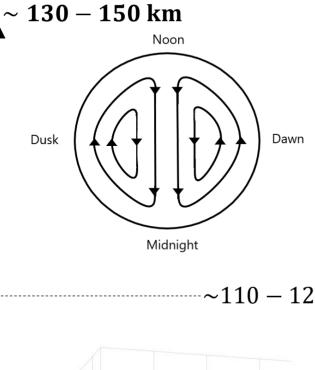
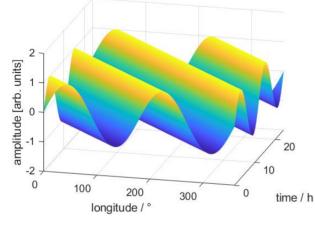
The origin of semidiurnal neutral wind oscillations in the high-latitude ionospheric dynamo region

IUGG General Assembly 2023 – M01 Middle Atmosphere Symposium


<u>F. Günzkofer</u>, D. Pokhotelov, G. Stober, H. Liu, H.-L. Liu, N. J. Mitchell, A. Tjulin and C. Borries

15 July 2023; Berlin, Germany florian.guenzkofer@dlr.de

Florian Günzkofer, Institute for Solar-Terrestrial Physics, July 15 202


The classical picture of tidal oscillations

High latitude polar plasma convection:

- → neutral wind forced by ion drag
- → sun-fixed motion
- → locally observed as 24h oscillation

~110 – 120 km

 $\sim 70 - 90 \, \text{km}$

Upward propagating atmospheric tides:

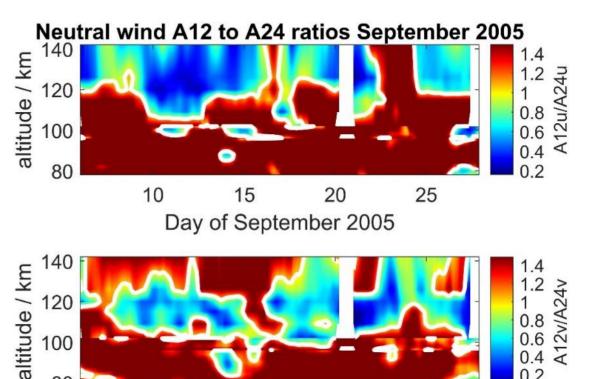
- → mostly Semidiurnal Westwardpropagating Modenumber 2 tide
- → 12h oscillations dominate

The classical picture of tidal oscillations:

- R. S. Lindzen, Ann. Rev. Earth Planet. Sci., 7, 199-225, (1979).
- S. Nozawa *et al.*, *J. Geophys. Res.*, **115**,
 A08312, (2010).
 → measured up to 120 km

Florian Günzkofer, Institute for Solar-Terrestrial Physics, July 15 2023

Summary of measurements


EISCAT Tromsø UHF ISR	Kiruna Meteor Radar
 campaign from September 6th to 29th 2005 (Nozawa <i>et al.</i>, 2010) 3D ion velocity vectors obtained from beam- swinging measurements; steady-state ion mobility equation applied to derive neutral winds covered altitudes: 96 – 142 km (seven altitude gates) 	 continuously operated since December 1999 neutral wind velocities are measured by observation of meteor trail drifts coverage altitudes: 70 – 110 km, 2 km resolution 1 h time resolution
 6 min time resolution determined by the beam- cycle period 	 used as lower altitude reference for EISCAT neutral wind measurements

Measurement results

- tidal amplitudes and phases are determined by • applying an Adaptive Spectral Filter
- A12 to A24 ratio shows dominant tidal mode:
 - \succ zonal component: single transition from 12h to 24h modulations at ~ 120 km
 - meridional component: two-band structure with strong 12h modulations above ~ 130 km semidiurnal oscillations clearly reduced during the second half of September
 - zonal: tidal oscillations follow the classical picture
 - meridional: complex mixing of tidal modes

0.2

20

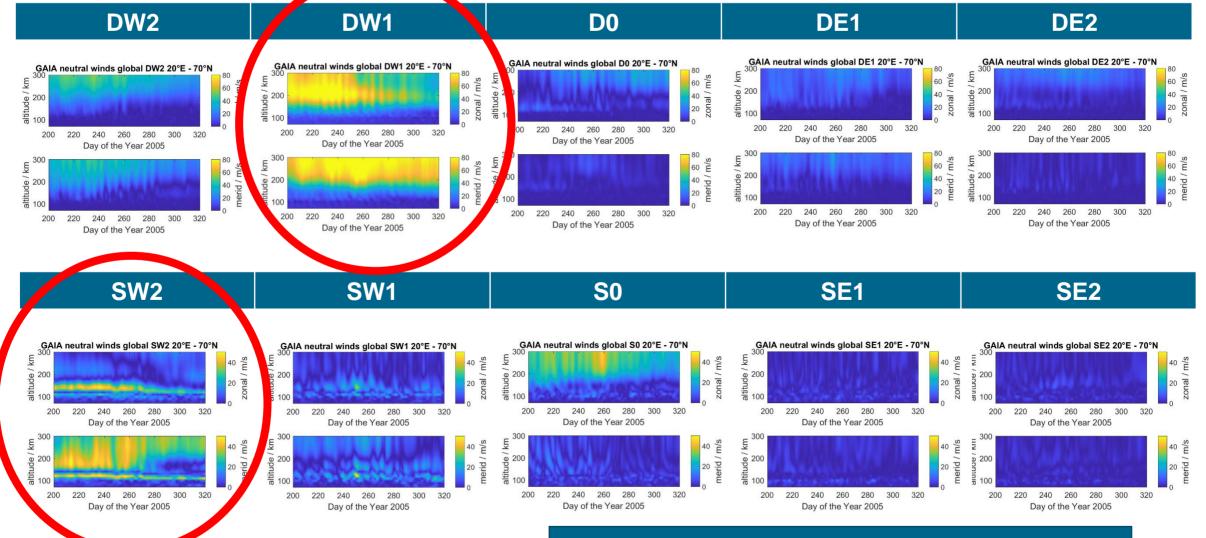
10

15

Day of September 2005

[F. Günzkofer et al., J. Geophys. Res., 127, 10, e2022JA030861, (2022)]

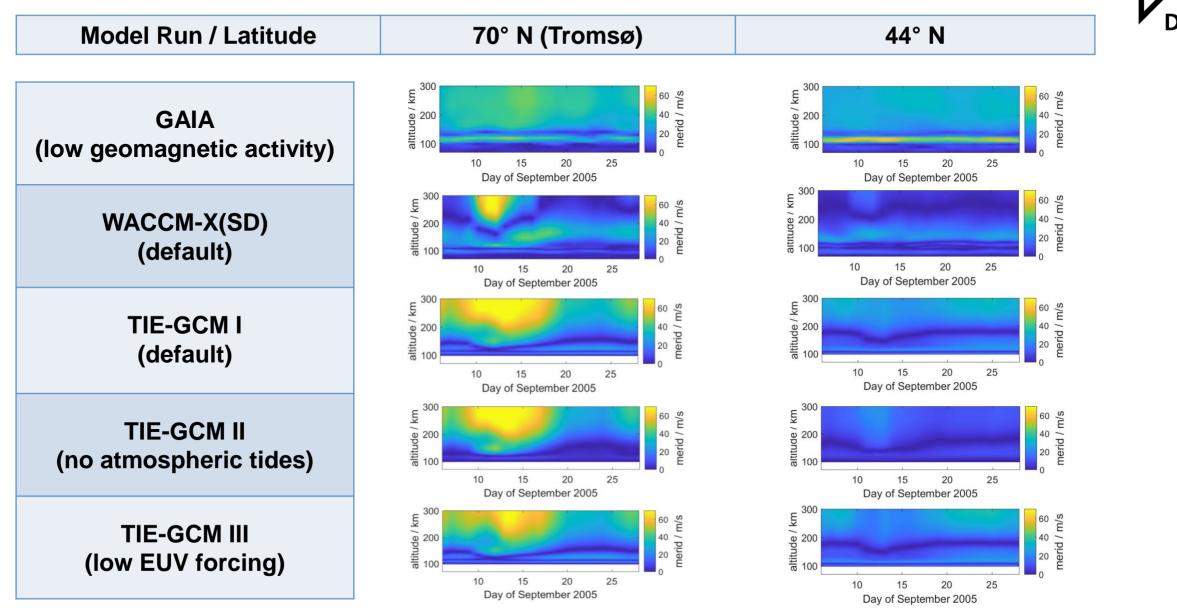
25


Investigated model runs

GAIA (neutral winds up to ~600 km)		WACCM-X(SD) (neutral winds up to ~500-700 km)	
whole-atmosphere models; nudged to reanalysis at lower altitudes			
 constant cross polar potential Φ = 30 kV (low geomagnetic activity) Liu <i>et al.</i>, <i>JGR Space Physics</i>, 122(5), 5539-5549, 2017. 		 geomagnetic activity parameterized by Kp index (Heelis model) Gasperini et al., JGR Space Physics, 125(5), e2019JA027649, 2020. 	
TIE-GCM I standard inputs	TIE-GCM II no tidal input		TIE-GCM III low EUV forcing
ionosphere model with lower boundary at ~ 98 km altitude			
geomagnetic activity parameterized by Kp index (Heelis model)			
 climatological tidal input from GSWM model at lower boundary EUV parametrization with F10.7 index 	 zero tidal oscillations at atmospheric boundary EUV parametrization with F10.7 index 		 climatological tidal input from GSWM model at lower boundary constant low EUV forcing (F10.7 = 40)

Global tidal modes in GAIA

→ Global Adaptive Spectral Filter allows to distinguish tidal modes by wave number

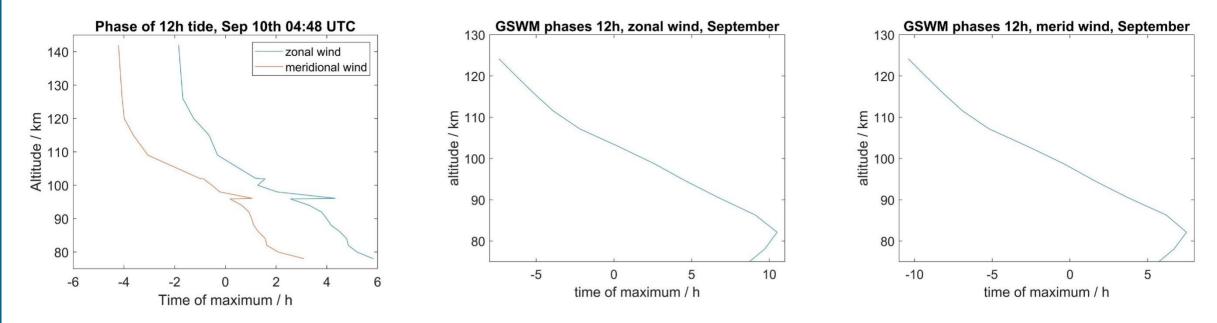


migrating modes (DW1 and SW2) dominant

Florian Günzkofer, Institute for Solar-Terrestrial Physics, July 15 2023

6

Model results – SW2 amplitudes


Florian Günzkofer, Institute for Solar-Terrestrial Physics, July 15 2023

Phase of semidiurnal tide in measurements and models

EISCAT and Meteor Radar

GSWM

■ EISCAT: transition from steady phase progression to constant phase at ~ 110 - 120 km
 → upward propagating tides are dominant up to the transition region
 → in situ forced tidal oscillations are dominant above

- **GSWM:** steady phase progression up to ~ 125 km
 - ➔ no in situ forced tidal modes included

Summary and Conclusion

- 1. Semidiurnal oscillations can be the dominant tidal mode at altitudes > 130 km
- 2. Model runs allow studying the impact of different forcing mechanisms
- 3. Semidiurnal oscillations at altitudes \geq 120 km are *in situ* forced
 - →ion convection and EUV absorption contribute significantly
 - Jupward propagating atmospheric tides might contribute slightly

For complete results:

F. Günzkofer *et al.*, "Determining the Origin of Tidal Oscillations in the Ionospheric Transition Region with EISCAT Radar and Global Simulation Data", *J. Geophys. Res.*, **127**, 10, e2022JA030861, (2022)