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Abstract

This master thesis work focuses on the inertial parameter identification of a space robot by
exploiting an object of known inertial properties placed at the end-effector of the robotic
arm and angular momentum conservation.
On-orbit servicing tasks are becoming every day more crucial due to the exponential
growth experienced by the space sector in the recent years. The accurate knowledge of
the inertial parameters of a servicing platform is fundamental to accomplish complex mis-
sions which require high precision.
In this context the method developed in this research work, which was carried out at
the DLR’s Institute of Robotics and Mechatronics in Oberpfaffenhofen (Germany), will
extend the already well-covered topic of space manipulators in-orbit identification with
algorithms tailored for platforms that do not have reaction wheels on board (e.g. ISS
Astrobees).
Besides validating the method with offline simulations, tests were performed for a free-
floating robot with a 7 degrees of freedom arm on DLR’s OOS-SIM experimental facility,
providing an onground validation in a close to representative environment. The identifi-
cation results show that the full dynamic model of the free-floating robot can be identified
with the known load at its end-effector, giving comparable results to those in the litera-
ture, ready to be used in a model-based control framework.

Keywords: On-Orbit Servicing, Space Robot, Free-Floating Dynamics, Identification,
Angular Momentum Conservation
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Abstract in lingua italiana

Questo lavoro di tesi magistrale si occupa dell’identificazione dei parametri inerziali di un
satellite equipaggiato con un braccio robotico, sfruttando un oggetto di proprietà inerziali
note posto all’end-effector e la conservazione del momento angolare.
Le operazioni da portare a termine in orbita stanno diventando ogni giorno più cruciali
nella crescita esponenziale subita dal mercato spaziale negli ultimi anni. La conoscenza
accurata dei parametri inerziali di una piattaforma adibita a queste operazioni è fonda-
mentale per completare compiti difficili che richiedono alta precisione.
In questo contesto il metodo sviluppato per questo lavoro di tesi, svolto all’Istituto
di Robotica e Meccatronica del DLR di Oberpfaffenhofen (Germania), vuole estendere
l’argomento già ben trattato dell’identificazione in orbita di satelliti equipaggiati con
bracci robotici con algoritmi appositi per piattaforme sprovviste di ruote di reazione a
bordo (come ad esempio gli Astrobee a bordo della ISS).
Oltre a validare il nuovo metodo con simulazioni offline, sono stati fatti dei test su un
robot flottante a sette gradi di libertà sulla piattaforma OOS-SIM del DLR, fornendo in
questo modo una validazione a terra in un ambiente molto vicino a quello reale. I risultati
mostrano che l’intero modello dinamico del robot flottante può essere identificato usando
l’oggetto noto all’end-effector, dando risultati comparabili a quelli in letteratura, e pronti
per essere usati in uno schema di controllo basato sul modello dinamico.

Parole chiave: Servizio in Orbita, Robot Spaziale, Dinamica Flottante, Identificazione,
Conservazione del Momento Angolare
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1| Introduction

1.1. Motivation

The document by NASA in [1] presents a great overview of the operations to be performed
in orbit in the upcoming years: the possibilities range from refuelling the satellites orbiting
the Earth in Low Earth Orbits (LEO), Medium Earth Orbits (MEO) or Geostationary
Earth Orbits (GEO), the mitigation of the rising problem of space debris by removing
them and thus lowering the collision probabilities, and the assembly of large structures in
space (e.g. a space station at the lagrangian point between the Earth and the Moon).

A great example is embodied by the Northrop Grumman mission MEV (Mission Extension
Vehicle, Figure 1.1) which on the 25th of February 2020 successfully docked with the
Intelsat satellite IS-901 to correct its orbit (acting as an external engine) and augmented
the life of the spacecraft of an additional five years [2].

Figure 1.1: Artist Render of a MEV Unit Attached to a Client Satellite, (Credits :
Northrop Grumman)

The possibility to repair and act mechanically on the existing satellites and not only on
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the software side would allow to greatly reduce costs as the need to replace them would
practically vanish.
Moreover, following the same reasoning, many of the activities carried out nowadays by
astronauts on the International Space Station (ISS) could be performed by specific plat-
forms, both tele-operated and autonomous (following the trend of increasing development
of artificial intelligence applications in the form of neural networks), by the means of
robotic arms such as the newly designed CAESAR [3] from DLR (Figure 1.2). This
would increase the safety of such operations and also their number since machines are not
subjected to the same restrictions that humans face in space.

Figure 1.2: Compliant Assistance and Exploration SpAce Robot (CAESAR), (Credits :
DLR)

The use of robots in space is slightly different from the on Earth equivalent due to the
absence of gravity. There are typically two main categories in which a satellite equipped
with a robotic arm can be employed, namely in free-flying mode or free-floating mode.
The first one foresees the active control of both the center of mass position of the satellite
and its attitude, by exploiting reaction control systems on board such as thrusters for
the translational dynamics and reaction wheels or control moment gyroscopes for the
rotational ones, in order to compensate for the platform reaction to the arm movement
during operations. This strategy in the long run brings to consumption of thrusters fuel,
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reducing in this way the length of the mission, which on the other hand is not the case for
a free-floating mode. In fact, for this specific mode all reaction control systems are kept
switched off during the arm motion, leaving the base body free to tumble by conserving
the total momentum of the system since there are nor external forces nor moments acting
on it. Of course the control algorithms on board have to deal with the robotic arm floating
base to permit to its end-effector to fulfill the assigned task, coping with problems that
do not exist on ground such as dynamic singularities [4], [5].

This framework requires the precise knowledge of the inertial parameters of the whole
platform, to be given as input to the dynamics driving the control loop, as for example
in [6], [7], [8], [9].
For operations such as in orbit capture of a cooperative or uncooperative target (as would
be the case for a debris removal scenario) the requirements on the grasping process are
in fact tight and can be achieved only by exploiting an on board model of the system of
high fidelity.
For this reason the parametric identification of robotic space manipulators is a research
topic that has been studied in the past thirty years and it is still in development [10], as
the recent ESA founded studies OBSIdian also confirm [11].

1.2. Thesis Contribution

This master thesis work focuses on the inertial parameter identification of a spacecraft
equipped with a robotic arm (a space robot). The conservation of angular momentum is
exploited with a novel approach, which, in contrast to the most recent works (see [12],
[13]), does not require the presence of reaction wheels on board the spacecraft. The lack
of reaction wheels on board may in fact well be the case for a robotic satellite operating
in outer space, given that these are very bulky and energy-consuming. It is also possibly
going to be the case for future robotic free-flyers operating on board of a space station
(see for example NASA’s ASTROBEE system [14]).
As reported by Ayusawa, Venture and Nakamura in [15] the total mass of a free-floating
system, for which it is assumed that no external forces act on the system, is not identifi-
able: in the literature this problem is implicitly solved by assuming as known the inertial
properties of on-board reaction wheels, given that their angular momentum is considered
known and not null. In this work, instead, an object of known inertial properties (the
load), positioned at the end-effector, is employed to solve the identification problem, sat-
isfying in this way the conditions for the system identifiability. This strategy also has the
operational advantage of allowing to assume a null total angular momentum during the
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robotic arm exciting manoeuvre.
Moreover, the present research treats a robotic arm with a seven degrees of freedom (DoF)
geometry, whereas the aforementioned texts dealt with arms of maximum three DoF, thus
providing an extension to the currently available data. It was decided to set as a goal a
seven DoF manipulator to be able to exploit DLR’s On-Orbit Servicing - Simulator (OOS-
SIM), described in Chapter 6. This is a great addition to the topic given the difficulty of
reproducing the in orbit environment (in which these manoeuvres would take place) and
in particular the absence of gravity on the ground, coupled with the complexity of the
geometry of the considered robotic arm.

1.3. Thesis Outline

The structure of this thesis is divided into seven main chapters. After Chapter 1, which
gives a broad overview of the topics treated throughout the whole text and the main
contribution of this work, Chapter 2 outlines the most common practices in the field of
fixed robotic arms inertial parameters identification and then focuses on the same subject
but applied to free-floating space robots.
Chapter 3, instead, presents all the theoretical aspects covered by the problem under
study: starting from a brief description of manipulator kinematics, free-floating dynamics
are then introduced and in particular the expressions for the conservation of linear and
angular momentum for this kind of systems. Afterwards, the regressor form of the angular
momentum is treated in two different formulations, and the steps to pass from one frame-
work, which requires the knowledge of the base body position and velocity referred to an
inertial frame, to the other, for which these quantities are not necessary, are described.
Lastly, this chapter treats the mathematical formulation of the optimization problem ex-
ploited to generate exciting trajectories for the robotic arm to fulfill the identification
task.
Chapter 4 starts with a description of the Simulink© model employed for the simulation
of the free-floating dynamics of the system under study in response to the selected exciting
trajectory performed by the manipulator. The developed model includes also blocks to
reproduce noisy measurements from the exploited sensors, namely gyroscopes and joints
motors encoders, to make the simulation environment closer to reality. It then proceeds
to show the statistical outputs of simulations trying to reproduce the identification results
for a space manipulator in presence of non zero angular momentum obtained by Christidi
et al. in [12]. This paper is the starting point for this work and its results are thus treated
as a baseline for further experiments. It then introduces a possible source for the non zero
angular momentum such as reactions wheels and simulates the system under this new
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condition, starting from zero base body angular velocity and zero joint angular rates.
Chapter 5 is the core chapter of this thesis. Here the novel framework for the para-
metric identification of inertial parameters for a space robot is carefully explained and
simulations with a free-floating seven DoF robotic arm are performed and their results
commented. Moreover, a validation procedure is presented and outlined, and successively
used to check the consistency of the simulations results.
Chapter 6 gives a brief introduction to the experimental facility in DLR’s Oberpfaffen-
hofen site: the OOS-SIM. It also presents the changes which had to be done on the model
used in simulations in order to perform the experiments on the platform, with particular
attention to the additional mechanical constraints of the system. It finally provides the
results of the new framework tested on the experimental set-up with a hardware-in-the-
loop (HIL) approach, which is the great contribution of this thesis, since it is difficult to
reproduce the orbital environment and the underlying dynamics on Earth.
Finally Chapter 7 concludes this thesis by commenting the results obtained, making com-
parisons with the existing methodologies, and proposing possible topics to extend the
present work.
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2.1. Inertial Parameters Identification Methods

Since this work is focused on the inertial parameters identification of a robotic arm (and
its base body given the free-floating dynamics), a brief review of the state-of-the-art tech-
niques to identify the said values is treated in this section, starting from the identification
methods themselves applied to fixed base manipulators, for which examples can be found
in [16], [17]. The research is then extended in the next section to methodologies applied
to the specific problem under study, namely the field of free-floating space manipulators.
The work followed in this first part of the review is the one by Leboutet et al. in [18],
which gives a great overview of the topic.

2.1.1. Inverse Dynamic Identification With Least-Squares

The most common approach to identify the inertial parameters of a rigid robot is the
Inverse Dynamic Identification Model with ordinary Least-Squares estimation and its
variants (namely Weighted Least-Squares or Total Least-Squares), because they are effi-
cient and easy to code. These methods have intrinsic downsides related to being sensitive
to data noise and to being greatly influenced by the conditioning of the trajectory of the
robot. The framework in which this method is applied requires to start from the inverse
dynamic model of the manipulator, given by Equation 2.1

M (π,q) q̈+C (π,q, q̇) q̇+ g (π,q) + ζ (π, q̇) = τidm (2.1)

which relates the joint space quantities q, q̇, q̈ to the the generalized forces τidm exerted
on the system. The equation is dependent on the quantity π, which concatenates all the
inertial parameters of the links (with i = 1, ..., n) composing the system (Equation 2.2)

πi = [Ixxi
, Ixyi , Ixzi , Iyyi , Iyzi , Izzi ,MXi,MYi,MZi,Mi, Iai, Fvi, F ci]

T (2.2)
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This formulation of the problem has the advantage of being linear in π and can thus be
re-written as in Equation 2.3:

τidm = Yπ (q, q̇, q̈)π (2.3)

The quantity Yπ is typically known as the model regressor. If this matrix is filled with
samples taken from a trajectory performed by the arm as well as measurements of the
generalized forces, the equation given above becomes an over-determined system of linear
equations in π, and a unique solution can be found given that matrix Yπ is not rank
deficient, which unfortunately is hardly ever the case.
Two types of rank deficiency can be present: data rank deficiency and structural rank
deficiency of the matrix Yπ. The first one is related to an improper collection of data,
i.e. by following an identification trajectory that does not excite properly the system
parameters. The structural deficiency is instead bounded to the system parameters that
do not influence the dynamics (no matter the trajectory), and to parameters that act
combined on it. To solve this issue it is necessary to find the linear coefficients which are
underlying the columns of the regressor matrix and rearrange them consequently, leading
to a set of base parameters (or minimal parameters) which is lower than the initial bunch.
These parameters are called base inertial parameters because they permit to fully describe
the constrained-robot dynamics with the minimal set of parameters [19].
Having rearranged the vector of inertial parameters π in its base version β, Equation 2.3
becomes Equation 2.4

yτ = W (q, q̇, q̈)β + ε (2.4)

where the changed symbols represent the sampled quantities (N times) and ε the sampled
error.
The most common practice to solve Equation 2.4 consists of computing the weighted
least-squares estimate β̂WLS and associated covariance matrix ΣWLS in Equation 2.5

β̂WLS =
(
WTΣ−1W

)−1
WTΣ−1yτ

ΣWLS =
(
WTΣ−1W

)−1 (2.5)

For what concerns the Total Least-Squares (TLS) approach, a good explanation is given
in [20]. This method can be used to mitigate the effects of a noisy regressor matrix. The
mathematical formulation reads the following: the TLS estimate of β̂TLS can be obtained
by exploiting the singular value decomposition of the augmented matrix X = [Wyτ ] as
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in Equation 2.6

X =
[
UW Uy

] [ S 0

0T S

][
VWW VWy

VyW Vyy

]
(2.6)

and Equation 2.7 gives the expression for the parameters estimate

β̂TLS = −VWyV
−1
yy (2.7)

2.1.2. Instrumental Variable And Maximum Likelihood

The Instrumental Variable (IV) method applied to parameter identification consists in
introducing an instrument matrix Z which is well correlated with the regressor matrix W

and uncorrelated with the error ε, and the corresponding identification formulation reads
(Equation 2.8)

ZTyτ = ZTW (q, q̇, q̈)β + ZTε (2.8)

for which the estimate β̂IV is given by Equation 2.9

β̂IV =
(
ZTW

)−1
ZTyτ (2.9)

The problem with this approach is the difficulty to identify the instrument matrix Z

with the properties reported above. An optimal guess for this matrix is another regressor
matrix filled with synthetic data generated by an auxiliary model which, for this specific
case, is represented by the direct dynamic formulation of the problem. This auxiliary
model should be simulated with the same controller and exciting trajectories employed
for the IV framework, using the last iteration estimate of the base parameters β̂i−1

IV , setting
up in this way an iterative scheme.

The Maximum Likelihood (ML) methods were specifically tailored to address the intrinsic
noise of the measurements used to feed the regressor matrix of the system, which in this
case are the torque and joint angles values. The mathematical formulation of the estimate
β̂ML is reported in Equation 2.10

β̂ML = argmin
β

1

2

N∑
k=1

εT (tk)
(
Gkσ

2
kG

T
k

)−2
ε (tk) (2.10)

where σ2
k is the diagonal variance matrix of the k-th sample and Gk is the Jacobian matrix

of the error at the current toque sample with respect to the measurement vector which
comprehends the joints positions, velocities, accelerations and the torque itself.
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2.1.3. Output Error And Input Error

The Output Error (OE) method is an identification method in which the parameter
estimate β is the one that minimizes the cost function J(β), which is in turn the L2-
squared norm of the error between the output y of the system under study and the
output ys of the model related to it (Equation 2.11)

J(β) = ||y − ys||2 (2.11)

where for a robot y and ys comprehend the measured and simulated joints positions. The
minimization of the function J(β) is carried out by non linear least squares optimization
algorithms. The unknown base parameters are then updated iteratively to match the
output of the "real" system

β̂i+1 = β̂i +∆β̂i (2.12)

with ∆β̂i, which is called the innovation vector. As for the Instrumental Variable method,
the direct dynamical model is used to obtain the outputs of the simulated system by
exploiting the parameters estimate at the last iteration as its input (using the same
controller and the same exciting trajectories).
In an Input Error (IE) method instead the quantities to be tracked are the measured
input torques to the system and the simulated ones. The authors of [18] report that this
method gives better results in terms of accuracy with respect to ordinary Least Squares
and Output Error method, because they have the same computational cost as the OE
but better convergence properties, thanks to their higher sensibility to changes in the
parameters.

2.1.4. Kalman Filters and Neural Networks

For the sake of completeness a brief overview of Kalman Filters and Neural Networks
applied to parameter identification is here reported, again referring to the work of Leboutet
et al. in [18].

For what concerns Kalman filters they are widely used for state estimation purposes,
but can also be exploited to identify model parameters. A common approach in the
field of robotics, as documented by [18], is to estimate the state and the parameters
simultaneously in a method which is referred to as joint method. This formulation requires
to stack the state of the system and the actual base parameters estimates in the same

vector, composing in this way a higher dimensional vector zk =
[
xT
k β̂k−1 T

KF

]T
. This in
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turn is to be used in Equation 2.13

zk+1 = Γ (zk) + vk

yk = Szk +wk

(2.13)

which represent update equations where the non linear state transition function is given
by Equation 2.14

Γ (zk) =

q̇ (tk)

q (tk)

β̂k
KF

+

DDM(zk)

q̇ (tk)

0

 · δt (2.14)

DDM is the direct dynamic model, which is dependent on the current state and on the
parameter estimate β̂k−1

KF . The fact that the DDM is non linear can be dealt with several
methods, resorting for example to the use of Extended Kalman Filters (EKF), which
employ a first order linearization of the robot dynamics.

A possible neural network to be exploited for parameter identification purposes is the
Adaline (ADAptive LInear NEuron), which uses a stochastic gradient learning to con-
verge to an estimate given by the Inverse Dynamic Identification Model with Ordinary
Least Squares. The parameter estimate at the sample time tk is given recursively by
Equation 2.15

β̂k
AdaNN = β̂k−1

AdaNN + ηYk T
(
τ (tk)−Ykβ̂k−1

AdaNN

)
(2.15)

where Y is the regressor matrix introduced in the Least Squares section and η is the
learning rate. A single "neuron" can be exploited to fully identify the model, but several
cycles should be employed to achieve convergence.

Another neural network architecture to be used for parameter identification is represented
by the Hopfield-Tank Recurrent Neural Networks (HTRNN), which are dynamic systems
composed by a set of N interconnected neurons. Each neuron i is an integrator intertwined
with a non linear activation function f. A discrete formulation of the neuron state equation
for the HTRNN given by Abe is here reported (Equation 2.16)

uk+1
i = uki + η

N∑
j=1

ψijαj tanh

(
ukj
ϑj

)
+ ki (2.16)

It can be demonstrated that this specific dynamical system is asymptotically Lyapounov-
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stable and converges to the minimum of the energy function in Equation 2.17

E = −1

2
sTΨs+ sTk (2.17)

Given this formulation of the problem the parameter identification process can be corre-
lated to match the L2-norm of the parameter error given in Equation 2.3 with the energy
function of the HTRNN. If one selects properly the quantities introduced in Equation 2.3
this correlation can be achieved. The selection is provided in Equation 2.18.

Ψ = −WTW

k = −WTyτ

s = β̂HTRNN

(2.18)

The neural network will then have the same number of neurons as the base parameters to
be estimated and will converge to the estimate given by the Inverse Dynamic Identification
Model with Ordinary Least-Squares as the Adaline Neural Network.

2.2. Parametric Identification Of Free-Floating Robots

Having treated the most common algorithms to deal with the inertial parameter identifica-
tion of fixed base manipulators, the focus has to be shifted to the specific case under study,
thus space manipulators in free-flying or free-floating mode. This section will present a
review of the methods and techniques developed over the recent years to address this
problem.

The review article by Papadopoulous, Aghili, Ma and Lampariello in [10] presents a section
dedicated to the identification of satellites and tumbling objects, from which interesting
articles on the subject are briefly introduced. Some of them will be shortly described in
this section as well as other relevant papers on the topic.
Lampariello and Hirzinger in [21] propose a method to identify the inertial parameters of
the base body of a space manipulator directly in space, by moving the origin of the inertial
reference frame from Earth to a local point directly in orbit. The other bodies inertial
quantities composing the system are assumed to be known. The identification framework
presented in the paper consists in the comparison between measured variables of the
base motion and those obtained by integration of the equations of motion of the system.
The parameter identification is then treated as an optimisation problem for which the
cost function κ is the sum of the differences among the simulated and measured velocity
functions at specific sampling points, as in Equation 2.19, which puts this method in the
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Output Error (OE) family.

κ =
n∑

i=1

(
v11m,i − v11s,i

)2
+
(
v12m,i − v12s,i

)2
+
(
ω1
m,i − ω1

s,i

)2 (2.19)

The identification results are deemed satisfactory by the authors, however the method-
ology is applied only to a bidimensional system and posed problems in the convergence
of the solution, which was limited by the noise of the sensors and by a high mass ratio
between the two bodies of the system.
Yoshida and Abiko in their work in [22] deal with the identification of inertial parameters
of a free-flying space robot by exploiting the conservation of momentum, by not requir-
ing in this way joints torques or base body acceleration measurements. The algorithms
are verified with the flight data of a Japanese satellite, the ETS-VII. In principle all the
inertial parameters of each body composing the system are to be identified.
As stated above the identification algorithm uses the conservation of the angular momen-
tum, to which the accumulated momentum in the reaction wheels is explicitly added to
the equation (Equation 2.20)

H̃bωb + H̃bmϕ̇+ LRW = 0 (2.20)

The difference between the simulated value for LRW and the one obtained with mea-
surements of the kinematic quantities and a guess of the inertial parameters is given in
Equation 2.21

∆L = LRW − L̂RW = f (M+∆M)− f (M) (2.21)

where f(M) is a function of the inertial parameters. By linearising the above equation,
its solution is then represented by Equation 2.22

∆M =

{
∂f

∂M

}+

{∆L} (2.22)

However, the resulting matrix is rank deficient and shall be manipulated to cope with this
issue, by eliminating the parameters having minimal effect on the system dynamics.
The algorithms are validated with flight data of the ETS-VII Japanese satellite, giving
good results and requiring only measurements which are typically registered on board a
satellite.
Again Lampariello and Hirzinger published on the topic in [23], proposing a method to
identify the parameters of the base body and of a load at the end-effector, while also
covering the issue of full body identification in a theoretical manner.
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Given the equations of motion in Equation 2.23

M˙̄yII = C+Λ0 + χ (2.23)

these can be rewritten in regressor form by exploiting the fact that are linear in the inertial
parameters

Φ
(
ȳI , ȳII , ˙̄yII

)
p = Λ0 (2.24)

At this point this formulation can be solved in the least squares sense. The problem is
that the vector Λ0 of external forces acting on the base body is nearly zero and thus gives
rise to an ill-posed problem. The authors then resorted to a least squares method applied
to the integral of the equations of motion as in Equation 2.25 as an alternative way of
solving it

min
p

N∑
i=1

||ȳiII − ȳiII,exp||2 (2.25)

where the quantity ȳII is dependent on the vector of parameters p to be identified, namely
to the base body parameters in the first case, to the load parameters for the second case
and to the whole system parameters for the third case.
The algorithms are tested with the real inertial data of the ETS-VII Japanese satellite,
and then with different sets of data. The algorithm works well with systems of different
mass ratios (manipulator/spacecraft), spanning from 1/25 of the ETS-VII up to 1/7.
Ma, Dang and Pham in [24], [25] address the topic of the identification of the inertial
parameters of the base body by exploiting a robotic arm and the conservation of momen-
tum. The problem is treated as a linear identification one, and is divided in two steps:
firstly the mass and center of mass of the spacecraft are identified, and secondly its inertia
tensor.
For the first part of the method Equation 2.26 reads

mR

mS

(
vS + ωS × ρR − pC(0)

mR

)
+ ωS × ρS = −vS (2.26)

being linear in the ratio of the masses (but the robotic arm mass is known and constant)
and the center of mass position of the spacecraft ρS. If the arm is moved into N differ-
ent positions and the linear and angular velocities of the base are registered by on-board
sensors, a linear system of regression equations can be built and solved for the aforemen-
tioned variables. After these two quantities are known, the inertia tensor can be identified
through the simple equation

By = c (2.27)



14 2| State Of The Art

with the quantity c containing the known angular momentum values along the robotic
arm trajectory and the matrix B the measured spacecraft angular velocities.
The simulations carried out to verify the methodology output as results that, for the
second case, an initial spin is necessary to identify the inertia tensor. Moreover the mass
of the arm shall not be less than the 5% of the spacecraft mass to obtain acceptable
identification values.
The work carried out by Rackl, Lampariello and Albu-Schäffer in [26] treats the inertial
parameter identification of free-floating robots equipped with torque sensors by the use
of two different methods, one requiring the base body accelerations and one not requiring
it, and compare them with other methods as the momentum conservation method or the
energy conservation method.
The first method uses the modified linear form of the recursive Newton-Euler equations
as in

τ =
[
Πb Πm

] [Φb

Ψm

]
= ΠΛ (2.28)

which in regressor form can be written as

Y = ΠΛ+ ρ (2.29)

The vector Y contains the torque measurements, whereas the matrix Π is the regressor
matrix, and the solution to the over determined problem can be tackled with ordinary
least squares optimization, by making sure that the regressor matrix is not rank deficient.
In this specific case, the manipulator arm is considered to be known and thus no rank
deficiency is present.
The second method, instead, stems from the general inverse dynamics equations of motion
for free floating robots, in the form of the Reduced Dynamics Algorithm (RDA) which
permits to eliminate the dependency of such equations from the base body acceleration.
This framework is not linear anymore in the inertial parameters and must solved with
a non-linear optimization algorithm (placing it in the category of the Input Error (IE)
methods)

Γ =
n∑

i=1

N∑
j=1

τi,j − τi,j,msr (2.30)

The results of the simulations show that the method proposed in the paper gives results
which are deemed acceptable and with good accuracy, with the second method (the one
not requiring the base body acceleration measurements) giving the best results, which is
consistent with what is reported in [18], being it an Input Error method. Moreover it seems
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to give better results with respect to the other ones explored, namely the conservation of
momentum and energy.
Rackl and Lampariello in [27] tackle the problem of inertial parameter identification in
the presence of fuel sloshing and flexible appendages.
The Reduced Dynamics Algorithm is again exploited and modified to account for these
two additional effects. Equation 2.31 is used to analyse the system under the first or
second case introduced above

Hÿ +C+Kδy +Dẏ = τ (2.31)

For what concerns the flexible appendages, rigid solar panels connected by flexible rota-
tional joints are considered. The parameters to be identified, by knowing the manipulator
ones, are the natural frequencies, mass, center of mass position and inertia of both the
bas body and the appendages, the stiffness and the damping matrices.
The natural frequencies are retrieved in the first step of the method which uses a Fast
Fourier Transform (FFT) on the measured joints torques and base angular velocity,
whereas the remaining parameters are obtained with Equation 2.30.
The sloshing is instead treated with an equivalent pendulum model, composed of a fixed
mass and slosh masses connected to the pendulum with springs and damper elements.
The quantities to identify are the same as previous case, having this time substituted the
appendages ones with values related to the equivalent pendulum. The robot parameters
are again assumed to be known. The results in both cases show how the identification
process improves by taking into account these two disturbances.
Christidi-Loumpasefski, Nanos and Papadopoulos in [12] introduce a new methodology
for the inertial parameter identification of a free-floating space manipulator capable of
obtaining all the parameters of the system in linear combinations, thus not only the base
body ones, exploiting a non-null initial angular momentum stored in reaction wheels with
known inertia. Such parameters clusters are then to be used in a model-based control
framework. The method does not require noisy base body acceleration measurements but
only joints angles and rates, base body angular velocity and base body attitude.
Having expressed the angular momentum of the system linearly with respect to the inertial
parameters (Equation 2.32)

hCM = Yh

(
q̇,q, 0ω0, ε, η

)
π (2.32)

the resulting system, after being filled with measurements of the required quantities, is an
over-determined system of linear equations which can be solved in a least squares sense
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(Equation 2.33)

π̂ =
(
ŶT

hŶh

)−1

ŶT
h hCM (2.33)

However, the regressor matrix Yh is rank deficient and must be manipulated in order to
perform such operation. The authors of [12] do not give an explicit method to treat with
this problem but provide only a generic procedure to be tailored case by case.
The authors confront this new method with a commonly used one which makes use of the
full equations of motion (EOM) of a space manipulator requiring base body acceleration
measurements: the new formulation of the problem outperforms the EOM based one due
to fact that the base body acceleration measurements are not needed to fill the regressor
matrix, measurements which are typically afflicted by a non-negligible noise level. It has
to be noted again that the non-null angular momentum is given by actuating reaction
wheels, but their explicit contribution in the angular momentum equation is not present.
Christidi-Loumpasefski and Papadopoulos in [28] extend the previous work to free-flying
space manipulators systems, by proposing a simple 2D system to be tested both in simu-
lation and in an experimental setup.
Resembling the work in [25] the method is divided in two steps: firstly the linear mo-
mentum is used to identify the total mass of the system by exploiting pulses of on-board
thrusters, and secondly a non-null angular momentum is given to the system in the same
fashion of what was done in [12], with the introduction of additional kinematics to retrieve
all the parameters needed for free-flying model-based control. In contrast to the work in
[25] all the inertial parameters, both for the base and the manipulator, are identified re-
membering that they are obtained in linear combinations between each other.
As mentioned above a novelty in this article, a part from the additional identified kine-
matic quantities, are the obtained experimental results gathered with the Cepheus plat-
form, capable of reproducing 2D free-flying/floating dynamics of a simple space manipula-
tor. The algorithms are tested on the experimental platform and then verified by imposing
a randomly parametrised joint angles trajectory to the system and subsequently compar-
ing the simulated and measured responses. The output quantities are tracked with good
accuracy after the identification process confirming the validity of the newly proposed
method.
Christidi-Loumpasefski, Rekleitis and Papadopoulos in [29] continue the research topic
by focusing on the development of a controller to reject the disturbances exerted on the
system by accumulated reaction wheels momentum. The part which is interesting in this
work for the present thesis is the explicit contribution of the reaction wheels accumulated
momentum in the system total angular momentum.
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The angular momentum given by the reaction wheels is (Equation 2.34)

HRW =

NRW∑
i=1

mRW,iρRW,i × ρ̇RW,i + IRW,i

(
ω0 +R0

0RRW,i
RW,izRW,iq̇RW,i

)
(2.34)

in which the first two terms are related to the spacecraft motion and the last one to the
relative motion between the spacecraft and the reaction wheels. This is the additional
contribution to be considered in the total angular momentum of the system leading to
Equation 2.35

Hrs(t) = Y(t)π = HTOT −R0(t)
0HRW/rs (2.35)

At this point the framework obtained is formally equal to the one in [12] with a more
rigorous expression.
Naveen et al. in [13] propose a framework for inertial parameter identification that makes
use of the momentum equations, and also in this case the assumption is of a non-null
angular momentum given by on-board reaction wheels.
An interesting addition to the topic made by this article is the explicit presentation
of an automatic procedure to obtain the minimal parameters of the system given a user-
defined geometry for the manipulator, provided that it belongs to the family of open-chain
kinematic trees.
Referring to the angular momentum equations, their linear formulation with respect to
the inertial parameters is given by (after a simple manipulation) Equation 2.36

Hi =
(
IRi

[(
IRT

i ωi

)
•
]) [

•iIi
]
+ (r̃ivi)Mi +

(
(r̃iω̃i − ṽi)

IRi

)
Mi

iai (2.36)

As can be seen in contrast to the methodology proposed in [12], [28], and [29] the resulting
regressor matrix is dependent on both the base body inertial position and linear velocity.
In any case following the procedure given in [13] one can easily obtain the minimal form
of the inertial parameters and the corresponding regressor matrix which coupled with a
non-null angular momentum provided by the on-board reaction wheels form the classic
system of over-determined linear equations to be solved with a least squares algorithm.
The article presents also a different approach to obtain exciting trajectories for the sys-
tem, in opposition to the truncated Fourier Series used in [12].
Xu et al. in [30] and in [31] treat a method for identifying the complete inertia parameters
of a space robotic system. The methodology is similar to the one employed in [28] and it is
divided in two steps: an equivalent single-body identification, and an equivalent two-body
identification. For the first step, all joints are blocked into a selected configuration, and
the thrusters are used to translate and rotate the center of mass of the equivalent single-
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body system to excite its inertial parameters. The objective function for this first part
is dependent from the of acceleration and velocity of the equivalent single-body system.
For the second step, only one joint is unlocked and commanded to follow the exciting
trajectory under the free-floating mode. In this case, instead, the linear and angular mo-
mentum equations are used to define the objective function.
At this point the parameter identification problem is transformed into a non-linear opti-
mization problem, and the PSO algorithm is used to determine the optimal parameters.
This algorithm is selected because it is suitable for solving unconstrained nonlinear prob-
lems and because it is easy to set-up, having to tweak few parameters. By sequentially
unlocking the 1st to nth joint, the mass properties of body 0 to n are completely identified.
The identification results on the first part of the method give very small errors (O ∼
10−10), results which are then employed in second step, namely for the equivalent two-
body system identification. In the second part, the unlocked joint follows exciting tra-
jectories modeled with 3rd order splines. Also for the second part promising results are
obtained, however the authors do not provide any information regarding the noise models
employed to model the sensors for the simulations.
Finally Wei et al. in [32] work on a topic which is slightly different from the main focus
of this thesis: the identification of the inertial parameters of a grasped target in orbit,
by exploiting information coming from the contact between the chaser gripper and the
unknown target itself. This to increase the safety of the grasping process, by having a
priori data to better model the control law to complete the grasping manoeuvre. Also in
this case the momentum conservation of the chaser-target couple is assumed, and used to
derive the linear identification model for the target inertial parameters.
The identification results of all the treated cases (i.e. of a target for which a priori infor-
mation are available, a target and a heavy target for which no information on the inertial
parameters are present) show that the identification of the target mass is quicker to con-
verge with respect to to the target inertia and center of mass, which is in agreement with
the theoretical studies performed for the research. The numerical results indicate that
all of the target inertial parameters can be identified based on the linear identification
model presented in the paper, given that at least three collision between the gripper and
the target occur. By increasing the number and variety of collisions the of identification
efficiency can be improved, leading to faster convergence to the real inertial parameters
of the target.
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3| Mathematical Formulation Of

The Problem

3.1. Kinematics Of A Space Manipulator

3.1.1. Geometrical Description Of The Manipulator

The geometry of a robotic arm is defined by assigning coordinate frames to each link,
and the most convenient way to perform this task is to adhere to one of the existing
conventions. In this thesis the one adopted is the one described by Khalil et al. in [19]
and [33], also referred as "Modified Denavit-Hartenberg (DH)" convention, which is briefly
summarized below.
This convention allows to address the position of one frame with respect to the adjacent
one with just four parameters instead of the normally required six. The numbering of the
links is such that the base link is labelled with 0 and the terminal link with n. Joint i
is placed in between link i and i − 1, and the variable qi is associated to it. The frame
associated with link i is placed such as:

• The ẑi axis is located along the axis of joint i;

• The x̂i axis is placed along the common normal between ẑi and ẑi+1;

• The ŷi axis completes a right-hand rule coordinate system.

At this point the transformation matrix between the frame i − 1 to the frame i can be
expressed as function of the following four parameters:

• ai is the distance from ẑi−1 to ẑi along x̂i−1;

• αi is the angle from ẑi−1 to ẑi about x̂i−1;

• di is the distance from x̂i−1 to x̂i along ẑi;

• qi is the angle from x̂i−1 to x̂i about ẑi.
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Figure 3.1: Modified DH Parameters

Having introduced the four variables (shown in Figure 3.1), the transformation matrix
i−1Ti defining frame i with respect to frame i− 1 is reported in Equation 3.1

i−1Ti =


cos qi − sin qi 0 ai

sin qi cosαi cos qi cosαi − sinαi − sinαidi

sin qi sinαi cos qi sinαi cosαi cosαidi

0 0 0 1

 (3.1)

3.1.2. Positions And Velocities

The center of mass position of each link (ci) with respect to an inertial reference frame1

can be described with Equation 3.2 [34]

ci = c0 +
i∑

j=1

aj +
i−1∑
j=0

bj (3.2)

where i = 1, ..., n represents the link index, c0 is the spacecraft center of mass position
(from now on the spacecraft will be referred as base body), aj is the vector of the center
of mass of link j from joint j and bj is the vector from the center of mass of link j to
joint j + 1. The quantity b0 represents the vector from the base center of mass to the
point where link 1 is attached to it.

By taking the derivative of ci with respect to time, every link center of mass velocity vi

1All the quantities referred to the inertial reference frame are denoted with no left superscript.
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Figure 3.2: Space Robot Representation

can be written as in Equation 3.3

vi = v0 + ω0 × (ci − c0) +
i∑

j=1

zj × (ci − rj) · q̇j (3.3)

where v0 and ω0 are respectively the base body velocity and angular rate, zj represent joint
j axis of rotation, rj is the position vector of joint j and q̇j is its angular rate magnitude
(namely the time derivative of joint j relative angular coordinate qj). It has to be noted
that both the base body linear and angular velocity are present in the description of links
velocities, since for a space manipulator in free-floating mode (thus left free to tumble)
the base body will react to the manipulator movement and for this reason this quantities
are not null. The angular velocity of link i is instead computed as in Equation 3.4

ωi = ω0 +
i∑

j=1

zj · q̇j (3.4)

3.2. Free Floating Dynamics

The free floating dynamics for a space manipulator in absence of external forces/moments
(except for forces/moments applied at the end effector Fh) are expressed by the following
set of equations of motion (Equation 3.5 [5])[

Mb Mbm

MT
bm Mm

]{
ẍb

q̈

}
+

{
cb

cm

}
=

{
0

τ

}
+

{
JT
b

JT
m

}
Fh (3.5)
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where the matrices Mb, Mm and Mbm represent respectively the composite inertia matri-
ces for the base body, the manipulator and the coupling terms between the two, ẍb is the
vector of base acceleration and angular acceleration, q̈ is the vector of joints accelerations,
cb and cm are vectors that contain the terms related to centrifugal and Coriolis forces, τ
is the vector of joints torques, and finally Jb and Jm are Jacobian matrices that transmit
forces/moments applied at the end effector to the base body and the other links. An
explicit and extensive formulation for all the terms composing these equations of motion
can be found in [35].
By integrating the first row in Equation 3.5 with respect to time [5], the total momentum
of the system can be obtained as in Equation 3.6

L = Mbẋb +Mbmq̇ (3.6)

For the purposes of this work the quantities of interest are the linear and angular momen-
tum, for which the expressions will be described more in detail in the next section.

3.3. Linear And Angular Momenta

Equation 3.6 is a composition of linear and angular momenta. The linear part of it is
reported in Equation 3.7

P = M̂bv0 + M̂bmq̇ (3.7)

where the equations for M̂b and M̂bm are given below in Equation 3.8 and Equation 3.9

M̂b =MTOTE3x3 (3.8)

M̂bm =
n∑

i=1

Mi

i∑
j=1

JPj (3.9)

JPi = [z1 × (ci − r1) , ..., zi × (ci − ri) , 0, ..., 0] (3.10)

in which Mi and MTOT are respectively the mass of each body (excluding the mass of the
base) and the total mass of the system, and E3x3 is a three by three identity matrix.
Concerning the expression for the angular momentum, it is reported in Equation 3.11

H = M̃bω0 + M̃bmq̇ (3.11)
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and the definitions of M̃b and M̃bm are given in Equation 3.12 and Equation 3.13

M̃b = I0 +
n∑

i=1

(
Ii +Mic̃i (c̃0i)

T
)

(3.12)

M̃bm =
n∑

i=1

(IiJHi +Mic̃iJPi) (3.13)

JHi = [z1, z2, ..., zi, 0, ..., 0] (3.14)

(where c0i = ci − c0). If the system has zero linear momentum, the base velocity can be
retrieved from Equation 3.7 as reported below

v0 = −M̂−1
b M̂bmq̇ (3.15)

This assumption will be used in Section 3.4 to remove the dependency of the regressor
matrix from this quantity. From Equation 3.11, instead, the angular velocity of the base
can be computed, both in case of zero angular momentum (as will be the case in Chapter 5)
or with a constant value (as in [12] and [13])

ω0 = −M̃−1
b M̃bmq̇ (3.16)

ω0 = M̃−1
b

(
H− M̃bmq̇

)
(3.17)

3.4. Regressor Form Of The Angular Momentum Equa-

tions

The regressor form of the angular momentum for a multibody system (as the one under
study in this thesis) consists in rearranging the equations of such physical quantity by
separating the measurable variables from the dynamical parameters, making the new
formulation linear with respect to the latter. A possible methodology to obtain this form
for a space manipulator is the one proposed in [13].

The vector of parameters π to be identified comprehends ten inertial parameters for each
body (i = 0, ..., n) and it is sorted out as follows:

πi =
[
iIxxi

, iIyyi ,
iIzzi ,

iIxyi ,
iIyzi ,

iIxzi ,Mi,Mi
iaxi

,Mi
iayi ,Mi

iazi

]T (3.18)

where iIpqi , p, q = x, y, z are the independent components of the inertia tensor for the
i-th body, Mi is the mass of the i-th body and Mi

iapi , p = x, y, z are the first moments
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of inertia of the i-th body.
The equations for the angular momentum of each body have to be rearranged in order to
be linear in the inertial parameters, starting from Equation 3.19

Hi =
IRi

iI
(c)
i

IRT
i ωi + ci ×Mi ċi (3.19)

where ci is the position of the center of mass of the i-th body in the inertial frame, IRi

is the rotation matrix from the i-th reference frame to the inertial frame, and iI
(c)
i is the

inertia tensor of the i-th body referred to its center of mass. Vectors that do not present
the left superscript are referred to the inertial frame.
By writing the position of the center of mass and its velocity for each body as

ci = ri + ai (3.20)

ċi = vi + ωi × ai (3.21)

where ri is the position of the origin of the reference frame of the i-th body (placed in
the center of mass for the base body, and at the joints for the robotic arm links), ωi is
the angular velocity of the i-th body, and ai is the position of the center of mass from the
i-th body reference frame, one obtains the angular momentum as in Equation 3.22

Hi =
IRi

iI
(c)
i

IRT
i ωi +Mi (r̃ivi + (r̃iω̃i − ṽi) ai + ai × ωi × ai) (3.22)

where the term r̃iω̃iai comes from ri × ωi × ai (the notation r̃i stands for the skew
symmetric matrix associated to the vector). The equation above is still not linear in the
position of the center of mass ai due to the term ai×ωi×ai. By making the substitution
in Equation 3.23

ai × ωi × ai =
(
aT
i aiE3x3 − aia

T
i

)
ωi (3.23)

from vector algebra, one can recognize the term in Equation 3.24

IRi
iIi

IRT
i = IRi

iI
(c)
i

IRT
i +Mi

(
aT
i aiE3x3 − aia

T
i

)
(3.24)

which is the inertia tensor of the i-th body in its reference frame, obtained by exploiting
the parallel axis theorem. At this point, the angular momentum of the i-th body can be
written in linear form with respect to its inertial parameters as shown in Equation 3.25

Hi =
(
IRi

[(
IRT

i ωi

)
•
]) [

•iIi
]
+ (r̃ivi)Mi +

(
(r̃iω̃i − ṽi)

IRi

)
Mi

iai (3.25)
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[ωi •] =

ωx 0 0 ωy 0 ωz

0 ωy 0 ωx ωz 0

0 0 ωz 0 ωz ωx

 [• I] = [Ixx, Iyy, Izz, Ixy, Iyz, Ixz]
T (3.26)

The matrix containing the geometrical and measurable quantities (reference frames posi-
tions, S/C attitude, angular velocities, joint positions and velocities) can be grouped into
a matrix Yi (Equation 3.27)

Yi =
[(

IRi

[(
IRT

i ωi

)
•
])

r̃ivi

(
(r̃iω̃i − ṽi)

I Ri

)]
(3.27)

The issue with the full matrix Y (obtained by appending the Yi, i = 0, ..., n) is
that it is not full rank, thus it can not be inverted to perform identification in a least
squares framework. To cope with this problem, [13] gives a systematic procedure to
remove the linearly dependent columns from Y and then regroup the vector of inertial
parameters π into parameter clusters accordingly. The linearly dependent columns which
are removed are the ones with the highest index (which is consistent with literature and in
particular with the identification chapter in the book by Khalil in [19] and with [36]) and
are [iIyyi , Mi, Mi

iaiz ], for an open kinematic tree space robot connected with revolute
joints.
As stated in the paper, a parent-child link pair creates redundant column in the child
Yi matrix. Following this reasoning, since the base link has no parent, its columns are
independent. On the other hand, since terminal links have no children, they do not
contribute to the formation of redundant columns in the other links, but, by having a
parent, they have linearly dependent columns.
At this point, the vector of parameters can be divided in three categories:

1. Links without children (terminal links);

2. Links having both a parent and children;

3. Links having no parent (base link).

Starting from the terminal links, by combining the parameters with the linear coefficients
obtained from the dependent columns of the Yi matrices, and by removing the parameters
associated with these dependent columns, one obtains the vector of minimal (or base)
inertial parameters2. At the end of the process, the minimal Ym matrix and the minimal

2The full expressions and a pseudo algorithm for the removal of the linearly dependent columns of Y
can be found in [13].
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πm have dimensions

Ym ∈ R3 x (10+7n)

πm ∈ R(10+7n) x 1

where n is the number of links that compose the space manipulator. To simplify the
problem under study, by considering that for a seven DoF manipulator (which is the
aimed system to study) the parameters clusters would be 59, all the products of inertia
are set to zero as well as two out of three of the first moments of inertia for each body,
by assuming that only the direction in which the link geometry develops is not null. This
allows the dimension of the parameter clusters vector to be greatly reduced by almost
half.

3.4.1. Formulation Independent From Base Body Position and

Velocity

An issue with this formulation is that the regressor matrix requires the values of r0 and
v0, which are the base body position and velocity referred to an inertial reference frame.
While the velocity of the base body could be retrieved by visually tracking a point on the
surface of the base, its position in the inertial frame can only be obtained by integrating
twice the measurements obtained by accelerometers on board. This kind of procedure
could result in an amplification of the noise of the original data considering that all
position vectors of the system are computed from this value, thus worsening the condition
number of the regressor matrix and consequently the identification results.
Christidi et al. propose a different formulation of the problem in [12] that does not require
this kind of measurements but only the base body attitude, base body angular velocity,
joints angular positions and angular rates (Equation 3.28)

H = Y (d,ω0,q, q̇)π (3.28)

where d stands for the quaternions3 which represent the base attitude.
To pass from the framework proposed in the article by Naveen et al. in [13] to the one of
Christidi et al. in [12] a few steps have to be followed. Firstly all the position vectors have
to be referred to the center of mass of the system, which under the assumption of zero
linear momentum is fixed in inertial space and it is chosen as the inertial reference frame
origin. Under this assumption it is possible to remove the dependence of the regressor

3In this work the quaternion is intended to be a four dimensional vector in which the "scalar" part is
the fourth component, following the JPL convention.
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matrix from the base velocity v0, by substituting this quantity from Equation 3.29

v0 = −M̂−1
b M̂bmq̇ (3.29)

which represents the equation of linear momentum conservation, as was explained in
Section 3.3. Then substitute the first moments of inertia of the links as the product of
each body mass times the its center of mass position, and use the parallel axis theorem
to transport the inertia from each link reference frame to its center of mass.
At this point the regressor matrix contains again the inertial parameters of the space
manipulator, in particular in the columns related to the parameter clusters of the base
body mass and base body first moments of inertia, and the columns related to the first
moments of inertia of the links. By multiplying these columns with the corresponding
parameter clusters one can then collect the linear combinations of inertial parameters
which are multiplied by the same kinematic expressions. Unfortunately this passage
depends on the manipulator geometry, thus the combinations are specific of the system
under study and have to be provided manually. Nevertheless some guidelines arose while
analysing different open kinematic chains, in particular for a series of pitch joints after an
initial roll joint (a typical geometry and also the one treated in [12]), and a configuration
reproducing the one of DLR’s Light-Weight Robot (LWR), thus a repeated series of the
couple pitch-roll joints, after an initial roll joint. It has to be recalled that the products of
inertia and two out of three first inertia moments were set to zero to simplify the problem.
Concerning the first structure the following scheme has been found:

• Six (6) terms are related to the inertia components of the base even though the
products of inertia are set to zero;

• Two (2) terms for each link related to principal inertia moments;

• Three (3) terms for each link comprehending the product between the geometrical
parameters of the link and the coordinates of the attachment point of the first joint
(thus one term for x, one for y, one for z) not considering the first one, due to the
fact its inertial parameters are included in the base ones;

• Mixed terms between the links, not comprehending the first one (e.g. with four
links, only the last three combine, for a total of three additional terms).

The number of combinations is different from the ones which would result by following
the procedure in [13], due to the fact that velocity of the base body has been substituted
to eliminate the regressor matrix dependency from it. In mathematical terms this can be
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written as (Equation 3.30):

N = 6 + (2 · nlinks) + (3 · (nlinks − 1)) + ncomb (3.30)

Giving an example: for the 3 DoF case, after the recombination process and after setting
to zero all the products of inertia and the desired first moments of the links (depending on
the configuration of the manipulator), the number of independent columns of the regressor
matrix is 18 (from the 40 original inertial parameters). Instead, after substituting the
velocity of the base the independent columns become 19 which is consistent with [12]:

N = 6 + (2 · 3) + (3 · 2) + 1 = 6 + 6 + 6 + 1 = 19

in which ncomb = 1 because only the last two links combine between each other.
Thus, for a 4 DoF case (where for [13] and after the said simplifications the independent
columns are 21) this becomes:

N = 6 + (2 · 4) + (3 · 3) + 3 = 6 + 8 + 9 + 3 = 26

in which ncomb = 3 in this case.
The parameter clusters with an additional DoF parallel to the previous ones maintain the
same structure as the one presented in [12], with additional terms due to a further link.

For the second case, instead, the combinations behave as reported below:

• Six (6) terms are related to the inertia components of the base even though the
products of inertia are set to zero (this remains equal to the previous case since the
first joint is of the same type);

• Two (2) terms for each link related to principal inertia moments, but the geometrical
parameters regroup with the ones of the pitch joint for every pitch-roll joints pairs,
meaning that the inertias of the roll joints are not combined with other inertial
parameters;

• Three (3) terms for each pair pitch-roll comprehending the product between the
geometrical parameters of both links and the coordinates of the attachment point
of the first joint (thus one term for x, one for y, one for z);

• Mixed terms between the couples, not comprehending the first one (e.g. with seven
links, 2-3 combine with 4-5, 2-3 with 6-7, 4-5 with 6-7, for additional three combi-
nations).
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In a formula this becomes (Equation 3.31)

N = 6 + (2 · nlinks) + (3 · npair) + ncomb (3.31)

where npair represents the pitch-roll pairs excluding the first joint, and ncomb the combi-
nations between links. For a 5 DoF geometry R-P-R-P-R (P: pitch joint, R: roll joint)
the formula outputs

N = 6 + (2 · 5) + (3 · 2) + 1 = 6 + 10 + 6 + 1 = 23

since there are two pairs of P-R joints and hence ncomb = 1. The situation for a 6 DoF
geometry R-P-R-P-R-P reads instead

N = 6 + (2 · 6) + (3 · 3) + 3 = 6 + 12 + 9 + 3 = 30

because the last pitch joint has to be considered a pair by itself and thus the mixed
combinations are ncomb = 3 (2-3 with 4-5, 2-3 with 6, 4-5 with 6).

3.4.2. Simplification For 2D Systems

For 2D systems the problem further simplifies: after performing the same passages de-
scribed in subsection 3.4.1 the regressor matrix Y 2D is dependent only on (Equation 3.32)

H2D = Y2D (ω0, q, q̇)π
2D (3.32)

noting that now the system is not influenced by the base body attitude. Moreover, the
vector of minimal inertial parameters for a 2D system consists of four parameters for the
base

[RIzz0 , RM0, RM0ax0 , RM0ay0 ]

where the R before the parameter indicates that that parameter has been combined with
the other inertial parameters, having removed [RIxx0 , RIyy0 , RIxy0 , RIyz0 , RIxz0 , RM0az0 ]

since they are null in 2D space (thus 10− 6 = 4 parameters), and three parameters for
each link

[RIzzi , RMiaxi
, RM0ayi ]

having removed [RIxx0 , RIxy0 , RIyz0 , RIxz0 ], remembering that the inertial parameters
that were associated with linearly dependent columns of the Yi have already been removed
(thus 7−4 = 3 parameters for each link). Lastly, assuming that for each link the position
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of the center of mass in the local reference frame is given as

iai =
[
iaxi

, 0, 0
]T

the terms RMiayi are null and thus the columns of Y2D corresponding to them can be
removed. Finally, the dimensions of the bidimensional regressor matrix Y2D and of the
bidimensional parameters clusters vector π2D are respectively

Y2D ∈ R1 x (4+2n)

π2D ∈ R(4+2n) x 1

Thus for a 2D system composed of a base body and two links connected with revolute
joints the number of minimal inertial parameters is 8, which is consistent with the result
given in [28].

3.4.3. Symbolic Implementation Of The Angular Momentum

Equations In Regressor Form

In order to obtain the analytical expressions needed to fill Equation 3.28, and thus the
regressor matrix Y and the vector of parameter clusters π, the whole procedure described
in subsection 3.4.1 was implemented in MATLAB© to exploit its Symbolic Toolbox. An
exhaustive summary on the analytic derivation of the generalized equations of motion of
a free-floating spacecraft-manipulator system can be found in the article by Wilde et al.
in [37].

Firstly, the model of the studied configuration has to be translated in symbolic form
(for both geometrical and inertial parameters) through the sym function provided by the
Toolbox, as well as the kinematic variables c0, v0, ω0, d (for the base body), q and q̇ (for
the manipulator). Having all these quantities it is then possible to compute the kinematics
of the system in symbolic form, and obtain center of mass positions and velocities for all
the links.
The next step is to obtain the regressor form of the angular momentum equations in
the formulation proposed in [13] since their procedure is fully automated and permits to
compute in a straightforward manner both Ym and πm. The list below reports the main
steps for this first part of the algorithm:

1. Compute the total regressor matrix of the system using Equation 3.27;

2. Build the symbolic coefficients related to the linear combinations between the columns



3| Mathematical Formulation Of The Problem 31

of the regressor matrix Y, which are dependent on the geometrical description of
the selected model;

3. Append all the inertial parameters of system in one vector (considering a system
having n links, it has dimensions [10 · (n + 1)]), which will be successively treated
by combining the said parameters into clusters;

4. Exploiting the coefficients obtained before, regroup the inertial parameters in the
vector π and remove the rows related to the linearly dependent columns in the
regressor matrix, from which the said columns are also removed.

Having evaluated the symbolic expressions for Ym and πm, the second part of the algo-
rithm transforms the current formulation in the one proposed in [12]. The starting point
is to make the simplifications introduced at the end of Section 3.4, thus setting to zero
the inertia products and keeping just one first moment of inertia for each link, namely the
one associated with the link main direction. Consequently, all the rows of the parameter
clusters vector which are now zero can be removed together with the associated columns
in the regressor matrix. Then the inertias of each body composing the system have to be
referred to the body center of mass, exploiting the parallel axes theorem, and the symbolic
first moments of inertia are replaced by the product between each mass times the only
non null component of the local center of mass position.
Building the composite inertia matrices of the system (with the expressions presented
in Section 3.3 and in particular with Equation 3.7 and Equation 3.8) in symbolic form
permits to exploit Equation 3.29 after the assumption of zero linear momentum to obtain
the base body velocity as a function of the variables of the problem. It is now possible to
substitute this expression inside the regressor matrix and thus eliminate its dependency
from it, filling it again with inertial parameters (in particular masses and local center of
mass positions) in the columns associated with the combinations between the first mo-
ments of inertia.
Arrived at this point with the algorithm, the columns of the regressor matrix associated
with the principal moments of inertia of the each body do not have to be modified since
they are already in their final form. The remaining columns (introduced in the paragraph
above), instead, have to be multiplied with the associated rows in the parameter clus-
ter vector, obtaining in such way expressions containing both kinematic quantities and
combinations of inertial parameters. The discriminant factor to transform these complex
symbolic strings as a sum of individual quantities is to isolate the combinations between
the local center of mass positions of the same link or of different links (e.g. a21 or a1 · b1
or a1 · b2), together with masses combinations and the associated kinematic expressions
(for an example see Appendix A). Once all these individual sets are separated from each
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other, it is possible to combine them by selecting the terms sharing identical kinematic
expressions. The latter quantity is put inside the new regressor matrix (already filled
with the columns associated with each body inertias) and these new parameter clusters
are instead inserted in the new π vector, being careful to associate the columns of Y with
the correct clusters πi.
Unfortunately, as said in subsection 3.4.1, these combinations should be input by the user
a priori, but in any case the guidelines presented in the same section might help with the
process.

3.5. Exciting Trajectories Optimization

The same structure of the joint trajectories given in [12] are retained, thus a truncated
Fourier series with Nh harmonics, to which a polynomial expression of the fifth order is
added in order to impose boundary conditions on joint positions, velocities and accelera-
tions:

qi(t) =

Nh∑
j=1

iaj
ωf · j

sin (ωf · j · t)−
ibj
ωf · j

cos (ωf · j · t) +
5∑

k=0

ick · tk (3.33)

where i = 1, ..., n and ωf = 2π/tf (tf is the total time of the exciting manoeuvre).
For what concerns the evaluation of the polynomial expression coefficients, MATLAB©

Symbolic Toolbox was exploited to obtain the analytical expression of such variables in
order to speed up the computations. For each joint the free parameters are given by

Nfree = (Nh · 2)NJ

where Nh is the number of harmonics, and NJ is the number of joints. The coefficients of
the truncated Fourier series are the optimization variables for the minimization problem
stated in Equation 3.34, for which the condition number of the regressor matrix is the
cost function:

min
iaj ,ibj

cond(Y) s.t.


qimin

≤ qi ≤ qimax

q̇imin
≤ q̇i ≤ q̇imax

q̈imin
≤ q̈i ≤ q̈imax

i = 1, ..., NJ j = 1, ..., Nh (3.34)

in which iaj,
ibj are the free coefficients of the series, and constraints are added to

joints positions, velocities and accelerations to resemble mechanical constraints. The
optimization loop proceeds as follows:

1. A guess of the free coefficients is given (from a uniform random distribution between
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-1 and 1), from which the trajectories for joints positions and velocities are evaluated
for a specified total manoeuvre time and number of sampling points.

2. For each time instant (thus for each sample) the forward kinematics of the manip-
ulator is evaluated, and the composite inertia matrices of the system are built.

3. The angular velocity of the base body referred to the inertial frame is evaluated,
such that the total angular momentum of the system remains constant/equal to zero
(depending on the treated case). The base body velocity is also evaluated, in order
to propagate also the base body position in the inertial frame.

4. Having obtained the values of joint positions and velocities from the given trajecto-
ries, the base body attitude represented by quaternions and the base body angular
velocity, the reduced regressor matrix at the current time instant can be filled.

5. Update the base body attitude for the next cycle by rotating the base body angular
velocity in the body frame and by integrating the associated quaternions. Notice
that for the optimization loop, to speed up calculations, the integration is made
by adding to the current quaternion the product between its derivative and a delta
time.

Once the regressor matrix is filled for each time step, its condition number is evaluated
and the optimization can move to its next iteration.
The optimized trajectories are evaluated without taking into account noisy measures.
To check the validity of the found solution, the pseudo inverse of the regressor matrix
is computed (after having verified that it is full rank) in the least squares sense, and
the linear combinations of the inertial parameters are identified via non recursive least
squares identification. The relative errors of this process between the true parameters
and the identified ones are in the order of O ∼ (10−10), as one would expect since there
is no random noise added to the measures. The formula in Equation 3.35 reports the
expression for the relative errors evaluation

erel,i =
π̂i − π̃i
π̂i

· 100 [%] (3.35)

where π̂i represents the true value of the i-th parameter, whereas π̃i the identified one.

3.5.1. Collision Avoidance

To make the simulations more realistic, the optimized trajectories for the robotic arm
shall be collision free. A conservative approach has been followed, by encapsulating the
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base body in a ellipse as tight as possible to its physical dimensions, and the end-effector
in a sphere based on the same considerations: a collision is effectively happening when the
distance between the ellipse surface and the center of the sphere is less than the sphere
radius.
Unfortunately, this kind of approach depends on the refinement with which the surface
of the ellipse is discretized to be sure that the two fictious volumes are not colliding, thus
a fine grid should be provided. Given a parameter n, the matrices which describe the
X, Y, Z coordinates have dimensions [n+ 1, n+ 1], meaning that at every time step the
number of points which have to be checked are (n+ 1)2, increasing in this way the size
of the non linear constraints vector, slowing down the simulation to non feasible waiting
times given the available hardware. It was decided to verify if the optimized trajectory is
effectively collision free a posteriori and force the process to avoid collisions by tightening
the constraints on the joints allowed motion.
Figures 3.3a and 3.3b display both situations: a red coloured surface signifies that a
collision is taking place, whereas a green shaded surface means collision free. It has to be
stressed out that a conservative approach has been followed: to check the contact in 3D
space two surfaces with simple analytic formulation have been selected (an ellipse for the
base body and a sphere for the end-effector), and in fact in the shown image representing
a crash between the end effector volume and the base one it can be clearly seen that the
two objects are not actually touching. Nevertheless, further studies could provide a more
reliable collision model, which was not the scope of this thesis.

(a) Collision Example (b) No Collision Example

Figure 3.3: Collision/No Collision Visualization
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4.1. Simulink Model Description

As introduced in Section 1.3, a Simulink model was developed with the aim of simulating
the free-floating dynamics of the system in response to the exciting trajectories performed
by the robotic arm and to reproduce noisy measurements from sensors in order to perform
a statistical analysis on the quality of the identification process. The tracked quantities
are the mean relative errors for each parameter cluster, and also the maximum mean
relative error, which should be contained within a reasonable value (as reported in the
OBSIdian studies in [11]) of the original one for each cluster.
The model is composed by various blocks (displayed in Figure 4.1)

Figure 4.1: Simulink Model

and in particular:

• The block "Joints angles trajectories" evaluates the joints angles for each time step
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given the truncated Fourier series coefficients (coming from the exciting trajectory
optimization explained in Section 3.5) and adds white noise to the simulated mea-
surements. Moreover the joints angles are numerically differentiated to obtain the
joints angular rates, as would be done in reality.

• The block "Manipulator kinematics" computes the manipulator forward kinematics
with respect to an inertial frame whose origin is in the system center of mass (and
thus has to be evaluated at each time step) as described in Section 3.1.

• The block "Inertia matrices", that computes the composite inertia matrices of the
system, namely for the base, the manipulator and the coupling terms between base
and manipulator (Section 3.2).

• The block "S/C position" computes the base body velocity from linear momentum
conservation equation, which was treated in Section 3.3, and integrates it to obtain
the base center of mass position in the inertial reference frame.

• The block "S/C angular velocity" that evaluates the base body angular velocity
in the inertial frame from angular momentum conservation equation, reported in
Section 3.3.

• The block "IMU simulation" reproduces IMU measurements (only gyroscope mea-
surements, since the framework does not require base body acceleration measure-
ments), after having rotated the angular velocity vector in the base body frame.
The measurements are obtained by exploiting the gyroscope noise model presented
in subsection 4.1.1.

• The block "S/C attitude" is needed to simulate the base body attitude measure-
ments by integrating quaternions (since this attitude parametrization is singularity-
free), given that for the sake of simplicity no attitude sensors and thus attitude
estimation algorithms are treated in the present work.

4.1.1. Noise Models

The measures needed to fill the regressor matrix given in subsection 3.4.1 are joints angles
and angular rates, the base body angular velocity and the base body attitude. To be
consistent with the work presented in [12], the available measures on board of the robotic
servicer are the joints angles coming from encoders and the base body angular velocity
from an IMU. No sensors for the base body attitude are treated in the cited work, thus
the base body attitude is obtained by integrating quaternions exploiting the knowledge
of the base body angular velocity in the body frame. In an experimental set up attitude
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sensors should be used (if possible) to estimate the base body attitude, and use the IMU
just for the evaluation of angular velocity, to keep the two measures independent from
each other and obtain in this way a more realistic simulation.

4.1.2. Joints Angles & Angular Rates

The nominal measurements for joints angles and angular rates come from the optimized
trajectories computed previously. White noise with zero mean and standard deviation
σq [rad] is added at each time step to each joint angle. Joints angular rates are instead
computed by differentiating numerically with finite differences the joints angles. This
operation amplifies the measurements noise: in an experimental set up the joints angles
obtained with motor encoders should be filtered and then differentiated, and the obtained
joints angular rates be filtered as well to obtain smooth signals.

4.1.3. Gyroscope

The mathematical model of the gyroscope measurements is taken from the work of Cras-
sidis and Markley in [38] and is here reported (Equation 4.1):

0ω̃0 = 0ω0 + nω + b

ḃ = nbω

(4.1)

where 0ω0 is the true angular velocity, 0ω̃0 is the "measured" angular velocity, nω and nbω

are white noises with zero mean and standard deviations σb [rad/s] and σbω [rad/s2] for
every angular velocity component. The bias b [deg/hr] has instead an initial value equal
for every component. σb and σbω are evaluated from the ARW (Angle Random Walk) and
RRW (Rate Random Walk), from the following relations (Equation 4.2)

ARW = σb
√
Ts
[
rad
s0.5

]
RRW = σbω

√
Ts
[
rad
s1.5

] (4.2)

where Ts is the rate integrating gyroscope sampling time in [s]. The true angular velocity
0ω0 is computed by rotating in the base body frame the angular velocity vector obtained
from the equation of conservation of the total angular momentum, after having computed
the inertia matrices.
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4.1.4. Random Numbers Generation in Simulink

An issue with random generated numbers in the Simulink environment is that the seed
of the random generator block has to be manually changed for each simulation. To
overcome this problem, given the number of random numbers to be produced, a set of
seeds is previously obtained with the randperm.m MATLAB© function, which permits
to generate arrays of randomly picked numbers from 1 to a user selected number. In this
way each time a new simulation starts the seed numbers are changed and are different
and random every time. Moreover, this methodology accounts also for repeatability, since
given a specified seed number the random number generator block produces always the
same output.
The random number generator block selects the value from a Gaussian distribution and
requests in input the variance (thus the standard deviation squared) of the considered
statistical distribution. It is also a discrete time block, meaning that a sampling time has
to be chosen for the block to output the signal, and it forces the simulation to follow its
sampling time.

4.2. Baseline Simulations Results: Case Study 1

To check the consistency and the validity of the developed simulation environment, both
for the free floating dynamics and the exciting trajectories optimization, the same space
manipulator data and sensor noise parameters provided in the work by Christidi et al. in
[12] were used. It has to be recalled that this methodology requires an initial non-null
angular momentum for the identification procedure.
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(b) Case Study 1: Joints Angular Rates

Figure 4.2: Case Study 1: Optimized Joints Trajectories
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Firstly, the pseudo-algorithm presented in Section 3.5 is exploited to obtain a trajectory
with minimum condition number by satisfying the imposed constraints on joints angles
and rates. Table 4.1 reports the optimized coefficients of the truncated Fourier series,
whereas Figure 4.2 displays the joints angles time series and the joints rates time histories.

Table 4.1: Case Study 1: Optimized
Fourier Coefficients

iaj
ibj

1a1 -3.4282 1b1 -0.0015
1a2 -0.4343 1b2 -0.0003
1a3 -0.1726 1b3 -0.0002
2a1 -20.9963 2b1 0.9185
2a2 -1.5940 2b2 0.1559
2a3 -0.2083 2b3 0.0655
3a1 -9.0245 3b1 -0.1206
3a2 -0.4094 3b2 -0.0276
3a3 0.0098 3b3 -0.0166

The found coefficients return a condition number
cond (Y) = 42, which is comparable with the one
reported in [12].
After the optimized coefficients are obtained, the
seed numbers for random numbers block genera-
tors for each run are computed. Afterwards the
results of 2500 simulations (this number is justi-
fied by looking at the identified parameters mean
and standard deviation convergence shown in Fig-
ure 4.4) are used to compute the regressor matrix
for each of them and exploit the non recursive least
squares formula (Equation 4.3) to identify the iner-
tial parameters of the system, which are then con-
fronted with the true ones to obtain absolute and
relative errors. In the formula Ŷ indicates that the

regressor matrix Y is filled with noisy measurements.

π =
((

ŶT
)
· Ŷ
)−1

· ŶT ·H (4.3)
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Figure 4.3: Case Study 1: Maxi-
mum Relative Error

As introduced before the convergence of the mean
and standard deviation of each parameter is
checked, to see if the results stabilize or are still os-
cillating for the given number of simulations. Fig-
ure 4.4 displays the two quantities for the first
parameter cluster π1, confirming that full conver-
gence for both the mean and standard deviation
in achieved. The maximum relative error for each
simulation is tracked, staying below 2.5% for all
runs (Figure 4.3), together with the mean value
(π̄est) and standard deviation (σest) for each pa-
rameter, the best estimate1 (πbest) and finally the

1The best estimate is selected as the one which presents the minimum mean value of the absolute
relative errors between all the runs.
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(b) Case Study 1: π1 Standard Deviation Con-
vergence

Figure 4.4: Case Study 1: π1 Convergence Analysis

mean relative error (π̄err). The mentioned quantities are reported in Table 4.2, opposed
to the "real" value of each parameter cluster (πtrue). All the entries of the table have
units [kg ·m2], unless otherwise specified.

Table 4.2: Case Study 1: Identification Results

π πtrue π̄est πbest σest π̄err [%]

π1 1832.5856 1831.8101 1832.6132 0.9871 0.0423
π2 -104.2654 -103.7782 -104.0855 0.5830 0.4672
π3 -154.0284 -154.0395 -154.6870 0.6283 -0.0072
π4 1832.5856 1828.5426 1832.8003 2.1302 0.2206
π5 -154.0284 -152.6908 -153.9799 0.5901 0.8684
π6 1708.5308 1707.9252 1708.5874 0.7879 0.0354
π7 321.5317 318.5664 320.5653 1.0874 0.9222
π8 321.5417 320.2949 321.4419 0.4768 0.3877
π9 -255.9765 -255.1116 -256.0284 0.5119 0.3379
π10 256.0265 255.7413 256.0515 0.2791 0.1114
π11 -65.4552 -64.8485 -65.4134 0.2575 0.9268
π12 65.5052 65.6798 65.7098 0.1974 -0.2666
π13 142.1801 141.4940 141.8448 0.2100 0.4826
π14 213.4479 211.7359 213.0494 0.4616 0.8020
π15 142.1801 141.4882 142.1729 0.2685 0.4866
π16 47.3934 47.7219 47.4340 0.1414 -0.6933
π17 71.1493 70.6140 71.0168 0.2470 0.7523
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π18 47.3934 46.8342 47.1637 0.2071 1.1799
π19 96.4455 96.3094 96.4125 0.1056 0.1411

In the column of the mean relative errors it can be seen that the maximum value is
achieved by one of the parameters clusters having the smallest value, which is in line
with what was expected. A part from that particular entry, all the other mean relative
errors remain below 1%, confirming the validity of the implemented method and of the
optimization process, as well as having obtained results which are comparable with [12].

4.3. Reaction Wheels Accumulated Momentum Case

In the work performed until now there was no information regarding how the system had
a non null angular momentum. The continuation of the baseline analysis requires to in-
clude a possibile source for that, namely the angular momentum accumulated in reaction
wheels (RW). To achieve that the work presented in [29] is followed.
Equation 4.4 reports the total angular momentum of the system by considering the con-
tribution of RW, in the absence of external forces and moments

Htot = Hrs +R0
0HRW/rs = const. (4.4)

where the angular momentum of the robotic servicer is given by Equation 4.5

Hrs = M̃bω0 + M̃bmq̇ (4.5)

and 0HRW/rs is the angular momentum that the RW exchange with the base, expressed
in the base frame. The full expression for the RW angular momentum is (Equation 4.6)

HRW =

NRW∑
i=1

mRW,icRW,i × ċRW,i + IRW,i

(
ω0 +R0

0RRW,i
RW,izRW,iq̇RW,i

)
(4.6)

where the first two terms are due to the base movement, whereas the last term is the one
exchanged by the RW with the base. If the inertial parameters of the RW are assumed to
be known, by considering that the system is left free to tumble without any external forces
or moments (as before), and if the RW are left to rotate freely, their angular momentum
0HRW/rs remains constant over time. If the inertial parameters of the RW are included in
the base inertial parameters, the identification framework is the same as the previously
considered one, with the only difference of the presence of this extra term. This means
that the regressor matrix Y and the vector of parameters clusters π are the same as
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treated in Section 4.2.
Making the assumption of zero initial base angular velocity (e.g. obtained with thrusters)
and joints initially at rest, but with accumulated angular momentum in the RW, the
initial angular momentum of the system is equal to (Equation 4.7)

(Htot)in = (R0)in
0HRW/rs = Htot (4.7)

and remains constant over time in the absence of external forces and moments.
The identification process remains formally the same as the previous case, with the dif-
ference that the robotic servicer angular momentum is now equal to (for each time step
Equation 4.8)

Hrs(t) = Y(t)π = Htot −R0(t)
0HRW/rs (4.8)

It is expected that the optimized trajectories will achieve a higher condition number than
in the previous case, given the fact that in the first instants of the trajectory the base
body angular velocity is null or very close to zero.

4.4. Baseline Simulations Results: Case Study 2

Table 4.3: Case Study 2: Optimized
Fourier Coefficients

iaj
ibj

1a1 14.0691 1b1 0.0384
1a2 0.7551 1b2 0.0010
1a3 0.0494 1b3 0.0064
2a1 26.1470 2b1 1.1791
2a2 1.6338 2b2 0.0632
2a3 0.3579 2b3 0.1567
3a1 -12.3359 3b1 -0.0679
3a2 -0.6417 3b2 -0.0283
3a3 -0.0273 3b3 -0.0075

As introduced in Section 4.3 the second case study
(Case Study 2) deals with RW accumulated angu-
lar momentum, which in absence of external forces
and moments remains constant over time. The sys-
tem data (S/C and manipulator geometrical and
dynamical parameters) are the same exploited in
Section 4.2 with the addition of RW initial angular
momentum in the base frame 0HRW/rs. As fore-
seen the condition number of the regressor matrix
Y found after the optimization process is almost
doubled (cond (Y) = 78) and the Fourier co-
efficients for the exciting trajectory are reported
in Table 4.3. The joint angles and angular rates
time histories are shown in Figure 4.5. The formula
which has been used for the identification task is
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(Equation 4.9)

π =
((

ŶT
)
· Ŷ
)−1

· ŶT ·Hrs(t) =

=
((

ŶT
)
· Ŷ
)−1

· ŶT ·
(
Htot −R0(t)

0HRW/rs

) (4.9)

for which the quantity Hrs has to be evaluated at every time step (hence Hrs(t)) since
the base body attitude is changing in response to the exciting trajectory carried out by
the robotic arm, in contrast to the previous framework where H was constant over time.
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Figure 4.5: Case Study 2: Optimized Joints Trajectories
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Figure 4.6: Case Study 2: π4 Convergence Analysis

For the sake of completeness the convergence analysis concerning one of the parameters
clusters after having run the model in Simulink is shown in Figure 4.6, where it can be
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seen that almost full convergence is achieved in this case as well.
The only difference with the simulation model exploited in Section 4.2 is the formula
to compute the base body angular velocity ω0, due to the fact that to conserve the
total angular momentum the term associated with the RW must be taken into account
(Equation 4.10)

ω0 = M̃−1
b

(
Htot −R0(t)

0HRW/rs − M̃bmq̇
)

(4.10)
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Figure 4.7: Case Study 2: Maxi-
mum Relative Error

Two additional charts are interesting in the re-
sults analysis: Figure 4.7 shows that the maximum
relative error stays below 5% for almost all runs,
whereas Figure 4.8 displays each parameter clus-
ters relative error versus time (just the initial sec-
onds of the trajectory). This to show that the algo-
rithm needs a very small amount of time (less than
0.5 [s]) to bring the error below the 5% threshold,
confirming what is stated in the work of Christidi
et al. in [29], that just a little motion is required
to perform the parametric identification. It has to
be remarked that this chart was obtained by filling

the regressor matrix with measurements without noise.
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Table 4.4 lists the results of the parametric identification for Case Study 2. As expected
the highest value of the mean relative error (π̄err) achieves a greater magnitude with
respect to Case Study 1, where the condition number of the regressor matrix Y was
almost half. Nonetheless π̄err remains below the 5% threshold for all the parameters,
confirming the validity of the optimized exciting trajectory and of the methodology.
Case Study 2 is important to set the baseline for simulations that deal with motions
starting from zero base body angular velocity ω0 as will be the framework explained in
Chapter 5.

Table 4.4: Case Study 2: Identification Results

π πtrue π̄est πbest σest π̄err [%]

π1 1832.5856 1838.5405 1837.1829 2.4447 -0.3249
π2 -104.2654 -104.6941 -104.1749 1.4499 -0.4112
π3 -154.0284 -156.2170 -154.3746 1.3371 -1.4209
π4 1832.5856 1831.5298 1833.2639 1.9614 0.0576
π5 -154.0284 -154.4942 -154.2327 1.9307 -0.3024
π6 1708.5308 1708.3293 1708.8584 2.9204 0.0118
π7 321.5317 312.1383 314.4503 1.9941 2.9214
π8 321.5417 320.8746 321.1394 0.7577 0.2074
π9 -255.9765 -254.5401 -254.9634 0.5381 0.5611
π10 256.0265 257.0343 256.8073 0.5685 -0.3936
π11 -65.4552 -65.5991 -65.7166 0.3348 -0.2199
π12 65.5052 65.7464 65.7263 0.2277 -0.3682
π13 142.1801 141.3774 141.6737 0.2745 0.5645
π14 213.4479 211.1216 211.7739 0.6278 1.0899
π15 142.1801 141.6325 141.7087 0.2485 0.3851
π16 47.3934 47.9065 47.5560 0.3838 -1.0828
π17 71.1493 70.9564 70.8480 0.3252 0.2711
π18 47.3934 47.1950 47.0641 0.1591 0.4185
π19 96.4455 96.2408 96.3529 0.2005 0.2123
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And Simulation Results

5.1. Methodology Description

Systems such as the Astrobee free-flying robots (Figure 5.1) on the ISS do not have re-
action wheels on board to provide a non zero angular momentum needed to perform the
parametric identification of inertial parameters treated up until now. They can translate
and rotate inside the space station thanks to a set of 12 nozzles which exhaust air ac-
celerated by an electrically moved impeller, capable of guaranteeing holonomic control.
Nonetheless they have a preferred forward motion and a preferred orientation with the
top side facing up, as described by Smith et al. in [14].

Figure 5.1: Render of the Astrobee Free-Flying Robot (Credits: NASA)
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To treat this kind of framework for which it is an issue to obtain a non null angular
momentum given the absence of on board reaction wheels, a different methodology is
proposed. The idea is to exploit an object of known mass, inertia and center of mass
position (thus all the inertial parameters, and from now on renamed as load) placed at
the end-effector of a robotic arm, coupled with the conservation of linear and angular
momenta. The movement of the known load at the end-effector would be granted by the
torques applied to the robotic arm joints. On the Astrobee this could be achieved by
installing on the platform a robotic arm like DLR’s TINA (This Is Not an Arm) [39] with
four DoF, positioning a load with known inertial properties at the end-effector.
The presence of the known load at the end-effector modifies the expression of the total
angular momentum as in Equation 5.1

Htot = Hrs + ILωL +MLcL × vL = 0 (5.1)

where Hrs is the angular momentum of the robotic spacecraft (namely the base body and
the robotic arm), whereas the other two terms are given by the motion of the load at the
end-effector. All the quantities are referred to an inertial frame with its origin positioned
in the center of mass of the system1.
The end-effector is assumed to have known inertial parameters, or to be substituted with
a known load by using a suitable mechanical interface at the link joint (see for example
[40]).
At this point the equations of conservation of the angular momentum can be written in
regressor form since they are linear in the inertial parameters of the bodies composing the
system. To tackle the rank deficiency of the regressor matrix and to obtain the minimal
form of the inertial parameter clusters, the procedure described in Section 3.4 is exploited.
It is then possible to rewrite Equation 5.1 as

Htot = Y (d,ω0,q, q̇)π = 0 (5.2)

where Y is the new system regressor matrix and π is the vector of minimal inertial param-
eter clusters. It can be shown that Y is only dependent on the quaternions representing
the base attitude, d, the base body angular velocity, ω0 and the joints angles and angular
rates, q, q̇. Given that the right-hand side of this equation is zero, it cannot be used in
this form for identification with an ordinary least squares algorithm.
The principle of the presented method is to extract from the vector of parameter clusters
π the terms composed only of the inertial parameters related to the known load. Once

1This is the same assumption made in subsection 3.4.1, for which in absence of external forces and
moments the system center of mass position remains fixed in inertial space.
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these are multiplied together with the associated kinematic expressions, made of measur-
able quantities and stored in the system regressor matrix, they form a part of the total
angular momentum which is only due to the load and, for this reason, it is known:

HL = HL

(
d,ω0,q, q̇,ML,ML

LcL,
LIL
)

(5.3)

where the superscript L indicates that the quantity is referred to the reference frame of
the known load. The known part of angular momentum is clearly not constant over time
but varies during the manoeuvre. Equation 5.2 can now be reformulated as

Yred(t) · πred = −HL(t), (5.4)

where the subscript red represents the vector of inertial parameter clusters composed only
of unknown values and the associated columns of the regressor matrix.
The regressor matrix of the reduced system and the vector of the angular momentum due
to the known load can then be filled with measurements of the needed quantities taken at
N time steps. If these are appended in a matrix and a vector of appropriate dimensions
([3N,Nm] for the matrix, with Nm number of minimal inertial parameter clusters, 3N

for the vector), Equation 5.4 forms a system of over-determined equations which can be
solved with a simple ordinary least squares algorithm as

πred =
(
ŶT

redŶred

)−1

ŶT
red

(
−ĤL

)
(5.5)

where the superscript (̂ ) refers to measured quantities. The full vector of parameter clus-
ters π for the seven DoF space robot under study in this thesis is reported in Appendix A.

A 2D Example Consider a planar system of 3 DoF with 2 links and the known load
replacing the end-effector. This system is used to evaluate all the kinematic quantities
(positions and velocities), and all vectors are referred to center of mass of the system,
computed by considering the masses of the robotic spacecraft and the known load at
the end-effector. The procedure is formally identical to the one exploited in the case of
non zero angular momentum (subsection 3.4.1): having obtained the linear combinations
of parameters, the velocity of the base is evaluated from the conservation of linear mo-
mentum (equal to zero) and then substituted in the regressor matrix Y2D to eliminate
its dependency from it. At this point, the parameters and the kinematic quantities are
re-arranged in the form presented in [12] and [28]. Finally, to complete the procedure,
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the term of the parameter clusters vector which contains only the inertia of the last link2

(hence of the known load) can be extracted together with the related kinematic quantities
to give Equation 5.6

HL(t) =

(
IL +ML

La2L

(
1− ML

Mtot

))
· (q̇1(t) + q̇2(t) + q̇3(t) + ω0(t)) (5.6)

in which the inertia, mass and position of the center of mass of the load (in its own
reference frame) are assumed to be known as stated before, whereas the base body angular
velocity and joint angular rates are given by on board sensors and compose the term
extracted from the regressor matrix. The quantity HL here evaluated is just a part of the
angular momentum due to the known load, since the term composed by the cross product
between the position of the center of mass of the load and its momentum is included in
the robotic spacecraft contribution. This is due to the fact that the velocity of the base
body was substituted in the regressor matrix to eliminate the system dependency from it.

5.1.1. Considerations On The Symbolic Implementation

It is worth mentioning at this point that the baseline research to test the developed algo-
rithms only dealt with three DoF manipulators, for which a reference of the parameters
clusters was given in [12], but not for the regressor matrix due to its complexity. As stated
in Chapter 1, the goal of this thesis was to treat systems composed of robotic arms up
to seven DoF, as the one employed on the OOS-SIM platform (described in Section 6.1).
Using this same geometry allows to perform experimental tests and further verify the
implemented identification procedure. Thus, the algorithm that computes the analytical
expressions for Y and π in symbolic form had to deal with systems of increasing diffi-
culty: in particular, every time a DoF was added to model the length of the kinematic
expressions increased considerably, slowing down the symbolic computations and making
MATLAB© built-in functions practically unusable to simplify the expressions. This hap-
pened in particular with the built-in routine simplify when dealing with trigonometric
functions, since this function tries to rearrange them following known trigonometric rela-
tions which, applied to too long strings made of numerous characters, consistently reduces
the computation speed to unbearable waiting times. For this reason this function could
not be used anymore, which in turn created an issue when exploiting the MATLAB©

tool to transform symbolic functions into numeric ones (matlabfunction.m): the soft-
ware cannot handle expressions which contain too many characters. For instance, in the

2It has to be recalled that there is only one term related to inertia for every body in the system in a
bidimensional case since the Ixx and Iyy are null.
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case for the seven DoF robotic arm, the non-simplified kinematic expression of the last
term of the regressor matrix had more than 500000 characters.
To overcome the problem the following strategy was pursued: after computing the ma-
trices in the form of [13] all the symbolic trigonometric functions were substituted with
normal symbolic variables, given that as mentioned above the expressions were too com-
plex to perform trigonometric simplifications between them. Fortunately MATLAB©

gives the possibility to assume additional rules and restrictions for its symbolic variables
to ease their handling during the simplification process or for outputting the correct re-
sults when dealing with symbolic equations (e.g. discarding a negative solution for a
variable for which the square root is requested, if one wants only the real result). For this
specific application is was helpful to keep the trigonometric rule sinϑ2 + cosϑ2 = 1, since
it was a recurrent situation in the expressions and thus it helped to reduce considerably
their size. This proved to be a valid solution for the encountered issue, which permit-
ted to obtain the sought analytical forms for the regressor matrix Y and the parameter
clusters vector π. Before performing the conversion from symbolic to numeric functions,
the trigonometric functions were re-substituted given the fact the expressions were at this
point already simplified.

Another shortstopper during the symbolic computations proved to be during the separa-
tion between clusters of inertial parameters and kinematic terms: the complexity of the
latter did not allow to obtain a correct subdivision (e.g. the correct sign for the kine-
matic term). In this sense the author found to be a good practice to compute the system
regressor form without the base body attitude at first (by substituting the base attitude
with an identity matrix), since the resulting kinematic expressions were simplified and
shorter and thus more manageable by MATLAB©, whereas the parameter clusters vector
retained the same form. This procedure simplified the computations with the base body
attitude since the form of π was already known at that point and the only quantity to be
evaluated remained the full regressor matrix. Moreover, this method permitted to verify
the results gathered with attitude against the ones obtained without it, by replacing the
identity matrix in the former and thus checking that the two were identical.

5.2. Methodology Validation

To validate the methodology one should be able to use the identified parameter clusters
to reconstruct the dynamics of the system under study given that they are a set minimal
parameters. In particular, in the equation of conservation of angular momentum the
composite inertia matrices (i.e. the one of the base body and the one related to the
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mixed terms of the base body and the robotic arm) should be written as the product
of measurable quantities times the parameter cluster vector. In mathematical terms this
translates into Equation 5.7

M̃b (d,q,π)ω0 + M̃bm (d,q,π) q̇ = 0 (5.7)

where the measurable quantities are the base body attitude and the joints angles. Of
course the parameter clusters vector is the full vector containing also the inertial param-
eters of the known load.
All the information regarding the kinematic quantities are stored in the full regressor ma-
trix Y in which the base body angular velocity ω0 and the joints angular rates q̇ appear
linearly in the complex kinematic equations (as can be also inferred by Equation 5.7).
Thus, the regressor matrix shall be manipulated and then rearranged in a form in which
the base body angular velocity and the joints angular rates are multiplied by a set of
coefficients formed by trigonometric expressions of the base body attitude and the joints
angles, in order for these coefficients to be extracted and consequently combined with
the vector of inertial parameter clusters to reconstruct in this way the composite inertia
matrices.
This recombination process is not trivial as it is in the work of Christidi et al. [12], since
their dynamical model stems directly from this particular formulation where each term of
the inertia matrices is composed by a measurable quantity times a known quantity (the
inertial parameters). In this case the manipulation is done on the symbolic formulation
of the terms of the regressor matrix to extract the coefficients of the base body angular
velocity and of the joints angular rates. Given for example the seven DoF configuration,
even though the kinematic expression are complex, the fact that the sought quantities
appear linearly facilitates the process.
The main idea behind the validation process in the current framework is to exploit the
equation of conservation of angular momentum with the composite inertia matrices built
as explained above and thus dependant on the identified parameter clusters to reconstruct
the base body angular velocity given a randomly parametrised joints angles and angular
rates trajectory (Equation 5.8)

ω0(t) = −M̃−1
b (d(t),q(t),π) M̃bm (d(t),q(t),π) q̇(t) (5.8)

An applied example of the validation process is reported in subsection 5.3.2.
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5.3. Case Study N1: Free-Floating Seven Degrees Of

Freedom Robotic Arm

The methodology is tested with a case study (renamed N1) which takes into account a
satellite equipped with a seven DoF robotic arm and a load with known inertial properties
placed at the end-effector. The idea is to get closer to DLR’s experimental facility setup:
for this reason the inertias and the masses of the robotic arm resemble the ones of the
LWR mounted on the OOS-SIM platform (described in Section 6.1). All the modified
DH parameters and inertial properties of each body composing the system are reported
in Table 5.1. As can be noticed from the Table, the satellite mass has been reduced of
an order of magnitude with respect to the one used by Christidi et al. in [12] (i.e. 2000
[kg]) to obtain meaningful results. The mass and inertia of the load have been selected
in relation to the base body inertial properties in order to be able to excite them during
the trajectory with null total angular momentum. Indeed, the mass of the robotic arm
used for this simulation (in theory the 14 [kg] of the LWR) is consistently less than the
one used in the paper (namely 110 [kg]). Moreover, it can be seen that the seventh link
represents the load with known inertial properties.

Table 5.1: Case Study N1: 7 DoF Simulation Model Parameters

Par. Unit L0 L1 L2 L3 L4 L5 L6 L7

aDH [m] 0 0 0 0 0 0 0 0
αDH [rad] 0 0 π/2 -π/2 -π/2 π/2 π/2 -π/2
dDH [m] 0 0.20 0 0.40 0 0.39 0 0.28
Ixx [kg m2] 27.3333 0.0232 0.0262 0.0142 0.0285 0.0261 0.0034 0.4000
Iyy [kg m2] 16.6667 0.0237 0.0053 0.0142 0.0049 0.0255 0.0030 0.4000
Izz [kg m2] 22.6667 0.0050 0.0263 0.0049 0.0237 0.0041 0.0030 0.4000
M [kg] 200 2.7082 2.7100 2.5374 2.5053 1.3028 1.5686 25
ax [m] 0 0 0 0 0 0 0 0
ay [m] 0 0 0.0420 0 -0.0435 0 0.0180 0
az [m] 0 0.1409 0 0.2393 0 0.2126 0 0.1400
bx [m] 0.15 0 0 0 0 0 0 0
by [m] 0.10 0 0.1580 0 -0.1565 0 -0.0180 0
bz [m] 0.5 0.591 0 -0.0393 0 -0.0226 0 0.1400

For what concerns the trajectory optimization process the following joints angles con-
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straints are imposed:

−100◦ ≤ q1 ≤ 100◦ −50◦ ≤ q2 ≤ 50◦ −100◦ ≤ q3 ≤ 100◦

−50◦ ≤ q4 ≤ 50◦ −100◦ ≤ q5 ≤ 100◦ −90◦ ≤ q6 ≤ 90◦

−90◦ ≤ q7 ≤ 90◦

together with the reported joints angular rates constraints:

−8◦/s ≤ q̇1 ≤ 8◦/s −8◦/s ≤ q̇2 ≤ 8◦/s −8◦/s ≤ q̇3 ≤ 8◦/s

−8◦/s ≤ q̇4 ≤ 8◦/s −8◦/s ≤ q̇5 ≤ 8◦/s −8◦/s ≤ q̇6 ≤ 8◦/s

−10◦/s ≤ q̇7 ≤ 10◦/s

The pitch joints 2 and 4 are restricted to ±50◦ to avoid collisions between the load placed
at the end-effector and the satellite external envelope, whereas pitch joint 6 is bounded
between ±90◦ to avoid contact between the load and the robotic arm itself. The remain-
ing roll joints are instead left with more freedom of movement since the links attached to
them revolve around themselves and are thus less likely to cause a collision.
The limitations on the joints angular rates are instead all set to ±8◦/s except the last
joint, which is the one that effectively moves the load and it is thus allowed to rotate
slightly faster. Nevertheless the constraints on the velocities are less than in [12], and are
selected thinking to the safety of the equipment during the experimental tests.
The other free optimization parameters are the trajectory time and the sampling fre-
quency: a trade-off analysis and the guidelines laid by the ESA OBSIdian study lead to
select a total time of tf = 150 [s] and a sampling frequency of fs = 3 [Hz], resulting in
N = 451 samples to feed Yred and HL.
The trajectory optimization for case study N1 considering the geometrical and inertial
properties of the system (Table 5.1), and the constraints just discussed achieved a condi-
tion number of cond (Yred) = 297. It is almost four times higher than the one obtained in
the baseline simulations for Case Study 2 (Section 4.4), but it has to be remembered that
the model complexity has been increased from three to seven DoF and that the trajectory
has been designed to keep a null angular momentum for all the time of the manoeuvre.
This is in contrast to the mentioned case for which the system starts from zero angular
velocities but then reacts to match and thus conserve the reaction wheels accumulated
angular momentum.
Figure 5.2 shows the norm of the angular momentum for the robotic spacecraft (RS) and
the part of the angular momentum due to the load, demonstrating that the total angular
momentum remains null along the whole trajectory.
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Figure 5.2: Case Study N1: Angular Momentum Norm

The Figure also shows that the norm of the angular momentum due to the load (or of the
robotic spacecraft) remains always below 0.15 [Nms], which is two orders of magnitude
less than the one considered for Case Study 2 (around 17 [Nms]). This helps to explain the
difference in the condition number between the two cases: the motion constraints imposed
to the system due to physical limitations put a boundary on the achievable excitation of
the systems parameters, which can not be overcome since this framework considers zero
total angular momentum as a constitutive hypothesis.
The optimized Fourier coefficients for the joints angles trajectories, resembling that four
harmonics were employed for the truncated Fourier series which are used to parametrise
them, are reported in Table 5.2.

Table 5.2: Case Study N1 Trajectory: Optimized Fourier Coefficients

iaj
ibj

iaj
ibj

1a1 1.5328 1b1 1.9437 5a1 13.1082 5b1 -1.7408
1a2 0.0928 1b2 0.2102 5a2 0.8071 5b2 -0.2050
1a3 0.0260 1b3 0.0902 5a3 0.1403 5b3 -0.0684
1a4 -0.0339 1b4 0.1413 5a4 0.0862 5b4 -0.1280
2a1 -8.5861 2b1 1.2872 6a1 -1.7417 6b1 2.3577
2a2 -0.5231 2b2 0.1496 6a2 -0.0968 6b2 0.3367
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2a3 -0.0831 2b3 0.0306 6a3 -0.0271 6b3 0.1165
2a4 -0.1050 2b4 0.1112 6a4 -0.0149 6b4 0.1395
3a1 -7.8434 3b1 -2.1984 7a1 5.3135 7b1 -1.5825
3a2 -0.4974 3b2 -0.3404 7a2 0.3507 7b2 -0.1588
3a3 -0.0907 3b3 -0.1061 7a3 0.0619 7b3 -0.2046
3a4 -0.0594 3b4 -0.1200 7a4 0.0381 7b4 -0.0275
4a1 -3.5324 4b1 1.8720
4a2 -0.2196 4b2 0.2219
4a3 -0.0410 4b3 0.0595
4a4 -0.0306 4b4 0.1488

The above coefficients generate the joints angles time histories shown in Figure 5.3 and
their derivatives in Figure 5.4. From the first chart it can be appreciated that the joints
angles trajectories respect the imposed constraints. Moreover the maxima and minima of
each curve are close to the boundaries, meaning that the optimization algorithm worked
properly by pushing the curves to their allowable limit while minimizing the condition
number of the manoeuvre.

0 50 100 150
t [s]

-100

-50

0

50

q
[d

eg
]

Joints angles

q1

q2

q3

q4

q5

q6

q7

Figure 5.3: Case Study N1: Joints Angles

The same reasoning applies to the joints angular rates chart, where it can be clearly seen
that the curves are within the limits and that the only joint which reaches ±10◦/s is the
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seventh one as mentioned above.
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Figure 5.4: Case Study N1: Joints Angular Rates
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Figure 5.5: Case Study N1: Base Body Angular Velocity

These specific trajectories for the joints angles and angular rates result in the reaction of
the base body which is governed by the free-floating dynamics, in order to maintain a null
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total angular momentum. Figure 5.5 displays the base angular velocities with respect to
the inertial frame placed in the system center of mass. The component ω0z and thus the
rotation along the z axis is considerably lower than the other two components: this is
because the rest position of the robotic arm lays along the z axis and, given the limits
imposed on the first pitch joint and that the initial base body attitude starts from identity,
the arm never fully extends in the x− y plane, thus to keep a null angular momentum it
has to react less in that direction. In any case all the components stay below ±3.5 [deg/s]
and all the angular velocities are contained, which is good by thinking to an experimental
setup.
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Figure 5.6: Case Study N1: Base Body Attitude

The chart in Figure 5.6 instead shows the base body attitude along the whole manoeuvre.
The roll and yaw angles show a similar oscillating behaviour which is caused by the x and
y angular velocity components (since the base body motion is limited), whereas the yaw
angle presents a slightly increasing trend to be attributed mainly to the z component.
Also in this case the base body angular motion is contained, which will be useful for the
trajectories to be generated for the experimental tests, as will be explained in Section 6.1.

5.3.1. Identification Results

Given the optimized trajectory the same simulation model described in Section 4.1 is
exploited to simulate the trajectory with the noise of the sensors. To be consistent with
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the results obtained in the baseline the noise parameters are kept equal.
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Figure 5.7: Case Study N1: π1 Convergence Analysis

The total number of simulations is 2500 as in the baseline study, always for comparison
reasons. The convergence analysis for the first identified parameter cluster is shown
for completeness in Figure 5.7: the charts show that both the mean and the standard
deviation are almost fully settled to a constant value.
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Table 5.3 reports the results of the identification
process with the same formalism of Section 4.2 and
Section 4.4. The full expressions for the parameter
clusters for a seven DoF robotic arm with the given
geometry are listed in Appendix A. In the list given
π19 and π20 are the parameter clusters removed
from the vector to form with the related columns
of the regressor matrix the part of the angular mo-
mentum due to the load at the end-effector. This
explains why Table 5.3 reports only 30 parameter
clusters, given that those two are already known3.
From the listed identification results it can be seen
that the maximum relative error stays below 7%,

and that the parameters clusters identified with the highest relative errors are the ones
related to those with a smaller absolute value of at least two orders of magnitude less

3Thus to be consistent with the list in Appendix A, starting from π19, each identified cluster corre-
sponds to the one in the list by adding 2 (e.g. π19 in the table corresponds at π21 in the list and so
on).
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than the rest. This is confirmed by Figure 5.8 which displays the components that are
identified with the highest relative errors versus the whole 2500 runs of the noisy trajec-
tory. These clusters (better explained in Appendix A) are the ones related to the roll
joints, for which only the inertias are combined and, given the small values from the LWR
real properties, this result in a worse identification performance with respect to the other
clusters for which the relative error stays always below 1%.

Table 5.3: Case Study N1: Identification Results

π πtrue π̄est πbest σest π̄err [%]

π1 43.2617 43.2541 43.3370 0.0478 0.0177
π2 -0.4825 -0.4824 -0.4855 0.0019 0.0175
π3 -3.3574 -3.3581 -3.3678 0.0073 -0.0223
π4 32.9972 32.9914 33.0517 0.0366 0.0178
π5 -2.2383 -2.2377 -2.2395 0.0056 0.0247
π6 23.7121 23.7045 23.7129 0.0169 0.0324
π7 0.0049 0.0046 0.0050 0.0048 5.2472
π8 0.0103 0.0105 0.0100 0.0007 -2.2973
π9 4.6388 4.6374 4.6458 0.0048 0.0307
π10 4.6442 4.6432 4.6542 0.0056 0.0217
π11 0.0049 0.0046 0.0050 0.0017 6.1038
π12 0.0099 0.0097 0.0092 0.0010 1.6258
π13 3.8082 3.8080 3.8124 0.0040 0.0076
π14 3.8083 3.8078 3.8118 0.0035 0.0149
π15 0.0036 0.0039 0.0037 0.0013 -6.6727
π16 0.0071 0.0072 0.0073 0.0008 -0.6595
π17 0.8387 0.8385 0.8413 0.0013 0.0284
π18 0.8413 0.8410 0.8437 0.0014 0.0362
π19 1.1227 1.1224 1.1237 0.0023 0.0334
π20 7.8681 7.8674 7.8840 0.0106 0.0089
π21 1.6841 1.6839 1.6876 0.0024 0.0096
π22 -0.9238 -0.9237 -0.9243 0.0018 0.0078
π23 -6.4738 -6.4726 -6.4894 0.0094 0.0185
π24 -1.3857 -1.3854 -1.3884 0.0022 0.0211
π25 0.2961 0.2959 0.2948 0.0008 0.0581
π26 2.0749 2.0751 2.0778 0.0032 -0.0101
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π27 0.4441 0.4440 0.4451 0.0010 0.0279
π28 -3.7853 -3.7847 -3.7900 0.0046 0.0182
π29 1.2132 1.2128 1.2141 0.0015 0.0339
π30 -1.2130 -1.2126 -1.2155 0.0016 0.0340

Nevertheless, by reconstructing the base angular velocity as explained in Section 5.2, it
can be seen from Figure 5.9 that these parameter clusters have very little influence on
the dynamics, given that the absolute errors between the baseline angular velocity curve
(ω0) and the one computed using the mean of the identified parameter clusters (ω0C) are
in the order of 10−5 [deg/s].

0 50 100 150
t [s]

0

0.2

0.4

0.6

0.8

1

jj!
0
!

!
0C

jj
[d

eg
/
s]

#10-4 Base Body Angular Velocity Error

!0x;err

!0y;err

!0z;err

Figure 5.9: Case Study N1: Base Body Angular Velocity Error

5.3.2. Validation Tests

To further prove the validity of the methodology and of the identification process, random
joint angles trajectories are generated with Equation 5.9

qi (t) = Arand · sin
(
2πt

tf

)
[rad] (5.9)

with which the base body angular velocity is reconstructed with Equation 5.8. An example
of a randomly generated trajectory is given in Figure 5.10, together with the base body
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reaction to the robotic arm motion in Figure 5.11. All the trajectories are generated by
considering a constant null total angular momentum. The base body angular velocity
does not start necessarily with a null value since the condition of zero initial joint angular
rates is not imposed, as it is clear by looking at Equation 3.16.
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Figure 5.10: Validation: Joints Angles & Angular Rates
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Figure 5.11: Validation: Base Body Attitude & Angular Velocity

The mean value of the identified parameter clusters vector (in Table 5.3, with the addition
of the rows removed to build the angular momentum of the known load) is used to
reconstruct the composite inertia matrices and thus the base body angular velocity. The
tracked quantity is the maximum absolute value of the error between the base body
angular velocity trajectory generated with the real parameters and the trajectory obtained
with the said identified parameter clusters vector.
For the tests a total time of the manoeuvre tf = 60 [s] and a sampling frequency of fs = 10



62 5| Novel Identification Framework And Simulation Results

[Hz] is selected, for a total number of simulations n = 1000. The results are reported in
Figure 5.12, which shows the distribution of the absolute value of the maximum error for
each component and the corresponding mean value.
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Figure 5.12: Validation: Distribution of the Absolute Value of the Maximum Error for
the Base Body Angular Velocity

From the chart it can be seen that the z component is the one which is tracked with
the lowest performances by the identified parameters clusters vector, followed by the y
component and finally the x component. This can be attributed to the base body reaction
to the robotic arm trajectory: given the joint angles constraints, there was less excitation
of the base body inertial parameters in the z component, which was in turn reflected in
poorer identification quality for the clusters describing the dynamics around that axis.
In any case, the mean values reported on the chart are all in the order of magnitude of
10−5 [deg/s], which is consistent with the results obtained in Figure 5.9. This proves the
validity of the methodology which is thus deemed reliable given the small error value in
the reconstructed base body angular velocity.
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6| Simulations On DLR

Experimental Facility

6.1. OOS-SIM Description

The DLR’s OOS-SIM (On Orbit Servicing - Simulator) testing facility in the Institute
of Robotics and Mechatronics in Oberpfaffenhofen is composed by a chaser and a target,
to reproduce in-orbit capture scenarios with the aid of a seven DoF robotic arm (the
LWR) and cameras/LiDAR mounted on the chaser [41], as shown in Figure 6.1. Both the
satellite mock-ups are mounted on six DoF industrial robots which are position controlled.

Figure 6.1: OOS-SIM in DLR Institute of Robotics and Mechatronics, (Credits : DLR)

The simulation which runs in the experimental facility relies on a mathematical model
that reproduces the free-floating or free-flying dynamics which govern the two spacecrafts
motion in orbit. Since it is a mathematical framework, the masses and inertias of the
model can be set accordingly to the type of experiment which has to be performed, and
do not need to be representative of the physical components of the system.

This is a great advantage for the current thesis work, since it permits to test different
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combinations of base body mass - mass at the end-effector and see the effects on the
condition number of the regressor matrix. Unfortunately, as all physical systems also the
one under study has mechanical constraints which can not be overcome as in simulations,
where these can be relaxed and thus reproduce with more freedom the motion of the free-
floating satellite. In particular, the most stringent constraints are the ones on the chaser
satellite orientation, given below

−40 [deg] ≤ x− rotation (roll) ≤ 40 [deg]

−20 [deg] ≤ y − rotation (pitch) ≤ 15 [deg]

−15 [deg] ≤ z− rotation (yaw) ≤ 10 [deg]

(6.1)

This imposes a strong limitation on the allowable motion of the base body, making the
optimization process even more complex. For example choosing a high mass ratio between
the satellite and the couple robotic arm - known load reduces the satellite attitude changes,
but in return worsens the condition number, since the base body parameters are not
properly excited. On the contrary, seeking for a lower condition number by reducing
the aforementioned mass ratio leads to a violation of such constraints because of the
free-floating dynamics governing the problem.

6.2. OOS-SIM: IMU Calibration

Table 6.1: Calibration Parameters

Accelerometers Gyroscopes

αyz 0.0004 γyz -0.0003
αzy -0.0051 γzy -0.0262
αzx 0.0094 γxz 0.0043
sax 1.0136 γzx -0.0029
say 1.0128 γxy 0.0077
saz 1.0305 γyx 0.0321
bax 0.0020 sgx 1.0159
bay 0.0633 sgy 1.0255
baz -0.2803 sgz 0.8808

To perform experiments on the DLR’s OOS-
SIM, the IMU mounted on the chaser satellite
shall be calibrated first. The work presented
in [42] outlines a simple calibration algorithm
that does not require external equipment to
complete this kind of procedure. This also due
to the fact that the IMU is already mounted
on the facility, making it difficult to place it
on dedicated machines.
The non-availability of the factory calibration
parameters makes it more challenging since
there is not a precise reference to check re-
sults with, but the validity of the calibrated
measurements depends on the confidence with

which the magnitude of the local gravity is retrieved. In any case, the authors of the
paper provide a set of data with which the algorithm can be tested.
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Figure 6.2: Uncalibrated vs Calibrated Accelerometers Measurements
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Figure 6.3: Uncalibrated vs Calibrated Gyroscopes Measurements

The calibration pseudo-algorithm and the sensors (accelerometers and gyroscopes) error
models can be found in [42], whereas the calibration parameters are reported in Table 6.1.
Figure 6.2 and Figure 6.3 display the results of the calibration procedure, both for the
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accelerometers and the gyroscopes.

6.3. Required Measurements For The Identification

Experiments

The data needed to fill the regressor matrix is reported in Table 6.2, in which the distinc-
tion between measured and computed quantities is underlined.

Table 6.2: Regressor Matrix Required Measurements

Quantity Units Measured Computed

Base body attitude [rad] ✗ ✓

Base body angular velocity [rad/s] ✓ ✗

Joints positions [rad] ✓ ✗

Joints angular rates [rad/s] ✗ ✓

It has to be recalled that the regressor matrix has to be filled with measurements of
the base body angular velocity in the inertial frame, thus the data retrieved from the
gyroscopes will have to be rotated in that reference frame in order to make the algorithm
work properly.

In the absence of other sensors to measure the attitude of the base body, quaternion
integration will be exploited, having the knowledge of the base body angular velocity in
the base body frame1 (thus directly from the IMU gyroscopes) as in Equation 6.2

q̇ =
1

2
·Ω (ω) · q with Ω (ω) =


0 ωz −ωy ωx

−ωz 0 ωx ωy

ωy −ωx 0 ωz

−ωx −ωy −ωz 0

 (6.2)

The formulation given in Equation 6.2 considers an attitude quaternion for which the
scalar part is placed in the fourth component of the vector (JPL notation).

For what concerns the joints positions and joints angular rates, the first ones are directly
recovered from the motors encoders, while the latter have to be obtained via numerical
differentiation.
Signal processing has to be performed on every set of measurements, in particular on the

1This it is typically done in AOCS simulations, which employ a mathematical model to retrieve this
quantity and use it as "reference" for control purposes.



6| Simulations On DLR Experimental Facility 67

ones that are not obtained in a direct manner, thus the base body attitude and joints
angular rates, since numerical integration and derivation propagate the intrinsic noise of
the "parent" sensors (i.e. the gyroscopes and the motor encoders).

6.3.1. Signals Processing

The data retrieved from sensors have different sampling frequencies, namely around 200
[Hz] for IMU gyroscopes and 1000 [Hz] for the joints motors encoders. This means that
the latter have to be downsampled in order to be used to fill the regressor matrix Yred

and be consistent with the other data. Moreover, following the guidelines given by the
ESA OBSIdian studies [11], providing data at 2-3 [Hz] should be sufficient to obtain
good identification results, thus all the signals shall be further downsampled to meet this
specific requirement.
Given an intrinsic physical delay between the start of the manoeuvre on the OOS-SIM and
the data gathering (which begins some seconds prior to the actual motion and stops some
seconds after), to confront the simulations with the experimental curves all the signals have
to be cropped to retain only the effective movement section. This is the first step in the
signals conditioning, which is then followed by filtering the measurements of gyroscopes
and motors encoders with low pass filters. In particular, for the first variable the cutting
frequency is set 0.2 [Hz], whereas for the second one the chosen cutting frequency is 0.05
[Hz]. These values are selected after performing Fourier analysis on the signals with Fast
Fourier Transforms (FFT), knowing their sampling frequency.
At this point the base body attitude values can be obtained by exploiting the gyroscope
measurements, as explained in the previous section, via quaternion integration, through
a Runge-Kutta integration scheme of the fourth order with normalization at every step
to keep the quaternion unitary norm, from which the direct cosine matrix derivation is
straightforward.
To compute the joints angular rates, instead, the MATLAB© function gradient is used
to numerically differentiate the joints angles. This function was selected over the diff

function since it the keeps the output vector of the same length as the original one, in
contrast to the latter which shortens the resulting vector by one. Given that numerical
differentiation amplifies the intrinsic noise of the parent data, low pass filtering is applied
also to the joint angular rates with the same cutting frequency window employed for the
joints angles.
The final step is to downsample all the data on an equally spaced time vector of a given
frequency (which in this case it is selected to be 3 [Hz]): the data can now be used to fill
the regressor matrix and to perform the identification task.
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6.4. Trajectory Optimization For OOS-SIM Experi-

ments

The optimization process for the experiments to be run on the OOS-SIM facility has to
take into account tighter constraints (e.g. on the base body attitude), as was briefly
introduced in Section 6.1. Limiting the base motion to satisfy the mechanical capabilities
of the experimental set-up should worsen the condition number of the regressor matrix
and make the optimization algorithm struggle to find a feasible solution. This happens
because the software is given contrasting requests: excite the system to perform the
identification of the inertial parameters while keeping the movements contained. Some
other difficulties have to be taken into account for the experimental setup, which are not
present in simulation: a camera is mounted on the LWR gripper to guide the in-orbit
capture manoeuvres, and cables connect it to a power source as well as cables to transmit
images to the facility hardware (see Figure 6.1). The motion of the robotic arm shall be
limited not to entangle the said cables and break them during the motion of the servicer
mock-up. The constraints on the joints angles are reported below for completeness (noting
that some of them are well below the actual capabilities of the LWR of 120◦):

−90◦ ≤ q1 ≤ 90◦ −40◦ ≤ q2 ≤ 40◦ −97◦ ≤ q3 ≤ 97◦

−40◦ ≤ q4 ≤ 40◦ −97◦ ≤ q5 ≤ 97◦ −65◦ ≤ q6 ≤ 65◦

−90◦ ≤ q7 ≤ 90◦

In particular, the constraints on the pitch joints 2 and 4 is set to 40◦ to avoid collisions
with the base body, whereas the pitch joint 6 is set to 65◦ degrees to avoid contact between
the camera on the gripper and the arm itself. Instead the limits on the roll joints (1-3-5-7)
are more relaxed and are set in order to allow a reasonable movement of the camera cables
without weaving them.

6.5. Experimental Results

To run experiments on the OOS-SIM the dynamic model had to be simplified to make it
compatible with the algorithms currently running on it. The simulation method is based
on a Lagrange-Poincaré formulation of the equations of motion, for which noisy joint ac-
celeration measurements are avoided in the computation of the spacecraft motion due to
manipulator interaction [43]. The resulting physical consistency is to the advantage for
the parameter identification. The current development of this methodology requires that
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the links masses are lumped in the joints, resulting in a slightly different dynamical model
from the one employed in the simulations. This means under a practical point of view
that the space manipulator input files had to be simplified since the algorithms have not
yet been tested for a complete geometrical and dynamical description of the satellite and
its robotic arm.
As said above, the major simplification to be made to be compliant with the simulation
software is to lump all the link masses in the joints, since the program is not yet capable
(meaning that its validity has not been proven yet) of dealing with non-null links centers
of mass. Moreover, the inertia of each link have to be expressed with respect to the link
reference frame (where all the mass is now concentrated) instead of the classical link cen-
ter of mass.
The last thing to be mentioned is that the input files used in simulation follow the formal-
ism of the SpaceDyn library [44], whereas the newer algorithms running on the OOS-SIM
require .urdf files. The conversion between one input file to the other proved to be not
trivial, mainly because of how the end-effector description is treated in .urdf, a funda-
mental point in this methodology since it is where the known load is placed.
The geometrical and dynamical parameters used for the model are reported in Table 6.3,
where the modified DH parameters are firstly reported and followed by the dynamical
parameters which are namely the inertia, mass and position of the center of mass. As dis-
cussed in Chapter 3 the products of inertia and two out of three centers of mass positions
are set to zero to simplify the problem.

Table 6.3: Experimental Model Parameters

Par. Unit L0 L1 L2 L3 L4 L5 L6 L7

aDH [m] 0 0 0 0 0 0 0 0
αDH [rad] 0 0 π/2 -π/2 -π/2 π/2 π/2 -π/2
dDH [m] 0 0.20 0 0.40 0 0.39 0 0.28
Ixx [kg ·m2] 27.3333 0.0770 0.0310 0.1595 0.0333 0.0850 0.0039 0.8900
Iyy [kg ·m2] 16.6667 0.0774 0.0053 0.1595 0.0049 0.0844 0.0030 0.8900
Izz [kg ·m2] 22.6667 0.0050 0.0311 0.0049 0.0284 0.0041 0.0035 0.4000
M [kg] 200 2.7082 2.7100 2.5374 2.5053 1.3028 1.5686 25
ax [m] 0 0 0 0 0 0 0 0
ay [m] 0 0 0 0 0 0 0 0
az [m] 0 0 0 0 0 0 0 0
bx [m] 0.15 0 0 0 0 0 0 0
by [m] 0.10 0 0.20 0 -0.20 0 0.28 0
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bz [m] 0.5 0.20 0 0.20 0 0.19 0 0

6.5.1. Optimized Trajectory For OOS-SIM

The optimized trajectory for the experimental test, obtained by using the simplified model
presented above, achieved a condition number cond (Yred) = 288. The joints angles
trajectory and angular rates are shown in Figure 6.4 and Figure 6.5, whereas the optimized
Fourier coefficients are reported in Table 6.4.

Table 6.4: Experimental Trajectory: Optimized Fourier Coefficients

iaj
ibj

iaj
ibj

1a1 0.9036 1b1 0.4098 5a1 -1.8812 5b1 -0.3846
1a2 0.0361 1b2 0.0293 5a2 -0.1135 5b2 -0.1056
1a3 0.0705 1b3 0.1111 5a3 -0.0028 5b3 -0.0641
1a4 -0.0037 1b4 -0.0280 5a4 -0.0553 5b4 0.0248
2a1 0.6283 2b1 -0.9730 6a1 -0.1911 6b1 0.5028
2a2 0.0204 2b2 -0.1126 6a2 -0.0453 6b2 0.0747
2a3 -0.0298 2b3 -0.0077 6a3 0.0864 6b3 0.0106
2a4 0.0676 2b4 -0.0952 6a4 -0.0355 6b4 0.0385
3a1 2.5221 3b1 0.5771 7a1 -1.4211 7b1 -0.1959
3a2 0.1664 3b2 0.1561 7a2 -0.0047 7b2 0.0195
3a3 0.0320 3b3 -0.0167 7a3 -0.0612 7b3 -0.0397
3a4 0.0369 3b4 0.0364 7a4 -0.0658 7b4 -0.0042
4a1 -0.6289 4b1 -0.6272
4a2 -0.0352 4b2 -0.0825
4a3 -0.0732 4b3 -0.0641
4a4 0.0538 4b4 -0.0153

As can be seen from the joints angles charts the most stringent constraints, namely the
ones on the pitch joints, are respected. For what concerns the joints rates instead the
maximum value stays always below 10 [deg/s] which is good for the safety of the exper-
iment itself, since the situation of the cables can be checked and monitored during the
trajectory given that the system is moving at a slow pace. This is also confirmed by the
computed base body angular velocity (Figure 6.6), which remains below 4 [deg/s] in all
components along the whole trajectory. Finally Figure 6.7 displays the base body RPY
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Figure 6.5: Joints Angular Rates For Experimental Test

angles and the given experimental facility limits. It can be clearly seen that the base
body angular motion respects these constraints, while giving also a reasonable condition
number confirming the validity of the optimization process.
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6.5.2. Sensors Gathered Data

The following section presents the charts related to the data gathered by the sensors on
board the OOS-SIM.
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Figure 6.8: Joints Angles Registered On Board (Filtered)
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Starting from the joints angles retrieved by the robotic arm motor encoders in Fig-
ure 6.8, where the simulated curves (Figure 6.4) are not shown to make the chart read-
able, it can be seen that the LWR real joints followed the optimized trajectory closely.
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Figure 6.10: Base Body Angular Veloc-
ity Registered On Board (Filtered)

The chart reports the filtered curves obtained
with the signal processing technique described
in subsection 6.3.1. The curves in Figure 6.9
are instead computed with numerical differen-
tiation of the joints angles trajectories, process
which amplifies the noise of the measurements.
The joints angular rates are consequently fil-
tered to mitigate this effect: the results of
the filtering process can be appreciated in the
chart where the curves are smooth and are al-
most identical to the ones obtained with the
analytical solution shown in Figure 6.5.
For what concerns the base body angular ve-

locity obtained with the on-board IMU sensor, the chart is reported in Figure 6.10. Also
in this case the validity of the filtering process is noticeable. It is more interesting to look
at the same quantity but referred to the inertial reference frame so that it is comparable
with the one obtained in simulation.

0 50 100 150
t [s]

-3

-2

-1

0

1

2

3

!
0

[d
eg

/s
]

Base body angular velocity (computed)

!0x;exp

!0y;exp

!0z;exp

!0x

!0y

!0z

Figure 6.11: Base Body Body Angular Velocity In The Inertial Reference Frame (Filtered)



6| Simulations On DLR Experimental Facility 75

0 50 100 150
t [s]

-20

-15

-10

-5

0

5

10

,
;
-
;
.

[d
eg

]

Base body attitude (computed)

Rollexp
Pitchexp
Yawexp
Roll
Pitch
Yaw
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Figure 6.11 displays the comparison of the base body angular velocity in the inertial refer-
ence frame and the one coming as an output from the simulation process. It can be noticed
that the experimental curve is early at the beginning of the trajectory with respect to the
simulated one and it is instead late towards the end of the trajectory. This phenomenon
was registered also for the joints angles, for which the experimental trajectory was early
at the start of the manoeuvre and then trailed in the final seconds.
The same comment can be made by looking at Figure 6.12, where the base body attitude
Roll-Pitch-Yaw angles computed from the gyroscope measurements through quaternions
integration are confronted with the trajectories coming from simulations. Even in this
case the curves are very similar, with the same problem of non constant delay encountered
with the other data. In any case also the base body attitude is tracked with precision
confirming that the experiment was carried out with success.
The delay can be attributed to the admittance control used for the industrial robots of
the facility, which has its own settling time. This explanation is reinforced by analysis of
the total angular momentum of the system simulated by the hardware-in-the-loop (HIL)
facility (Figure 6.13), which is not perfectly constant (see also [43]). This issue interferes
with the identification process as will be discussed in the next section. Nevertheless the
two sets of curves are, apart from the mentioned problem, almost superposed confirming
in this way that the base body followed the correct dynamics during the manoeuvre.
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6.5.3. Identification Results

With the measured and computed data (Table 6.2) the regressor matrix of the system
Yred and the angular momentum due to the load at the end-effector HL are evaluated
to perform the identification test. Due to the noisy nature of the data a Total Least
Squares (TLS) identification algorithm is used (see Section 2.1). Table 6.5 lists the true
parameter clusters and the parameter clusters identified with the experimental data. It
can be clearly seen that the problem encountered with the HIL simulation, described in
the previous section, affects the identification results. It has to be recalled that these
results come from just one experimental run of the trajectory. Due to lack of time for
the experiments for logistic problems this issue could not be further addressed and will
be the subject of future works.

Table 6.5: OOS-SIM: Identification Results

π πtrue πest π πtrue πest

π1 42.9650 42.3694 π16 0.0071 0.0533
π2 -0.4825 -0.2589 π17 2.6453 2.7066
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π3 -3.3094 -3.5431 π18 2.6479 2.6090
π4 32.7005 32.6860 π19 1.0622 0.7592
π5 -2.2062 -1.1827 π20 7.4644 7.2920
π6 23.7121 21.0432 π21 1.5933 1.5859
π7 0.0049 -1.4504 π22 -0.8914 -0.7235
π8 0.0103 -0.0253 π23 -6.2638 -6.1733
π9 4.4747 4.5955 π24 -1.3371 -1.3778
π10 4.4801 5.1243 π25 0.5874 0.4720
π11 0.0049 -0.2708 π26 4.1278 4.1949
π12 0.0099 -0.1453 π27 0.8811 0.7512
π13 3.7325 4.4889 π28 -3.6848 -3.1095
π14 3.7326 3.8146 π29 2.4282 2.3964
π15 0.0036 -0.3527 π30 -2.4180 -2.3198

To check the quality of the identification process, the same test performed for the simula-
tions is carried out. The vector of identified parameter clusters (with the addition of the
two terms related to the known load at the end-effector) is used to reconstruct the base
body angular velocity to check if the experimental trajectory and the computed one are
comparable between each other, even if the identified vector of inertial parameter clusters
differ from the true parameters used as input in the model.

Figure 6.14 displays the two sets of angular velocity curves. The difference between
the two is barely appreciable, confirming that the identification process correctly found
the vector of parameters clusters that reproduces the dynamics represented by the data
gathered by the sensors. This result highlights that the data collection is of fundamental
importance given that the algorithm is capable of identifying the system described by the
sensor measurements.
The last chart in Figure 6.15 shows the absolute error between the base body experimental
angular velocity and the reconstructed base body angular velocity (Equation 5.8). The
error stays below a maximum value of 0.05 [deg/s] for all the components, a value which is
deemed acceptable given its small magnitude and the length of the manoeuvre. This value
confirms the validity of the method considering that it gave good results in the model
reconstruction with just one experiment, and could be improved by focusing on the data
acquisition and by making more runs in order to have a statistical basis in support of the
tests.
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7| Conclusions And Future

Developments

7.1. Conclusions

This thesis demonstrated that the identification of the whole free-floating system with
a known load at the end-effector is feasible. This methodology is suitable for platforms
which are not equipped with reaction wheels, as may be the case in outer space and in
robotic intravehicular activities. The identification procedure is carried out under the
assumption of a null total angular momentum, made possible by the newly developed
framework. This is in opposition with the most recent works which assumed a non null
angular momentum condition as was done in [12], the starting point of this research. The
validity of this assumption had to be proven with simulated and experimental data, since
to the knowledge of the author of this thesis it was never done before for this topic.
The toughest part of this research work proved to be the computation of the full rank
regressor matrix in symbolic form for the free-floating seven DoF space robot, treated in
Chapter 5, the core of this thesis. In fact, this matrix is composed only of measurable
quantities combined between each other with complex trigonometric functions, which
are difficult to handle for the symbolic computation engine. This was expected since in
literature this specific matrix is never reported explicitly, but only in its implicit form,
and thus only with its dependency from other quantities.
Another bottleneck, which is strictly related to the previous point, was the computational
time requested to complete the optimization loop needed to find the exciting trajectories
for the robotic arm. This specific value grew exponentially from the baseline case, which
treated the three DoF robotic arm, to the current case. This has to be attributed to the
increased complexity of the geometrical and dynamical model of the space robot, which
was reflected in the reduced system regressor matrix, as well as to the incremented number
of optimization variables due to the higher number of joints. The available hardware did
not permit to overcome this issue, which prevented from testing different geometries and
from performing sensitivity analyses.
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Although it was not predicted for the values of the condition number of the reduced
regressor matrix to be steadily higher with respect to the values found in literature (see
e.g. [12]), the simulations made with sensor noise showed that the method achieves
results which are comparable with the ones of the baseline. These higher values for the
condition number translate eventually in slightly lower performances in the identification
of the inertial parameter clusters having an evident smaller value with respect to the
others. Nevertheless, it has been shown that the clusters which are identified with the
highest relative errors have minimal influence on the dynamics, since the reconstructed
base angular velocity is superposed almost exactly with the curve computed in simulation.
The discrepancy between this thesis and the baseline in terms of condition number can be
explained by taking into account the different framework between the two: zero angular
momentum for the first due to the imposed condition of a platform not having reaction
wheels on board, non zero angular momentum for the second. The latter scenario permits
to have a non null initial base body angular velocity, which has been proven in literature
(see e.g. [29]) to be a great advantage for identification purposes.
Finally, the penultimate chapter of this thesis (Chapter 6) presented the results of the new
methodology applied to an experimental setup, the DLR’s OOS-SIM in Oberpfaffenhofen.
Due to lack of time for the experimental tests for logistic problems, only one test was
performed and could actually be used to check the new framework with a case study and
with real sensors data. The experimental test gave good results in terms of reconstruction
of the base body angular velocity after the identification procedure. The treatment of this
identification task has also underlined the detrimental effect of very small time delays in
the simulation of the system dynamics with the hardware-in-the-loop approach, which
results in significant changes in the identified parameters. In any case worse identification
results were foreseen from the experimental campaign, in view of the use of real sensors
which give measurements composed of real random noise and other effects which were
not modelled in Simulink. However, the problem encountered with the delay of the
experimental trajectories did not permit to make a proper comparison with the results
obtained in simulation.

7.2. Future Developments

7.2.1. Optimization of the Computational Times

As stated in the previous section, computational times for the optimization loop were
a bottleneck for this research. This issue could be overcome by acting on two separate
problems. The first and more obvious would be to increase the computational power
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of the machine on which the optimizations are ran, using a multi-core CPU to exploit
MATLAB Parallel Computing Toolbox. The second one would be to optimize the de-
veloped algorithms, from the computational time point of view, starting for example by
further simplifying the complex trigonometric expressions composing the reduced system
regressor matrix.

7.2.2. Sensitivity Analyses

A way to increase the number of available data in relation to the topic treated in this
master thesis would be to perform sensitivity analyses on different aspects. The first and
more interesting would be to test diverse ratios of satellite mass to load at the end-effector
mass, to observe how the condition number of the reduced system regressor matrix would
change with respect to this parameter and, with it, the quality of the identification results.
The selection of the ratio should not be arbitrary, but it should respect upper and lower
constraints for the end-effector load, i.e. the maximum allowable mass which could be
carried by the embarked robotic arm as well as a minimum mass for the load, to be able
to excite the inertial parameters of the base body.
The second group of sensitivity analyses should focus on finding the inertial parameter
clusters which contribute the most and the least to the system free-floating dynamics, in
order to better understand the results of the identification process. This should be done
with particular attention to the relative errors of the identified inertial parameter clusters
with respect to the expected ones, as was the case with the results of the simulations. This
process could be helpful to guide the generation of the manoeuvres done by the robotic
arm, by tailoring them to excite specific clusters, i.e. the ones driving the dynamics and
that, for this reasons, are requested to have a higher confidence.

7.2.3. Experimental Tests

As mentioned in subsection 6.5.3 only one experimental test was carried out for logistic
reasons. An obvious development to further verify the new methodology described in this
thesis would be to gather more experimental data by performing additional tests on the
OOS-SIM facility. This would allow to complete also a statistical analysis of the results,
but in this case with measurements collected by real sensors with real noise models, and
thus closer to what the scenario would be in orbit. The problem encountered with the
delay of the experimental trajectories with respect to the simulated trajectories shall
be investigated, to obtain consistency between the two and check if the identification
process with real sensors measurements keeps the same performances in a more realistic
environment.
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Moreover, a geometrical and dynamical model of the same complexity for the space robot
as the one used in the simulations could be implemented on the facility if the algorithms
running on the OOS-SIM will be updated. This would grant the possibility to have a
better comparison between the simulated and experimental data.

7.2.4. Model Complexity

Finally, to further extend this research topic the guidelines set by the ESA OBSIdian
studies could be a good starting point. In particular the focus should go the physical
disturbances that are typically acting on board of a satellite such as fuel sloshing inside
of tanks and the presence of flexible appendages such as solar panels, as well as the
flexibility of the robotic arm itself. Neglecting this additional noisy sources and treating
them as non modeled dynamics could worsen the identification results on a real system
(see e.g. [27]). Having the knowledge of the natural frequencies of flexible objects and
of the sloshing modes of a fluid inside a tank, identified in the same processes where the
inertial parameters are retrieved, could permit a more accurate description of the system
and consequently a more accurate control which is vital for operations requiring a high
precision in the motion of the end-effector, as in a mission for in orbit capture of an
uncooperative satellite.
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A.1. Free-Floating 7 DOF Robotic Arm Inertial Pa-

rameter Clusters
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M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
b5

2 (M6 +M7) (M0 +M1 +M2 +M3 +M4 +M5)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− 2 a4 a5 (M5 +M6 +M7) (M0 +M1 +M2 +M3)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
2 a4 b4 (M5 +M6 +M7) (M0 +M1 +M2 +M3)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
2 a5 b5 (M6 +M7) (M0 +M1 +M2 +M3 +M4)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− 2 b4 b5 (M6 +M7) (M0 +M1 +M2 +M3 +M4)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− 2 a5 b4 (M5 +M6 +M7) (M0 +M1 +M2 +M3 +M4)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− 2 a4 b5 (M6 +M7) (M0 +M1 +M2 +M3)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7
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π15 = I5xx − I5yy + I6yy

π16 = I5zz + I6yy

π17 = I6xx − I6yy + I7yy +
M7 a7

2 (M0 +M1 +M2 +M3 +M4 +M5 +M6)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 b6

2 (M0 +M1 +M2 +M3 +M4 +M5 +M6)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a6

2 (M6 +M7) (M0 +M1 +M2 +M3 +M4 +M5)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
2M7 a7 b6 (M0 +M1 +M2 +M3 +M4 +M5 +M6)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
2M7 a6 a7 (M0 +M1 +M2 +M3 +M4 +M5)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
2M7 a6 b6 (M0 +M1 +M2 +M3 +M4 +M5)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

π18 = I6zz + I7yy +
M7 a7

2 (M0 +M1 +M2 +M3 +M4 +M5 +M6)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 b6

2 (M0 +M1 +M2 +M3 +M4 +M5 +M6)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a6

2 (M6 +M7) (M0 +M1 +M2 +M3 +M4 +M5)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
2M7 a7 b6 (M0 +M1 +M2 +M3 +M4 +M5 +M6)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
2M7 a6 a7 (M0 +M1 +M2 +M3 +M4 +M5)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
2M7 a6 b6 (M0 +M1 +M2 +M3 +M4 +M5)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

π19 = I7xx − I7yy

π20 = I7zz

π21 =
M0 b02 b3 (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7
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+
M0 a3 b02 (M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 b02 b2 (M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 a2 b02 (M2 +M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

π22 =
a3 b1 (M0 +M1) (M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
b1 b2 (M0 +M1) (M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 a1 b3 (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 b03 b3 (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a2 b1 (M0 +M1) (M2 +M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 a1 a3 (M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 a1 b2 (M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 a3 b03 (M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 b2 b03 (M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 a1 a2 (M2 +M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 a2 b03 (M2 +M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
b1 b3 (M0 +M1) (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

π23 =
M0 b01 b3 (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 a3 b01 (M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 b01 b2 (M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7
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+
M0 a2 b01 (M2 +M3 +M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

π24 =
M0 a4 b02 (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− M0 b02 b5 (M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− M0 a5 b02 (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 b02 b4 (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

π25 =
M0 a1 a4 (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 a4 b03 (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− b1 b5 (M0 +M1) (M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− a5 b1 (M0 +M1) (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
b1 b4 (M0 +M1) (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− M0 a1 b5 (M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− M0 b03 b5 (M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a4 b1 (M0 +M1) (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− M0 a1 a5 (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 a1 b4 (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− M0 a5 b03 (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 b03 b4 (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7
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π26 =
M0 a4 b01 (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− M0 b01 b5 (M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− M0 a5 b01 (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 b01 b4 (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

π27 =
M0 a6 b02 (M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0M7 a7 b02

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0M7 b02 b6

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

π28 =
a6 b1 (M0 +M1) (M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 a1 a6 (M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 a7 b1 (M0 +M1)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0 a6 b03 (M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 b1 b6 (M0 +M1)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0M7 a1 a7

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0M7 a1 b6

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0M7 a7 b03

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0M7 b03 b6

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

π29 =
M0 a6 b01 (M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M0M7 a7 b01

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7
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+
M0M7 b01 b6

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

π30 =
a3 a4 (M0 +M1 +M2) (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a4 b2 (M0 +M1 +M2) (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− a5 b3 (M5 +M6 +M7) (M0 +M1 +M2 +M3)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
b3 b4 (M5 +M6 +M7) (M0 +M1 +M2 +M3)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− a2 b5 (M0 +M1) (M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a4 b3 (M0 +M1 +M2 +M3) (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− a2 a5 (M0 +M1) (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− a3 b5 (M6 +M7) (M0 +M1 +M2)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a2 b4 (M0 +M1) (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− b2 b5 (M6 +M7) (M0 +M1 +M2)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a2 a4 (M0 +M1) (M4 +M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− a3 a5 (M0 +M1 +M2) (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a3 b4 (M0 +M1 +M2) (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− a5 b2 (M0 +M1 +M2) (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
b2 b4 (M0 +M1 +M2) (M5 +M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− b3 b5 (M6 +M7) (M0 +M1 +M2 +M3)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

π31 =
M7 a7 b3 (M0 +M1 +M2 +M3)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7
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+
M7 b3 b6 (M0 +M1 +M2 +M3)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a2 a6 (M0 +M1) (M6 +M7)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a3 a6 (M6 +M7) (M0 +M1 +M2)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a6 b2 (M6 +M7) (M0 +M1 +M2)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 a2 a7 (M0 +M1)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 a2 b6 (M0 +M1)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a6 b3 (M6 +M7) (M0 +M1 +M2 +M3)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 a3 a7 (M0 +M1 +M2)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 a3 b6 (M0 +M1 +M2)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 a7 b2 (M0 +M1 +M2)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 b2 b6 (M0 +M1 +M2)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

π32 =
a6 b4 (M6 +M7) (M0 +M1 +M2 +M3 +M4)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− a5 a6 (M6 +M7) (M0 +M1 +M2 +M3 +M4)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 a4 a7 (M0 +M1 +M2 +M3)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 a4 b6 (M0 +M1 +M2 +M3)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− a6 b5 (M6 +M7) (M0 +M1 +M2 +M3 +M4 +M5)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− M7 a5 a7 (M0 +M1 +M2 +M3 +M4)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− M7 a5 b6 (M0 +M1 +M2 +M3 +M4)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7
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+
M7 a7 b4 (M0 +M1 +M2 +M3 +M4)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
M7 b4 b6 (M0 +M1 +M2 +M3 +M4)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− M7 a7 b5 (M0 +M1 +M2 +M3 +M4 +M5)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

− M7 b5 b6 (M0 +M1 +M2 +M3 +M4 +M5)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7

+
a4 a6 (M6 +M7) (M0 +M1 +M2 +M3)

M0 +M1 +M2 +M3 +M4 +M5 +M6 +M7
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