LIDAR-BASED GUST LOAD ALLEVIATION – RESULTS OBTAINED ON A GENERIC LONG RANGE AIRCRAFT CONFIGURATION

C. WALLACE, N. FEZANS

DLR (GERMAN AEROSPACE CENTER)

Aerospace Europe Conference (Joint 10th EUCASS, 9th CEAS Conference)

Lausanne, Switzerland, July 12th, 2023

Motivation for Active Gust Load Alleviation Aeroplanes in operational service are **exposed to variety of loads** during flight Landing shock | maneuvering loads | **external disturbances** (turbulence and **gusts**) Structural load hierarchies are often dominated by gusts Significant portions of the **primary wing structure** are often **sized by gust load cases** Active Gust Load Alleviation (GLA) Providing opportunity to **redistribute** and **modify wing lift** distribution Lower structural loads and mass reduction

Lidar-Based Load Alleviation Technology

Equivalent to a spatial measurement range (net) of about 148 m (0.56 s / 56 wind preview channels @ V_{TAS} = 264.26 m/s / 100 Hz)

Lidar-Based Load Alleviation Technology

Vertical wind speed measurements are processed by a wind field estimation algorithm

Information of upcoming wind field is provided in advance

System can act **prior** to gust encounter, influencing aircraft motion via intelligent control surface commands

Feedforward Preview-GLA Control "Loop"

Nonlinear Limits

Generic Long Range Aircraft – Aeroelastic Modelling Approach

- Used **aircraft models** based on "mean axes" formulation:
 - Non-linear Newton-Euler equations of motion for the "rigid-body" part
 - Linear modal representation of the structural dynamics
 - Aerodynamic loads are derived by the Doublet Lattice Method (DLM) and transformed into State Space formulation by a Rational Functional Approximation (RFA)
 - Cut loads are recovered by the Force Summation Method (FSM)
- Nonlinear aircraft modelling structure consists of
 - over 2800 states
 - 100 disturbance inputs (for vertical wind and turbulence),
 - 22 control surface inputs (<u>8 ailerons</u>, 2 elevators, 12 spoilers),
 - over 2500 cut load outputs,
 - over 4800 velocities and acceleration outputs.

Generic Long Range Aircraft – Considered Mass Cases and Trim Conditions

> 54 linear models were considered for GLA controller development

> 9 (mass distributions) x 3 (flight points) x 2 (wing configurations: clean wing + airbrake out)

Controller Tuning (Synthesis) DLR-FT-GLRA-GLA-FF-v1

Reducing the bending moment at the wing root was the top priority!

Open loop preliminary analysis: identification of worst gust load cases

(Composed by only 4 different aeroelastic models (out of 54 LTI-models))

Controller tuning based on these 4 specific aeroelastic design models

Control function is optimised directly in discrete time

(via modern robust control methods (H-infinity))

Tuning based on multiple different optimisation criteria

(Multi-Model-Multi-Channel-Synthesis)

Controller Structure DLR-FT-GLRA-GLA-FF-v1

- Implemented in discrete time (100 Hz)
- Controller structure consists of only 15 States
 → easily implementable controller
- Requires only wind information
- Gain-scheduled with true airspeed
- No gain scheduling based on mass, centre of gravity, or mass distribution

Dependent on flight point

Multi-Rate and Hybrid-Simulation Environment

- Simulation environment to perform time simulations and to evaluate GLA controller:
 - includes a detailed lidar sensor model including an advanced wind reconstruction algorithm,
 - consideration of arbitrary controller configurations like the feedforward preview control loop,
 - complex aeroservoelastic aircraft models.

Used for all results that are shown hereafter.

Controller Evaluation A/C Behaviour in Time Domain – Aircraft Excitation (Example)

Elevator deflects prior to gust impact

m/s

Controller Evaluation A/C Behaviour in Time Domain – Aircraft Reaction (Example)

Controller Evaluation: Gust Load Cases

Gust	Load Cas	es (CS 25.341a)	Load cases per controller configuration
Gust Le	ngths	Gust Directions	ons 54 aircraft models x 40 gust load case
9.00 m 14.16 m 19.32 m 24.47 m 29.63 m 34.79 m 39.95 m 45.11 m 50.26 m 55.42 m 60.58 m 65.74 m 70.89 m 76.05 m 81.21 m 86.37 m 91.53 m 96.68 m 101.84 m	29.53 ft. 46.45 ft. 63.37 ft. 80.29 ft. 97.22 ft. 114.14 ft. 131.06 ft. 147.98 ft. 164.91 ft. 181.83 ft. 198.75 ft. 215.67 ft. 232.59 ft. 249.52 ft. 249.52 ft. 266.44 ft. 283.36 ft. 300.28 ft. 317.21 ft. 334.13 ft. 351.05 ft.	upwards / downwards	2160 gust load cases for each configuration Open Loop (Clean + Airbrake-Out) Envelope Preview Controller (Clean + Airbrake-Out) Envelope

20 gust lengths 2 gust directions Х

13

Load Alleviation Results – Wing Bending Moment

Open Loop (Clean + Airbrake-Out) Envelope

Preview Controller (Clean + Airbrake-Out) Envelope

- Achieved performance of the feedforward preview controller
 - 17% bending moment reduction at wing root,
 - maximum bending moment reduction of about 20%,
 - improved bending moment envelope distribution over the entire wing.

Load Alleviation Results – Wing Torsional Moment

Open Loop (Clean + Airbrake-Out) Envelope

Preview Controller (Clean + Airbrake-Out) Envelope

- Achieved performance of the feedforward preview controller:
 - reduced torsional moment between the wing root and the engine pylon,
 - reduced torsional moment between the mid-wing and the wing tip,
 - increased torsional moment between the engine pylon and mid-wing.

Summary and Conclusions

- Complete load alleviation system was designed and evaluated
 - using a multi-rate and hybrid simulation environment including
 - > a realistic lidar sensor system / post-processing algorithms
 - a complex aeroservoelastic model
 - ➤ a discrete preview controller running at 100 Hz
 - Assessment of HTP loads and differentiated analysis of wing loads for clean-wing and airbrake-out cases are shown in the paper
- > Feedforward preview controller achieves a **significant reduction** of the peak **bending moment**
 - > about 17-18 % around the wing root,
 - > up to around 20 % close to 1/3 of the wing span,
 - ➤ about 10-12 % near the wing tip
- > Feedforward preview controller balances need for strong load reduction vs. gentle control commands
- > Feedforward preview controller yields slight torsional load increase in the middle of the wing
 - Should not be a problem, potential mass reduction caused by bending moment reduction predominates potential mass increase caused by additional torsional moment

Thank you very much for your attention! Questions?

Impressum

- Topic:Lidar-Based Gust Load Alleviation Results Obtained on aGeneric Long Range Aircraft Configuration
- Date: 12.7.2023
- Author: Christian Wallace, Nicolas Fezans
- Institute: German Aerospace Center (DLR), Institute of Flight Systems
- Bildcredits: DLR

