) was developed at the German Space Opera-
tions Center (GSOC) and integrated into our Visualisation and Data Analysis software (ViDA). The main
challenges include the peculiarities of the telemetry data transmitted by the satellites, the limitation of re-
sources and accuracy and usability requirements posed by the end users. The ATHMoS was designed with
these challenges in mind and uses sets of generic statistical properties to derive an explainable anomaly
probability.

1. Introduction

Once a spacecraft is in orbit, engineers in charge of its maintenance and daily operation depend on telemetry data to
track and analyse the satellite’s status and health. As modern spacecraft generate more and more data, manually han-
dling, inspecting, and interpreting these data becomes increasingly difficult. To assist engineers with these challenges,
an anomaly detection tool, named the Automated Telemetry Health Monitoring System (ATHMoS), was developed at
the German Space Operations Center (GSOC).

In this paper, we first give an overview of relevant publications that apply anomaly detection to the domain of
satellite operations in Section 2.

In Section 3, we describe the unique challenges and requirements the domain of spacecraft operations poses to
an anomaly detection system. These do not only apply to the algorithm and the resulting software tool itself, but also
to the specification of the use-cases and to the usage of the final tool. They include, for example, the irregularity of the
transmitted telemetry data, limitation of resources, and intuitive interaction with the tool for the end user.

Relating to the challenges summarised in Section 3, solutions developed at the GSOC as well as the reasoning
behind the selected algorithm, workflow, and user interaction patterns are detailed in Section 4. The central steps within
the ATHMoS as well as key features of our Visualisation and Data Analysis software (ViDA) are elaborated. Both of
these systems have reached an operational level and are used in routine operations at our satellite control center.

Lastly, a short summary of the paper as well as an outlook on future work is provided in Section 5.

2. Related Work

Due to its capabilities to detect novelties in various domains, Machine learning (ML) has made its way into many areas
of research and applications, ranging from fraud or malware detection to medical image analysis [2]. It is no surprise
that it has also made its way into the domain of satellite operations for anomaly detection as well as other areas such
as mission planning or image processing [5].

With regard to anomaly detection, various methodologies are currently being researched and applied to satellite
telemetry with the goal of benefiting operations on ground. The Centre National d’Études Spatiales (CNES) is em-
ploying a One-Class Support Vector Machine (OC-SVN) in their New Operational SofTwaRe for Automatic Detection
of Anomalies based on Machine-learning and Unsupervised feature Selection (NOSTRADAMUS) tool [3]. Their pro-
posed anomaly score measures the distance from the day’s feature vector to the decision frontier determined by the
OC-SVN for the normal training data set. The daily anomaly scores then get displayed in their NOSTRADAMUS
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Human Machine Interface. In addition, days with high anomaly scores are manually investigated and tracked in
a history database. Moreover, the authors describe the architecture of their experimental on-board anomaly detec-
tion algorithm called Space Experiment for Satellite Artificial intelligence Monitoring (SESAM), which is based on
NOSTRADAMUS. After an on-ground training, the model gets uploaded onto the satellite and performs detections
on-board. SESAM is currently tested for a limited number of parameters on ESA’s OPS-SAT.

To detect anomalies, EUMETSAT applies a distance-based k Nearest Neighbours (k-NN) approach and displays
the results in CHART, which is both their telemetry database and front-end web GUI for visualising and processing
telemetry data [4]. To explain the results to the engineers, the generated Outlier Detection Report also includes certain
2D-scatter plots of two out of the four features (minimum, mean, maximum, and standard deviation per orbit) used for
the algorithm. It is currently implemented to detect anomalies of the MetOp mission.

Investigations into multivariate anomaly detection by Tariq et al. propose a multivariate convolutional Long
Short-Term Memory (LSTM) network with mixtures of probabilistic principal component analysis to be trained per
subsystem, which is also being used as a prototype for anomaly detection for KOMPSAT-2 [11].

Other approaches for multivariate anomaly detections, developed by B. Pilastre and supported by CNES and
Airbus Defence & Space, use a sparse decomposition of a signal into a dictionary as part of a new algorithm named
ADDICT [7]. It allows for including both continuous as well as discrete signals in its learned model.

Airbus Defence & Space also explores options for an ML-based Failure Detection, Isolation and Recovery
(FDIR) system, including systems based on autoencoders and feed-forward models [1].

3. Challenges and Requirements

In this section, we first describe the challenges and requirements we observed and considered during the research and
development of our anomaly detection system ATHMoS. Their combination is unique to the domain of spacecraft
operations and reflects the experience we gained from mission operations at the GSOC.

3.1 Data Peculiarities

The time-series data, which serves as the main input to our anomaly detection system, is made up of raw satellite
telemetry data. It possesses a combination of properties that increase the difficulty in applying standard anomaly
detection approaches out of the box.

The data itself stems from sensors and evaluations on board the satellite. It describes attributes such as the
temperatures of satellite components, the load level of the batteries, the pressure within fuel tanks, or the spacecraft’s
position and velocity. The telemetry data also includes the on- or off-status of, e.g., instruments such as the satellite’s
payloads.

The large variety of attributes leads to many different behaviours of the associated time-series data, see Fig. 1 for
examples. As we want to be able to analyse each telemetry parameter individually, an approach for detecting anomalies
is required to handle many different behaviours while still showing excellent results in terms of detections.

For past and current missions, no all encompassing and sufficiently labelled dataset is available. This limitation
reduces the list of possible methods that can be used for anomaly detection as supervised machine learning methods
can not be applied.

Furthermore, the sampling rates and behaviours are not homogeneous even for individual telemetry parameters.
Causes for the varying sampling rates are primarily ground station passes of satellites in a low earth orbit or critical
operations. During these events, the sampling rate is typically increased. The behaviour of the time-series itself can also
vary or evolve throughout the mission. One of the main and expected reasons for changes in a telemetry parameter’s
behaviour is the degradation of the satellite’s components and hardware. It can lead to, e.g., an increase of noise picked
up by the sensors as the mission progresses or slow trends in the data due to, e.g., the degradation of the satellite’s
batteries. These trends are considered nominal in most cases and should not be flagged as an urgent problem by an
anomaly detection system.

3.2 Computational Limitations

Satellite telemetry data is often of confidential nature, due to either the scope of the satellite’s mission or the owner of
the satellite. As a result, restrictions apply when it comes to working with the data. In the context of applying machine
learning methods, one of the greatest restrictions is that we can not use computational resources available via cloud
computing when working with classified or confidential data. Therefore, the methods we apply to the data need to run
on hardware available at and controlled by the GSOC.
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Figure 1: Examples of the nominal behaviour of six different telemetry parameters over the span of 16 hours. The
parameters cover a variety of subsystems and show, e.g., temperatures, and the satellites angle with respect to the sun.

3.3 Accuracy Requirements

Modern satellites, such as the GRACE Follow-On satellites operated by the GSOC, define around 80 000 unique
telemetry parameters. They allow for assessing the satellites state and enable subsystem engineers to investigate and
solve possible issues that may arise. While not all of these parameters are continuously transmitted and recorded, the
goal of our anomaly detection system is to automatically monitor well over a thousand parameters per mission.

Due to the sheer amount of parameters, the false positive rate of the approach used for detecting anomalies plays
a vital role. While, e.g., a rate of one false positive detection per year for each parameter may seem low, a method with
this false positive rate would flag around 30 false detections each day when applied to 10 000 parameters. Not only
would the process of sieving through false detections be time consuming and therefore costly, it would also reduce the
trust engineers have in the anomaly detection system.

In summary, a false positive rate very close to zero is necessary for an anomaly detection system in the domain
of spacecraft operations. It should, however, not come at a disproportionate cost with respect to the detection rate of
true anomalies.

3.4 Algorithm Properties

As mentioned in Section 3.3, the goal is to apply the anomaly detection method to thousands of telemetry parameters
per mission. With this amount of different telemetry parameters, manually adjusting the algorithm for each parameter
individually is not feasible. Therefore, an algorithm used for flagging anomalies has to work out of the box for almost
all parameters and their behaviours. At the same time, it still needs to be easily configurable in case parameters do
need special handling or the algorithm is applied to different domains.

3.5 Use Interface Requirements

In general, a User Interface (UI) needs to be intuitive, so that it is easy for users to understand and navigate without
requiring extensive training or documentation. Moreover, it must feel comfortable to use such that the users willingly
integrate the software into their daily routine. However, for our domain, we encountered several additional requirements
that are discussed here.

One reason for using ML-based anomaly detection is the large amount of parameters we want to find anomalies
in. For a human subsystem engineer, manually analysing each and every parameter would be very time consuming or
even impossible. An ML based anomaly detection system, on the other hand, can provide results in a matter of seconds.
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However, the interpretation and the resulting action still needs to be performed by the subsystem engineers. Therefore,
the requirement on the UI is a display of detected anomalies that is fast to grasp and easy and quick to interpret.

In addition to the large quantity of parameters, the data volume of each single parameter also brings its own
challenges. At the GSOC, we operate satellite missions with lifetimes of over 10 years. One parameter of these
missions can hold up over 9 000 000 000 data points. This leads to three requirements: first, the data needs to be
quickly loaded into the UI from the database. Long waiting times would be frustrating and less comfortable for users.
Second, the data needs to be quickly visualised, even if a user wants to plot the whole lifespan of a long lasting mission.
Plotting the whole parameter’s lifespan with its anomalies can add valuable support to the system engineers as they
can, for example, recognise similar anomalies or behaviours in historic data and act accordingly. Third, the plotted
data must be reduced and compressed while still maintaining its visual characteristics. This requirement is introduced
due to computer monitors only having a limited capability of plotting data points depending on their resolution. It is
important for users to get a good visual impression of the data, even in longtime plots, and to be able to recognise
patterns and the telemetry’s characteristic behaviours even in the reduced and compressed data.

Only displaying the anomaly detection results is not sufficient to draw the right conclusions for safe satellite
operations. System engineers need to understand why data was marked as anomalous. Therefore, the UI has to include
functionalities providing explainability of the results, thereby enabling the system engineers to make the right decisions
and ensure safe operations.

With a UI, standard analysis tools are provided to the users. Sometimes this is not enough to investigate the cause
of an anomaly or a failure. Therefore, an anomaly detection system should provide an API to enable custom analysis.
It should be very generic and allow the utilisation of a wide scope of data analysis method.

The last requirements come from the team that manages the software. From their perspective, the software needs
to be easy to install, maintain, and operate to keep the mission costs low and operations economic.

4. Anomaly Detection and Analysis Approach

After having described the main challenges and requirements in Section 3, we detail how the approach developed at the
GSOC and realised in the ATHMoS and ViDA handles the aforementioned difficulties. Finer details of the ATHMoS,
the algorithm at its core, its benchmarking and its adjustment to operational usage can be found in O’Meara et al. [6],
Schlag et al. [10], and Schefels et al. [8].

4.1 Algorithm Selection

At the core of any anomaly detection system lies an algorithm scoring new data, in our case satellite telemetry, based
on learned behaviour from past data. Depending on the computed outlier score, new telemetry samples are flagged as
anomalous. We want to briefly outline the ATHMoS before pinpointing how it tackles the various challenges.

The ATHMoS typically uses one year of past data to generate a trained model M as outlined in Alg. 1. We
accomplish this by splitting our input data into short intervals, each spanning 1.5 hours. After removing intervals
containing faulty data, we compute feature vectors containing descriptive statistics for each interval. As our input is
not labelled and therefore not guaranteed to only contain nominal data, we clean the feature vectors using a clustering
algorithm. Based on each feature vector’s k-nearest neighbourhood, a probabilistic outlier score using the intrinsic
dimension is calculated [12]. The k-nearest neighbourhood, the intrinsic dimension and the probabilistic intrinsic
dimension outlier score make up our trained modelM.

New telemetry data is tested against the computed modelM by applying the OPVID [6] algorithm, resulting in
scores between 0 and 100 percent. This score roughly describes how similar the descriptive feature vector computed
for the new telemetry data is to the ones used in the trained model. A threshold is then applied to decide whether
the new data should be flagged as anomalous, in our case with additional steps to improve the false positive rate (see
Section 4.3). The model itself is updated on a weekly basis only considering past data which was not flagged as an
anomaly.

The algorithm sketched in Alg. 1 already considers many of the issues described in Section 3. The large variety of
behaviours presented in Section 3.1 is handled in multiple ways. The model containing the past behaviours represents
one year of data which includes both seasonal behaviour as well as slowly evolving trends. The weekly update of the
model ensures gradual changes in the telemetry’s behaviour are continuously learned and included in the model.

Apart from one parameter showing different behaviours, the vast variety of behaviours across parameters are
also considered. The distinction between continuous parameters, such as temperatures, and discrete parameters, such
as binary on/off flags in lines 3 and 5 of Alg. 1, ensure the compatibility with discrete parameters. In addition, the sta-
tistical features making up the feature vectors computed in line 5 of Alg. 1 were engineered to work with many different
behaviour types and optimised in an exhaustive test period. The successfully reached goal of this optimisation was a
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Data: Historic training time-series data for one parameter (≈ 1 year)
Result: Trained modelM based on historic data

1 Decompose the time-series data into overlapping intervals Ii. Each interval has a size of 1.5 hours and we use
a sliding window step size of 30 minutes;

2 Remove intervals Ii containing gaps larger than a configurable length and apply linear interpolation to the
remaining intervals;

3 Determine the parameter type, either discrete or continuous;

4 for each time-series interval Ii do
5 Based on the determined parameter type, calculate the feature vector fi composed of various statistics as

described in Schlag et al. [10];
6 end
7 Use clustering methods to remove feature vectors

−→
f i that represent possible anomalies, resulting in a set of

nominal feature vectors F̃;
8 Compute a k-nearest neighbourhood model KNNh for F̃ with a sufficiently large k;

9 for each
−→
f i ∈ F̃ do

10 Calculate the feature vector’s intrinsic dimension idi;
11 Calculate the Probabilistic Intrinsic Dimension Outlier Score pidosi;
12 end
13 M = {KNNh, IDh, PIDOSh}

Algorithm 1: Training of the historic modelM required for computing the outlier score, see Schlag et al. [9].

low false positive rate while still correctly flagging known anomalies. As the features are based on statistical attributes
of the data, they are also inherently understood by the users of the system, thereby increasing the explainability of our
approach.

The use of the intrinsic dimension computed in line 10 of Alg. 1 based on Brünken et al. [12] provides addi-
tional advantages. Not only does the OPVID algorithm using the intrinsic dimension show a good separation between
anomalies and nominal data, it also allows for large feature vector dimensions without significant loss of quality [10].
These attributes make it easy to configure the algorithm, as new features can be added to the feature vector without
any issues. Additional features could, e.g., include unforeseen behaviours or properties needing to be considered in
the anomaly detection. Defining a whole new set of features is also easily possible and can extend our approach to
different domains or applications. In summary, the use of the intrinsic dimension together with the distinction between
parameter types and optimised feature vector composition solve many of the requirements noted in Sections 3.3 and
3.4.

In order to reach the goal of working for thousands of parameters, the computational performance of the approach
has to be taken into account (see Section 3.2). It has to be performant enough to work on local hardware available at
the GSOC. Throughout the development of the ATHMoS, this limitation was kept in mind. Both the weekly training of
the model and the daily testing of new data is feasible in a short amount of time on hardware provisioned at the GSOC,
even for large amounts of parameters. Testing new data spanning a whole day for a single parameter is possible within
seconds and easily parallelisable. While retraining takes a bit longer, it can be completed in a few hours for over a
thousand parameters and parallelised as well.

As the reduction of the false positive rate is one of the key challenges we are faced with when applying the
ATHMoS to many different satellite telemetry parameters, two additional steps were taken to reduce this rate even
further. The statistical features composing the feature vectors are not only computed based on the raw telemetry data,
but also include features derived from smoothed data. The additional smoothing reduces the false positive rate due
to our data often containing noise or behaving in a noisy manner [10]. Features extracted from smoothed data show
less variance than the same features based on unsmoothed data and are therefore less prone to false positives. The
second additional step taken to reduce the false positive rate was benchmarking our algorithms against other methods
using publicly available as well as synthetic benchmarks [10]. The results of these benchmarks were used to tune the
algorithm parameters.

4.2 Data Labelling

The issue of unlabelled data described in Section 3.1 is tackled in two ways. While Alg. 1 is unsupervised by design,
the input data is cleaned during the initial training using a clustering algorithm (see Alg. 1 line 7). Thereby, we
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prune behaviours in the training data that appear in less than one percent of the segmented time intervals. By doing
so, possible anomalies or outliers are not included in our trained model. In addition, expert knowledge can easily be
considered by the algorithm. If a new behaviour appears, it should at first be flagged as an anomaly. Should our users,
the subsystem engineers, decide that the new behaviour is nominal, the intervals containing the new behaviour can be
relabelled to nominal. The next time the model is retrained, the relabelled intervals are considered. This way, the new
nominal behaviours are included in the model and will not be falsely flagged as anomalies in the future.

4.3 Post-processing

As mentioned in Section 4.1, additional post-processing steps are applied to intervals with anomaly scores surpassing a
threshold of 90 percent. The goals of these steps are both the reduction of false positives as well as supplying additional
context in case of slowly changing behaviours.

We exploit the overlapping nature of the time intervals we segment both the training as well as the test data into
(see Alg. 1, line 1). With windows of length 90 minutes and steps of 30 minutes, three consecutive windows share 30
minutes of data. In other words, each 30 minute interval in our test data is included in three separate windows. We
therefore label a window as a high priority anomaly detection if the anomaly score computed for all three consecutive
windows breach the threshold. This additional measure can be interpreted as the anomaly needing to be significant
enough to influence all three windows it is a part of. This additional labelling is visualised in Fig. 2.

As a safeguard for mislabelling trends as anomalies needing urgent attention, in our case as a high priority
anomaly, we implemented additional post-processing based on the output of a secondary model. This model, which
we denote byMr, is trained with the last month of data and retrained on a daily basis. Compared to the model which
is trained on a year of data, which we denote by Mh in Table 1, the model Mr captures the most recent behaviour
appearing in a parameters telemetry. New data is therefore less likely to be marked as a high priority anomaly when
tested against this is model. In the ATHMoS, we test data against both Mh capturing a full year of a parameters
behaviour andMr capturing its most recent behaviour. The results are merged according to Table 1. An example for a
parameter describing an on-board temperature evaluated with the ATHMoS is given in Fig. 3.

4.4 Result Visualisation and Presentation

The requirements identified in Section 3.5 have been heavily considered in the development of our Visualisation and
Data Analysis software ViDA. In addition to many other features, this web application is used to visualise and present

Figure 2: Labelling of overlapping time windows, see Schefels et al. [8].
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Table 1: Overall labelling schema for detections taking into account the results w.r.t.Mh andMr [9].

Mh

Mr High Priority Low Priority Nominal

High Priority High Priority Low Priority Trending Detection
Low Priority Low Priority Low Priority Low Priority
Nominal Low Priority Nominal Nominal

Figure 3: Telemetry parameter going from nominal, here marked in green, to trending, coloured in yellow. Once
flagged as a high priority detection by the ATHMoS, it is highlighted in red [9].

the results of the ATHMoS to the users. To give the user a modern and up-to-date front-end, we use the common
Angular framework. The framework ensures that the majority of our users are familiar with the UI elements. For the
back-end, we use a state of the art micro-service based architecture to ingest, pre-process, and access the telemetry
data [8].

After logging into ViDA, the user is presented with a compact overview of each satellite’s status including
the range of its available data and the detected anomalies as depicted in Fig. 4. Subsystem engineers can get a first
impression of their monitored satellites’ status and detected anomalies within seconds, even if the satellites transmit
a large amount of parameters. We thereby satisfy the requirements of the representation of anomalies defined in
Section 3.5.

For a detailed inspection, the subsystem engineers can select parameters belonging to various system groups or
single parameters and plot the telemetry data, see Fig. 5. One strength of ViDA is its capability to plot parameters with
many data points in a matter of seconds. To achieve this, we use a database tailored to time-series data in combination
with a downsampling algorithm. The downsampling algorithm is able to reduce the data needing to be displayed while
still maintaining the visual characteristic of the telemetry data. As a result, the system engineers are able to plot the
whole mission lifespan of a parameter in close to real-time. We also include the detected anomalies as red bars in these
plots. The different shades of red mark the different types of anomalies (see Section 4.3 and Fig. 2). In summary, the
challenges of displaying parameters covering billions of data points quickly, compressing the data while maintaining
its characteristics, and visualising detected anomalies in the context of the whole mission are tackled.

In our continuous development of ViDA, we plan to include additional information related to the parameters
from various sources in the plots such as executed telecommands, on-board events, or manually entered anomaly
reports. Additionally, dependency graphs of parameters and feature vector visualisations will provide the users with
more explainability of the detected anomalies.

To allow for a custom analysis outside of ViDA, we also provide a Python library called MiDA (Mission Data
Access). Using this library, users can download and analyse all available data in their personal analysis workspace,
e.g., in Jupyter notebooks.

5. Summary and Outlook

This paper described the main challenges the domain of satellite operations poses to a machine learning based anomaly
detection system and how they were tackled at the GSOC. These challenges include the large amount of different
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Figure 4: The ViDA dashboard: Quick overview about the satellites’ status including available data and detected
anomalies.

telemetry parameters and behaviours, the confidentiality of the data, and the requirements posed to the UI displaying
the telemetry data and anomaly detections. We provided insights into how each of these challenges was solved within
our anomaly detection system ATHMoS as well as our visualisation front-end ViDA.

To extend our system in the future, feedback gathered from its operational use will be considered and utilised.
As a first enhancement, we want to improve both the explainability of new detections as well as the correct handling
of new or falsely flagged behaviours by means of classification. If users relabel an incorrect detection as nominal or
provide further labels to detections and enrich them with context, these labels based on the user’s expert knowledge
could be used to classify new detections. For new detections, the goal is to automatically compare them to these
labelled samples and, in case of sufficient similarity, assign the matching label. In doing so, we would both decrease
the time it takes to learn new behaviour and provide additional context to users should a similar anomaly have already

Figure 5: Plot of five telemetry parameters with detected anomalies (red bands) in ViDA.
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occurred in the past.
We will also continue to investigate further applications of our core algorithm used in the ATHMoS. A natural fit

is applying the method to real-time telemetry data, both on ground and on board. Here, we can build on the experience
gained from the current system and focus on extending its functionalities to deal with the additional requirements
introduced by real-time data. A first prototype for detecting anomalies in real-time data using our approach has already
been build and shown promising results. Including pre- and post-processing, the computations required to derive the
anomaly score were performed in fractions of a second and anomalies introduced in a stream of synthetically generated
data were detected.
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