
This thesis was submitted to the Institute of Mechanism Theory, Machine Dynamics and Robotics

Development of a Motion Planner based on
Nonlinear Optimization for Free-Floating Robots

Master Thesis
by:

Siddhant Vivek Kadwe B.E.

Matriculation number: 415706

supervised by:

Dr.-Ing. Roberto Lampariello
Mr. Carlo Weidemann MSc.

Examiner :

Univ.-Prof. Dr.-Ing. Dr. h. c. Burkhard Corves

Prof. Dr.-Ing. Mathias Hüsing

Aachen, 20 April 2023

Sperrvermerk

Diese Masterarbeit wurde am Institut für Robotik und Mechatronik des Deutschen Zen-
trums für Luft und Raum fahrt (DLR) angefertigt. Sie enthält daher firmeninterne und
vertrauliche Informationen des DLR. Alle Rechte verbleiben beim DLR und die Arbeit
bleibt Eigentum des DLR. Um diese Informationen zu schützen, unterliegt diese Arbeit
einem unbefristeten Sperrvermerk.

Alle Informationen aus der Arbeit dürfen weder ganz noch teilweise ohne Genehmigung
des DLR veröffentlicht oder vervielfältigt werden. Es wird auch darauf hingewiesen, dass
keine Informationen an Dritte weitergegeben werden dürfen.

Betreuer

Dr.-Ing. Roberto Lampariello

Institut für Robotik und Mechatronik

Deutsches Zentrum für Luft- und Raumfahrt

Münchener Straße 20

82234 Weßling

roberto.lampariello@dlr.de

20 April 2023

v

Issue vii

Master Thesis
by Siddhant Vivek Kadwe B.E.
Matriculation number: 415706

Development of a Motion Planner based on Nonlinear Optimization for
Free-Floating Robots

While the launch of spacecraft and satellites is increasing rapidly, the accumulation of
debris in space creates an obstacle for future space missions. Free-floating robots are used
to tackle the issue of grasping the tumbling, non-cooperative space debris and stabilizing
them. Free-floating robots are manipulator arms attached to the base of an unactuated
satellite. The core problem is calculating the robot’s trajectory for grasping as the debris
has unknown parameters (momentum, pose, et cetera) within a specific time window.
The use of an optimization-based motion planner is considered in this research as it pro-
vides the criterion for robustness and stability. Trajectory planning is formulated as an
Optimal Control Problem with various motion constraints and a cost function that has
to be minimized. The drawback of this technique is the time consumption. Paralleliza-
tion techniques, using multi-core CPU and GPU, will be analyzed to reduce the time.
Comparison between different techniques for solution of the equation of motion for the
non-holonomic system, optimization methodologies will also be carried out.

The methodology undertaken is as follows:
The Optimal Control problem is analyzed, and parts that could parallelize within the
Optimal Control Framework will be determined. OpenMP-based parallel functions for
CPU processing and CUDA-based parallel functions for GPU processing are to be devel-
oped. The speedup gain, if any, for the developed parallel functions will be examined.
Different optimization methodologies will be implemented and compared. The trajectory
optimization problem will be drawn, with new task space. The parallel routines devel-
oped, which provide a significant improvement over the state-of-the-art techniques, will
be implemented for the motion planning problem. The statistical analysis of the results
from the motion planner will be carried out.

Supervisor: Dr.-Ing. Roberto Lampariello
Mr. Carlo Weidemann MSc.

Eidesstattliche Versicherung ix

Eidesstattliche Versicherung

Siddhant Vivek Kadwe Matrikel-Nummer: 415706

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Master Thesis mit dem
Titel

Development of a Motion Planner based on Nonlinear Optimization for
Free-Floating Robots

selbstständig und ohne unzulässige fremde Hilfe erbracht habe. Ich habe keine anderen
als die angegebenen Quellen und Hilfsmittel benutzt. Für den Fall, dass die Arbeit zusät-
zlich auf einem Datenträger eingereicht wird, erkläre ich, dass die schriftliche und die
elektronische Form vollständig übereinstimmen. Die Arbeit hat in gleicher oder ähnlicher
Form noch keiner Prüfungsbehörde vorgelegen.

Aachen, 20 April 2023
Siddhant Vivek Kadwe

Belehrung:
§ 156 StGB: Falsche Versicherung an Eides Statt
Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche
Versicherung falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird
mit Freiheitsstrafe bis zu drei Jahren oder mit Geldstrafe bestraft.

§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt
(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen
worden ist, so tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.
(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften
des § 158 Abs. 2 und 3 gelten entsprechend.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:

Aachen, 20 April 2023
Siddhant Vivek Kadwe

x Eidesstattliche Versicherung

The present translation is for your convenience only.
Only the German version is legally binding.

Statutory Declaration in Lieu of an Oath

Siddhant Vivek Kadwe Matriculation number: 415706

I hereby declare in lieu of an oath that I have completed the present Master Thesis
entitled

Development of a Motion Planner based on Nonlinear Optimization for
Free-Floating Robots

independently and without illegitimate assistance from third parties. I have used no other
than the specified sources and aids. In case that the thesis is additionally submitted in
an electronic format, I declare that the written and electronic versions are fully identical.
The thesis has not been submitted to any examination body in this, or similar, form.

Aachen, 20 April 2023 Siddhant Vivek Kadwe

Official Notification:
Para. 156 StGB (German Criminal Code): False Statutory Declarations
Whosoever before a public authority competent to administer statutory declarations falsely
makes such a declaration or falsely testifies while referring to such a declaration shall be liable
to imprisonment not exceeding three years or a fine.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to
Negligence
(1)If a person commits one of the offences listed in sections 154 to 156 negligently the penalty
shall be imprisonment not exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time.
The provisions of section 158 (2) and (3) shall apply accordingly. I have read and understood
the above official notification: :

Aachen, 20 April 2023 Siddhant Vivek Kadwe

Acknowledgments

I am pleased to take this opportunity to express my gratitude to the Institute of Robotics
and Mechatronics at the German Aerospace Center (DLR), as well as to my supervisor,
Dr.-Ing. Roberto Lampariello, for entrusting me with this opportunity. His invaluable
guidance and knowledge have been instrumental in my growth, and I am deeply appre-
ciative of everything he has taught me. Additionally, I wish to extend my sincere thanks
to Dr. Prof. Matthias Gerdts for his contributions to my understanding of the project’s
mathematical aspects.

I am also grateful to Mr. Carlo Weidemann for his support and assistance throughout
the completion of my thesis. He provided invaluable help with various tasks, including
documentations at the university. Moreover, I would like to express my appreciation to
Prof. Dr.-Ing. Dr. h. c. Burkhard Corves and Prof. Dr.-Ing. Mathias Hüsing for
their exceptional course in Robotic Systems Engineering and for serving as my thesis
examiners.

Lastly, I would like to thank my family members, Vivek Kadwe, Vaishali Kadwe, and
Manas Kadwe, as well as my friends for their unwavering support and encouragement.

Siddhant Vivek Kadwe

20 April 2023

Contents

Sperrvermerk v

Acknowledgments xi

Formula symbols and indices xv

List of abbreviations xvii

1 Introduction 1

2 State of the Art 5
2.1 Motion Planning . 5

2.1.1 Graph-based motion planning . 5
2.1.2 Sampling-based motion planning 6
2.1.3 Optimization-based motion planning 7

2.2 Trajectory Optimization . 7
2.2.1 Optimal Control . 9
2.2.2 OCPID-DAE1 . 9

2.3 Parallel Computing . 12
2.3.1 Moore’s Law . 13
2.3.2 Amdahl’s Law . 14
2.3.3 Gustafson’s Law . 14
2.3.4 GPGPU . 15
2.3.5 Compute Unified Device Architecture (CUDA) 16
2.3.6 CPU Multithreading . 17

2.4 Computing Hardware . 19

3 Problem Statement 21
3.1 Free Floating Robots . 21

3.1.1 Geometry . 21
3.1.2 Kinematics . 22
3.1.3 Dynamics . 24

3.2 Original Motion Planning Problem . 25
3.2.1 Calculation of Jacobians . 27
3.2.2 Computation of Robot Dynamics 27

xiv Contents

4 Computation of Robot Dynamics 29
4.1 Methodology . 30
4.2 Implementation . 31
4.3 Results . 32

5 Computation of Jacobians 35
5.1 Methodology . 35

5.1.1 Sensitivity-based approach . 35
5.1.2 Finite Differences-based approach 37

5.2 Implementation . 37
5.3 Results . 38

6 Conclusion 41

Bibliography I

List of Tables VII

List of Figures IX

Formula symbols and indices

Optimal Control Symbols

t s Time

x − General State Vector

u − General Control Vector

f − General System Dynamics

h − Equality Constraints

g − Inequality Constraints

ψ − Boundary Conditions

c − de Boor points

B − Basis Function

J − Cost Function Jacobian

G − Inequality Constraint Jacobian

H − Equality Constraint Jacobian

S − Sensitivity Matrix

Robot Symbols

r m Position Vector

A − Orientation Matrix

I m Position Vector between links

n − Number of links

v m
s Linear Velocity

ω rad/s Angular Velocity

xvi Formula symbols and indices

q rad Joint Angles

τ Nm Joint Torques

xe m End Effector Pose

xe
des m Desired End Effector Pose

x0 m Base Body Pose

M kgm2 Inertia Matrix

Mb kgm2 Base Body Inertia Matrix

Mbm kgm2 Coupling Inertia Matrix between base and arm

C Nm/s Coriolis and Centrifugal Matrix

List of abbreviations

General abbreviations

DLR Deutsches Zentrum für Luft- und Raumfahrt

RM Institute of Robotics and Mechatronics

OCP Optimal Control Problem

NLP Non-Linear Programming

CPU Central Processing Unit

GPU Graphical Processing Unit

API Application Programming Interface

DAE Differential and Algebraic Equation

ODE Ordinary Differential Equation

DOCP Discretized Optimal Control Problem

SQP Sequential Quadratic Programming

GPGPU General-Purpose computing on Graphics Processing Units

QP Quadratic Programming

CUDA Compute Unified Device Architecture

DH Denavit-Hartenberg

CM Center of Mass

DoF Degrees of Freedom

DOPRI Dormand-Prince Runge-Kutta

RHS Right Hand Side

FD Finite Difference

AD Automatic Differentiation

1 Introduction

The German Aerospace Center, also known as Deutsches Zentrum für Luft- und Raum-
fahrt (DLR), is the national center for aerospace, energy, and transportation research in
Germany. Founded in 1969, the DLR is responsible for designing, developing and testing
new technologies and concepts for space exploration, aviation and transportation systems.
With over 10,000 employees, the DLR is one of the largest and most advanced research
institutions in the world, providing valuable insights and contributions to various national
and international space projects.

The Institute of Robotics and Mechatronics (RM) is a leading research institution within
the DLR. The RM focuses on developing advanced technologies for use in space explo-
ration, aviation, and terrestrial applications. With a team of over 150 skilled researchers
and scientists, the RM is one of the largest and most advanced institutions of its kind
globally. The research activities of the RM span various topics, including intelligent
mechatronics, autonomous systems, robotics for exploration, human-robot interaction,
and virtual and augmented reality.

Space robotics is a growing field that aims to create intelligent and autonomous robots
to operate in harsh environments in space. It can enhance human space missions, enable
scientific investigations and exploration of remote locations.

(a) On-Orbit Servicing Simulator (OOS-
Sim)

(b) Lightweight Rover Unit (LRU)

Figure 1.1: Space Robots at Institute of Robotics and Mechatronics (RM), Source: [RM
website]

The Department of Autonomie und Fernprogrammierung at RM is at the forefront of
research and development of robotic technologies for space exploration. The group has
a particular focus on on-orbit servicing, which involves the maintenance, refuelling, and
repair of satellites and other space infrastructure. The group has developed a state-of-the-
art On-Orbit Servicing Simulator Figure 1.1a, which provides a platform for the testing

2 1 Introduction

and validation of new robotic servicing technologies. The Mechatronische Systeme group
has developed the Lightweight Rover Unit (LRU) Figure 1.1b, which is a highly versatile
and mobile robotic platform for lunar and planetary exploration. The LRU is capable
of performing a wide range of tasks, including drilling, sampling, and reconnaissance,
making it a valuable asset for future space missions.

Robotic manipulator arms mounted on a satellite are utilized for capturing a tumbling
target in space and involve two phases: free-flying and free-floating [DP93]. The primary
distinction between these phases is whether the satellite is actuated or not [PAM21]. The
free-floating phase is activated to minimize the use of propellant by turning off the base
satellite actuators.

Capturing targets with a free-floating robot requires planning its motion [PAM21]. This
is generally formulated as an optimal control problem (OCP), also known as trajectory
optimization [Bet98]. Such procedure provides high-quality solutions that can satisfy
multiple performance criteria and nonlinear constraints, also generates smooth trajectories
that are both continuous and differentiable. One approach to solving the OCP is to
transcribe the problem to a Nonlinear Programming (NLP) problem, which can then
be solved by finding the optimality conditions [Bet98]. The biggest drawback of this
methodology is the time it takes to create a feasible solution, as multiple iterations are
required to solve the NLP problem using the optimal control framework. It is crucial that
the motion planning computation is completed within a fraction of the total time required
for motion execution [Lam10], [LMO18].

Motivated by the time complexity challenge posed by the aforementioned OCP, the thesis
conducts an analysis to evaluate the potential benefits of two novel computation meth-
ods. Through this analysis, the bottlenecks and segments within the OCP that could be
parallelized are identified, ultimately pinpointing the sections that displayed particularly
high time consumption:

• Calculating the Jacobians of cost function and constraint: 10 to 15 percent of the
total time.

• Integrating the Robot Dynamics: 40 to 50 percent of the total time.

The scope of this thesis is to investigate various techniques for enhancing the time com-
plexity and execution speed of motion planning using the recent advancements in CPU
and GPU architectures to allow the parallelization of functions and routines. The efficacy
of these techniques will be assessed and compared to determine the most appropriate solu-
tion. The developed methods will be applied to address offline and online motion planning

3

challenges for free-floating space robots, which are utilized for different purposes, including
debris capturing in space.

The structure of this thesis is outlined as follows:

• Chapter 2 provides an overview of the current state-of-the-art motion planning tech-
niques, as well as the laws, Application Programming Interfaces (APIs), and software
used.

• In Chapter 3, the problem statement of the thesis is gradually developed, and two
workloads that the thesis will address are formulated.

• Chapters 4 and 5 present the proposed solutions for the two workloads, and their
experimental implementations and results are discussed in detail.

• Finally, Chapter 6 concludes the thesis by summarizing the findings and presenting
potential directions for future research.

2 State of the Art

This chapter presents an overview about the state of the art methodologies and software
in motion planning, optimal control, and parallel computation.

2.1 Motion Planning

A fundamental need in robotics is to have algorithms that convert high-level specifica-
tions of tasks from humans into low-level descriptions of how to move [LaV06]. Motion
planning of robots is an essential research area in robotics that deals with developing
algorithms for designing feasible and optimal trajectories for robots. Several approaches
have been proposed to address this problem, including graph-based, sampling-based, and
optimization-based methods. Graph-based methods represent the environment as a graph,
where the nodes correspond to the robot’s configuration and the edges represent the tran-
sitions between the configurations. The goal is to find a path through the graph that
satisfies constraints and optimizes performance criteria. Sampling-based methods, on the
other hand, generate a set of random configurations, which are tested for feasibility and
optimality. These methods do not rely on the construction of an explicit graph and can
handle high-dimensional configuration spaces. Optimization-based methods formulate
the motion planning problem as an optimization problem, where the objective function
is optimized subject to constraints. These methods can handle complex constraints and
performance criteria, but the optimization problem’s complexity can be a challenge.

2.1.1 Graph-based motion planning

Graph-based motion planning is a class of motion planning methods that rely on con-
structing an explicit graph of the configuration space, where each node represents a valid
configuration and each edge represents a valid motion between two configurations. The
most commonly used graph-based methods are Dijkstra’s algorithm, A* algorithm, and
their variations.

Dijkstra’s algorithm [Dij59], also known as the shortest path algorithm, is a popular graph-
based motion planning algorithm that finds the shortest path between two configurations.
The algorithm iteratively explores the graph by selecting the node with the shortest
distance from the start node and adding its neighbors to the search space. This process

6 2 State of the Art

continues until the goal node is reached, and the optimal path from the start to the goal
configuration is obtained.

The A* algorithm [HNR68] is an extension of Dijkstra’s algorithm that includes a heuris-
tic function to guide the search towards the goal configuration. The heuristic function
estimates the distance from a node to the goal configuration and helps to focus the search
on the most promising nodes. A* algorithm is particularly effective in high-dimensional
configuration spaces where the search space is large and the path cost can be reduced by
considering the heuristic information.

Graph-based methods have several advantages, including optimality and completeness,
meaning that they guarantee finding the optimal solution if one exists. However, they
can be computationally expensive, particularly in high-dimensional configuration spaces,
and they may not be suitable for systems with complicated dynamics and constraints.

2.1.2 Sampling-based motion planning

Sampling-based motion planning sample random robot configuration space to find a
collision-free path between the start and goal configurations. The most commonly used
sampling-based methods include probabilistic roadmaps (PRM) [KSL96], rapidly explor-
ing random trees (RRT) [LaV98], and their variations [KWP11].

Probabilistic roadmaps (PRM) algorithm is a popular sampling-based motion planning
algorithm that constructs a roadmap of the configuration space by randomly sampling
configurations and connecting them to form a graph. The algorithm then searches for
a path between the start and goal configurations by exploring the graph. PRM can be
enhanced by using various sampling strategies, such as biased sampling towards narrow
passages and high-cost regions, to improve the efficiency of the algorithm.

RRT algorithm and the variants are another popular sampling-based motion planning
algorithm that constructs a tree of configurations by iteratively sampling a random con-
figuration and adding it to the tree. The new configuration is connected to the nearest
existing configuration in the tree, and this process continues until the goal configuration
is reached. The RRT algorithm can be enhanced by using different strategies, such as
goal biasing and intelligent sampling, to improve its efficiency and optimality.

The advantages of sampling-based methods include scalability, applicability to systems
with complicated dynamics and constraints, and computational efficiency in high dimen-
sional configuration spaces. However, they may not always guarantee finding an optimal
solution and may require significant tuning of parameters to achieve satisfactory results.

2.2 Trajectory Optimization 7

2.1.3 Optimization-based motion planning

Optimization-based motion planning focuses on finding a solution that minimizes a cost
function, which may represent the distance, time, energy, or any other performance cri-
terion. The optimization-based motion planning methods can be formulated as nonlinear
programming problems or linear programming problems, and the solution can be obtained
by using gradient-based or gradient-free optimization techniques.

One of the most popular optimization-based motion planning methods is the trajectory
optimization algorithm, which formulates the motion planning problem as a nonlinear pro-
gramming problem and optimizes the trajectory subject to constraints such as dynamic
constraints, collision avoidance, and boundary conditions. The solution to this prob-
lem can be obtained using numerical optimization techniques [Bet98], such as gradient-
based optimization, and can produce high-quality trajectories that satisfy the motion
constraints.

Other optimization-based motion planning methods include convex optimization-based
methods, such as linear and quadratic programming, and non-convex optimization-based
methods, such as global optimization and stochastic optimization. These methods can
be used to find optimal solutions to motion planning problems that involve complex
constraints and objectives, such as optimal path planning and motion planning under
uncertainty.

Optimization-based motion planning find high-quality solutions that satisfy multiple per-
formance criteria and constraints, as well as the ability to generate smooth and natural-
looking trajectories. However, these methods can be computationally expensive and may
require significant tuning of parameters to achieve satisfactory results [LMO18].

With the advantages of trajectory optimization, it is the most suitable motion planning
method for free-floating robots. It can manage the complex dynamics and environments
to produce optimal solutions. The next sections dives into the details of trajectory opti-
mization and its solution methods.

2.2 Trajectory Optimization

The term trajectory optimization refers to a set of methods that are used to find the best
choice of trajectory, typically by selecting the inputs to the system, known as controls,
as functions of time [Kel17]. The problem of motion planning is framed as a nonlinear
programming problem and the trajectory is optimized while taking into account certain
constraints, such as dynamic constraints, collision avoidance, and boundary conditions.

8 2 State of the Art

Trajectory optimization can be used to plan the motion of a robotic system through
complex environments while optimizing a performance metric such as energy consumption
or execution time. To apply trajectory optimization, the motion planning problem is
first formulated as an optimization problem with the objective function and constraints
based on the specific requirements of the problem. The optimization problem can then
be solved using numerical optimization techniques such as gradient-based optimization,
which iteratively improves the solution by calculating the gradient of the objective function
and adjusting the trajectory accordingly [Bet98].

Consider an objective function to be minimized with respect to (w.r.t) x and u, the state
and control trajectories respectively, whereas, t0 and tf are the initial and final time:

min
t0,tf ,x(t),u(t)

J(t0, tf , x(t0), x(tf)) +
tf∫

t0

(ω(τ, x(τ), u(τ)))dτ (2.1)

The objective function has 2 terms, J(·) is the Mayer term and the integral is known as
the Langrange term. If both of these exists in the objective, then the complete form is
known as Bolza form.

The objective function is minimized such that the constraints are satisfied such as the
system dynamics (f):

ẋ(t) = f(t, x(t), u(t)) (2.2)

Path constraints (h):

h(t, x(t), u(t)) ≤ 0 (2.3)

Boundary constraints (g):

g(t0, tf , x(t0), x(tf)) ≤ 0 (2.4)

Path bounds on states where xlow and xupp are the lower and upper bounds respectively:

xlow ≤ x(t) ≤ xupp (2.5)

2.2 Trajectory Optimization 9

Path bounds on controls where ulow and uupp are the lower and upper bounds respectively:

ulow ≤ u(t) ≤ uupp (2.6)

Trajectory optimization has several advantages, including the ability to handle complex
motion constraints and generate smooth and natural-looking trajectories. However, tra-
jectory optimization can be computationally expensive and may require significant pa-
rameter tuning to achieve satisfactory results.

In recent years, researchers have proposed various extensions to the trajectory optimiza-
tion framework to address specific challenges, such as incorporating uncertainty or multi-
objective optimization. Examples of such extensions include chance-constrained trajec-
tory optimization, multi-objective trajectory optimization, and learning-based trajectory
optimization.

2.2.1 Optimal Control

Trajectory optimization can be solved using optimal control techniques by formulating
the motion planning problem as an optimal control problem [Kel17]. The optimal control
problem seeks to find a control policy that minimizes a cost function while satisfying the
dynamics and constraint equations of the system.

The cost function can be defined based on various criteria such as energy consumption,
time to complete the task, or trajectory smoothness. The dynamic and constraint equa-
tions describe the system’s evolution over time and can be derived from the robot’s kine-
matics and dynamics equations. One approach to solving the optimal control problem
is through indirect methods, where the problem is first transformed into a boundary
value problem, and then solved using numerical optimization techniques such as shooting
methods or collocation methods.

2.2.2 OCPID-DAE1

Developed by Univ.-Prof. Dr. rer. nat. Matthias Gerdts of the Universität der Bun-
deswehr, München, the Optimal Control and Parameter Identification with Differential-
Algebraic Equations of Index 1 (OCPID-DAE1) [Ger18] is a package developed in Fortran
90 to find numerical solution of the Optimal Control Problems (OCP).

10 2 State of the Art

The goal is to minimize the Objective Function subject to the Implicit Differential Equa-
tion (DAE), Boundary Conditions, State Constraints, and the Box Constraints. ζi ∈
[t0, tf]; i = 1, · · · , L; L ∈ N0. H is used for model parameter identification problems.
x(·) : [t0, tf] → Rnx is the state variable, u(·) : [t0, tf] → Rnu is the control variable, and
p ∈ Rnp . The problem formulation can be defined as follow:

Objective Function:

φ(x(t0), x(tf), tf , p) +
∞∑

n=1
(H(ζi, x(ζi), u(ζi), p)) (2.7)

Implicit Differential Equation (DAE):

f(t, x(t), ẋ(t), u(t), p) = 0 (2.8)

Boundary Conditions:

Ψ ≤ Ψ(t0, tf , x(t0), x(tf), u(t0), u(tf), p) ≤ Ψ̄ (2.9)

State Constraints:

g ≤ g(t, x(t), u(t), p) ≤ ḡ (2.10)

Box Constraints:

u ≤ u(t) ≤ ū, p ≤ p ≤ p̄ (2.11)

The time is bounded t0 ≤ t ≤ tf . The equation Eq.(2.8) can be designed in two ways:

• Ordinary Differential Equations (ODEs):

M(t, x(t), u(t), p) · ẋ(t)− f(t, x(t), u(t), p) = 0 (2.12)

with non-singular matrix M(·)

• Index-1 Differential Algebraic Equations (DAEs)

F(t, xd(t), y(t), ẋd(t), u(t), p) = 0 (2.13)

2.2 Trajectory Optimization 11

The state x = (xd(t), y) ∈ Rnx is separated as differential variables xd ∈ Rnx−ny and
algebraic variables y ∈ Rny

As time from t0 to tf is infinite, thus are the control inputs to the optimal control prob-
lem. To solve this problem, the OCP is to be discretized and transformed into a finite-
dimensional nonlinear optimization problem.

• Control Discretization: This discretization is achieved by approximating the control
u by the function:

uN(t) = uN(t; c1, · · · , cN+k−2) :=
N+k−2∑

n=1
(ci ·Bik(t)) (2.14)

and discretizing the time as:

Ru := t1, t2, · · · , tN , N ≥ 2 (2.15)

The vector ci ∈ Rnu , i = 1, · · · , N + k − 2 are the de Boor points and the basis
function Bik(·) are the B-splines of order k.

• State Approximation: The differential equation (2.8) can be approximated by a
suitable integration scheme such as Runge Kutta methods which gives xapp(·)

xapp(ti+1) = xapp(ti) + hi · f(ti, xapp(ti), u(ti)), xapp(t0) = x(t0) (2.16)

The Discretized Optimal Control Problem (DOCP) can then be formulated as:

Objective Function

φ(xapp(t0), xapp(tf), tf , p) +
L∑

n=1
(H(ζi, xapp(ζi), uN(ζi), p)) (2.17)

Discretized Boundary Conditions

Ψ ≤ Ψ(t0, tf , xapp(t0), xapp(tf), uN(t0), uN(tf), p) ≤ Ψ̄ (2.18)

Discretized State Constraints

g ≤ g(ti), xapp(t), uN(t), p) ≤ ḡ (2.19)

12 2 State of the Art

Box Constraints

u ≤ ci ≤ ū, p ≤ p ≤ p̄, i = 1, · · · , N + k − 2 (2.20)

To evaluate the problem, the Objective Function, Differential Equation, State Constraints,
Boundary Conditions, Initial estimate of state, and the Initial estimate of the de Boor
points are to be implemented as routines in Fortran. The function OCPIDDAE is then
called with all the necessary initial parameters such as the initial and final time, upper
and lower bounds of the constraints, and the de Boor grid. DOCP is then solved by
Sequential Quadratic Programming (SQP) method implemented in the sqpfiltertoolbox,
also developed by Univ.-Prof. Dr. rer. nat. Matthias Gerdts.

2.3 Parallel Computing

Parallel computing is a computing technique that involves executing multiple tasks si-
multaneously by breaking them into smaller parts and assigning each part to a separate
processor or computing device. This approach allows for faster and more efficient process-
ing of large and complex data sets, and has become increasingly popular in recent years
due to advancements in hardware and software technologies.

Parallel computing can be implemented in a variety of ways, including using multiple
cores on a single processor, using multiple processors on a single machine, or using a
cluster of machines connected via a network. Each approach has its own strengths and
weaknesses, and the choice of which approach to use will depend on factors such as the
size of the data set, the complexity of the task, and the available hardware and software
resources.

One of the key challenges of parallel computing is ensuring that the different parts of
the task are properly synchronized and coordinated. This requires careful planning and
design, as well as the use of specialized programming tools and techniques. Additionally,
parallel computing can also be more complex and difficult to debug than traditional serial
processing, which can make it more challenging for developers and researchers to work
with.

As hardware and software technologies continue to advance, it is likely that parallel com-
puting will become even more important in the years to come, enabling researchers and
developers to tackle increasingly complex and demanding tasks with greater efficiency and
speed. The three main laws that governs the parallel computing framework are described
below. Parallel computing can be achieved by CPU multi-threading or General-Purpose

2.3 Parallel Computing 13

computing on Graphics Processing Units (GPGPU) which are then introduced later in
this chapter.

2.3.1 Moore’s Law

In 1965, Intel co-founder Gordon Moore predicted that the number of transistors on a
chip would double roughly every two years, with a minimal rise in cost [Moo65]. This law
has held true for several decades, and has been a driving force behind the rapid advances
in computing technology over the past few decades.

Figure 2.1: Moore’s Law, Source: [Intel Website]

Moore’s Law Figure 2.1 has been the guiding principle behind the development of the
semiconductor industry and has allowed the technology industry to push the limits of
computing power. It has led to a range of technological advancements, from smaller and
more powerful computers to the development of mobile devices and the Internet of Things.
However, the continued adherence to Moore’s Law has faced challenges in recent years.
The laws of physics dictate that it becomes increasingly difficult to pack more transistors
onto a microchip as the size of the transistors approaches the atomic scale. As a result,
the rate of increase in computing power has slowed down and the cost of developing new
technologies has increased.

Despite these challenges, researchers and engineers have continued to push the limits of
computing power, exploring new technologies such as quantum computing and neuromor-
phic computing. These emerging technologies offer new ways to overcome the limitations
of traditional computing and could potentially usher in a new era of computing power.

14 2 State of the Art

2.3.2 Amdahl’s Law

Amdahl’s Law [Amd67] is a fundamental concept in parallel computing that describes
the potential speedup that can be achieved when a program is executed on a parallel
processing system. The law was formulated by Gene Amdahl, a computer architect and
designer, in 1967.

The law states that the maximum possible speedup of a program running on a parallel
system is limited by the portion of the program that cannot be parallelized, or the "serial
fraction". This means that even if a program is run on an infinitely large number of
processors, there is a limit to how much faster the program can be executed if a portion
of the program cannot be parallelized.

Mathematically, Amdahl’s Law can be expressed as:

S(N) = 1/(1− p + (p/N)) (2.21)

where, S is the speedup gain, p is the proportion of the program that can be parallelized,
N is the number of processors, and (1− p) is the proportion of the program that cannot
be parallelized.

From the equation, it is clear that as the number of processors (N) increases, the speedup
of the program becomes more limited by the serial fraction of the program. This means
that the benefits of parallel processing diminish as more processors are added, and there
is a point beyond which additional processors do not result in significant performance
gains.

Amdahl’s Law highlights the importance of identifying the portion of a program that
cannot be parallelized and optimizing it for maximum efficiency. It also emphasizes the
need for careful analysis and planning when developing parallel programs, as well as
the importance of choosing the right balance between the number of processors and the
amount of parallelization in order to achieve maximum performance.

2.3.3 Gustafson’s Law

Gustafson’s Law [Gus88] is a complementary concept to Amdahl’s Law, developed by John
Gustafson in 1988. While Amdahl’s Law emphasizes the limitations of parallel processing
due to the serial fraction of a program, Gustafson’s Law focuses on the potential benefits
of parallel processing when scaling up the size of a problem.

2.3 Parallel Computing 15

Gustafson’s Law states that the speedup of a program running on a parallel system can be
increased by scaling up the size of the problem to be solved, rather than just increasing
the number of processors. This means that as the size of the problem increases, more
processing power can be used to solve the problem faster.

Gustafson’s Law can be denoted mathematically as:

S(N) = N + (1−N) ∗ p (2.22)

where, S is the speedup gain, N is the number of processors and p is the proportion of
the program that can be parallelized.

From the equation, it is clear that as the size of the problem increases (i.e., as p → 1),
the speedup of the program becomes more dependent on the number of processors. This
means that the benefits of parallel processing increase as the size of the problem scales
up, and there is no limit to the potential speedup that can be achieved.

2.3.4 GPGPU

General-purpose computing on graphics processing units (GPGPU) refers to the use of a
graphics processing unit (GPU) to perform computations that are typically performed by
the central processing unit (CPU). GPUs were originally designed for rendering graphics in
video games and other visual applications, but their massively parallel architecture makes
them well-suited for certain types of scientific, engineering, and financial computations.

Figure 2.2: GPU vs CPU architecture, Source: [CUDA Programming Guide]

GPUs consist of many processing cores, which can perform computations simultaneously.
While CPUs typically have a few cores optimized for serial execution, GPUs have hundreds
or thousands of cores optimized for parallel execution Figure 2.2. This allows GPUs to

16 2 State of the Art

process large amounts of data in parallel, which can result in significant speedup over
traditional CPU-based computations.

To utilize the power of GPUs for general-purpose computing, specialized programming
models and languages have been developed. One popular programming model is CUDA
(Compute Unified Device Architecture) [CUDA Programming Guide], which is a parallel
computing platform and programming model developed by Nvidia for use with their
GPUs. CUDA allows programmers to write code in a C-like language and to execute
it on Nvidia GPUs. Other popular programming models for GPGPU include OpenCL
[Khronos Group OpenCL], which is an open standard for heterogeneous computing, and
DirectCompute [Direct Compute], which is a Microsoft API for parallel computing on
GPUs.

GPGPU has been used in a wide range of applications, including scientific simulations,
data analytics, machine learning, and finance. For example, GPGPU has been used to
accelerate the training of neural networks, which is a computationally-intensive task that
requires many matrix operations. GPGPU has also been used to accelerate simulations
of fluid dynamics, which require the solution of large systems of partial differential equa-
tions.

2.3.5 Compute Unified Device Architecture (CUDA)

CUDA is a parallel computing platform and programming model developed by NVIDIA
for accelerating computing performance on GPUs. CUDA enables developers to write
programs in C, C++, and Fortran that can run on NVIDIA GPUs, allowing for massive
parallelism that can speed up computations by orders of magnitude [CUDA Programming
Guide].

One of the key concepts in CUDA programming is the concept of kernels. Kernels are
small, highly parallel functions that are executed on the GPU. They are written in C/C++
and are called from the host code. When a kernel is called, it is executed by a large number
of threads on the GPU, with each thread executing the same code on different data.

Algorithm 1 is a small example of CUDA pseudo code that demonstrates the use of kernels.
The three arrays A, B, and C are first allocated on host (CPU) memory and then arrays
A and B are initialized with some data. We then allocate memory for these arrays on the
device (GPU) and the data is copied from the host to the device. The block size and grid
size for the kernel launch are set after which the kernel addArrays with the specified block
and grid size, passing in the device pointers to arrays A, B, and C, as well as the size of
the arrays is launched. The kernel adds corresponding elements of A and B and stores the

2.3 Parallel Computing 17

result in C. Finally, the data is copied from the device to the host using and the memory
is freed from the host and device. CUDA can be used for a wide variety of applications,
including scientific simulations, computer vision, machine learning, and more.

Algorithm 1 CUDA Array Addition
procedure AddArray

i← Block.ID.x ∗Block.Dim.x + Thread.ID.x
if i < N then

C[i]← A[i] + B[i]
end if

end procedure

procedure main
N ← 1000
A← array[N] ∗ sizeof(float)
B ← array[N] ∗ sizeof(float)
C ← array[N] ∗ sizeof(float)
dA← array[N] ∗ sizeof(float)
dB ← array[N] ∗ sizeof(float)
dC ← array[N] ∗ sizeof(float)

for i = 0 to N − 1 do
A[i]← i
B[i]← N − i

end for

(dA← A) : memory copy from host to device
(dB ← B) : memory copy from host to device

blockSize← 256
gridSize← (N+blockSize−1)

blockSize

call addArrays <<< gridSize, blockSize >>> (dA, dB, dC, N)

(C ← dC) : memory copy from device to host
end procedure

2.3.6 CPU Multithreading

CPU multi-threading is a technique used to improve the performance of applications that
can be parallelized. With multi-threading, multiple threads of execution can be created
to run concurrently on a CPU, allowing for parallel processing of tasks.

18 2 State of the Art

One popular library for implementing multi-threading in C/C++ is OpenMP. OpenMP
provides a set of compiler directives and library functions that allow developers to easily
create parallel applications for multi-core CPUs.

Algorithm 2 OpenMP Array Sum
procedure main

num_threads← 4
sum← 0

#pragma omp parallel num_threads
thread_id← omp_get_thread_num()
thread_sum← 0
for i = thread_id to 100 with a step of num_threads do

thread_sum← thread_sum + i
end for

#pragma omp critical
sum← sum + thread_sum

end procedure

Algorithm 2 is a small example of OpenMP pseudo code that demonstrates the use of mul-
tithreading. In this example, the number of threads is set to 4. The #pragma_omp_parallel

directive is used to create a parallel region, indicating that the following code should be
executed concurrently by the specified number of threads. Each thread gets its own ID
using omp_get_thread_num(). Each thread then calculates its own sum over a portion
of the loop, adding every num_threads element. The results are then accumulated into a
shared variable sum using the #pragma_omp_critical directive to ensure that only one
thread at a time is accessing this shared resource, to avoid race conditions. Finally, the
value of sum is printed to the console.

OpenMP handles the details of creating and managing the threads, making it easier for
developers to write parallel code. With OpenMP, developers can focus on the parallelism
of their code, while the library handles the details of scheduling and synchronization.

OpenMP can be used for a wide variety of applications, including scientific simulations,
image processing, and more. With the power of OpenMP, developers can take advantage
of the full computing power of multi-core CPUs, improving the performance of their
applications.

2.4 Computing Hardware 19

2.4 Computing Hardware

The results in this thesis are computed using multiple machines for GPU and CPU com-
putations, as given in Table 2.1 and Table 2.2.

Table 2.1: GPU Machines

Machine Name GPU CUDA version Driver version
125 GTX 1080 TI 11.4 470.161.03
12 Titan V 11.4 470.161.03
16 RTX 2080 TI 11.4 470.161.03

Table 2.2: CPU Machines

Machine Name CPU(s) S:C:T Processors
181 10 1:4:2 Xeon(R) CPU E5-1620 v3
125 20 1:10:2 Xeon(R) CPU E5-2687W v3
231 56 1:7:1 Xeon(R) CPU E5-2680 v4

3 Problem Statement

In this chapter, the thesis explores the kinematics and dynamics of free-floating robots,
as well as delve into the original motion planning problem.

3.1 Free Floating Robots

This section presents the free-floating mode of robot manipulators that are mounted on
non-actuated satellite bases. The mode excludes any external actions, and the robot’s
dynamic behavior is solely determined by the orbital free multi-body dynamics.

Figure 3.1: Free Floating Robot, [NP17]

The free-floating mode can be achieved by deactivating all spacecraft thrusters, which will
prevent the system’s center of mass from translating. In this mode, the spacecraft will
translate and rotate in response to the manipulator motions. To maintain the spacecraft
attitude during manipulator motions and avoid communication loss with ground stations,
as well as solar panel disorientation, momentum control devices (MCDs) such as reaction
wheels or momentum gyros are used. While the system’s center of mass remains station-
ary, these MCDs actively control the spacecraft attitude [PAM21]. If MCDs are used,
then the mode is referred to as partial free-floating. Both the free-floating and partial
free-floating modes are preferred during grasping, as they eliminate sudden motions due
to thrusters and conserve propellant and power.

3.1.1 Geometry

In robotics, it is typical to first describe the structure of the robot in terms of its kinemat-
ics. Each body is then associated with a reference frame denoted by (Oi, ei). As seen in
Figure 3.2, the free-floating robot also has a base body with a reference frame denoted by

22 3 Problem Statement

(OO, eO). The frames for the robot links are attached at the respective joints in terms of
the Denavit and Hartenberg (DH) notation. The end-effector also has a reference frame
denoted by (Oe, ee).

Figure 3.2: Robot Geometry

The Center of Mass (CM) of the complete system has a reference frame denoted by
(OCM , eCM) and is also an inertial frame (OI , eI) for the free-floating robot. The motion
of the whole multi-body system is restricted around the CM.

3.1.2 Kinematics

In this section, the thesis examines the kinematic properties of free-floating robots based
on the geometry developed in Section 3.1.1. The position vector of the base body from
the CoM is r0 ∈ R3. The position of the (i+1)’th link and CM of (i+1)’th link from link
i are i+1Ii ∈ R3 and ici+1 ∈ R3, respectively.

The pose - position (ri ∈ R3) and orientation matrix (Ai,I ∈ R3×3) of the i’th link in the
inertial frame (OI , eI) is as follows:

3.1 Free Floating Robots 23

ri = r0 + AI,0 · 1I0 +
i∑

j=1
(AI,j · JIJ−1) (3.1)

Ai,I = Ai,i−1 · · ·A1,0 ·A0,I (3.2)

Here, 0 ≤ i ≤ n, where n+1 is the total number of bodies. The Degrees of Freedom (DoF)
of the system are denoted by the joint angles q ∈ Rn.

• Forward Kinematics:

The end effector pose is calculated with the help of forward kinematics.

re = r0 + AI,0 · 1I0 +
n∑

j=1
(AI,j(qj) · jIj−1) (3.3)

Ae,I = An,n−1(qn−1) · · ·A1,0 ·A0,I (3.4)

It is important to note that the calculations for a robot’s forward kinematics depend
on both the robot’s design parameters and the measured joint configuration. How-
ever, these values are never known with complete accuracy, which means that the
computed values for forward kinematics will always differ slightly from the actual
values. Although these differences may be small, they are still significant and cannot
be ignored.

• Differential Kinematics:

Differential kinematics can be used to calculate the end-effector velocities (linear
ve ∈ R3 and angular ωe ∈ R3) of the robot. The base body’s linear and angular
velocities are denoted by v0 ∈ R3 and ω0 ∈ R3, respectively.

ve = v0 +
n∑

i=0
(ωi · i+1Ii) (3.5)

with ωi = ω0 + ∑i
j=1(ωj(j−1)) = ω0 + ∑i

j=1(q̇j · uj)

ωe = ω0 +
n∑

i=0
(q̇i · ui) (3.6)

24 3 Problem Statement

uj is the unit vector in the direction of the axis of rotation of joint j. Equations
(3.5) and (3.6) is then expressed in matrix form:

ẋe = Jb · ẋ0 + J · q̇ (3.7)

With ẋe = [veT ωeT]T ∈ R6, ẋ0 = [v0T ω0T]T ∈ R6. Here, J is the geometric
Jacobian of the robot and Jb is the base Jacobian. E3 ∈ R3×3 is an Identity matrix.

Jb =
E3 −re,0

0 E3

 (3.8)

3.1.3 Dynamics

The momentum of a free-floating robotic system remains conserved when the external
forces acting on it are zero. The equation of motion for a free-floating system can be
obtained using the Lagrangian approach [DP93].

The equation of motion for free-floating system can be derived from the free-flying system
with F0 are the forces acting on the base body and Fe are the forces when robot interacts
with the environment, τ are the torques acting on the joints:

M ·

ẍ0

q̈

 + C ·

ẋ0

q̇

 =
F0

τ

 +
JT

b

JT

 Fe (3.9)

M =
 Mb Mbm

MT
bm Mm

 the inertia matrix, C =
 Cb Cbm

Cmb Cm

 the Coriolis and centrifugal

matrix.

For a free-floating system, there are no external forces on the robot and thus, F0 = 0
(conservation of momentum) and Fe = 0. The Equation (3.9) then becomes [YT93]:

ẍ0 = −M−1
b Mbmq̈ −M−1

b Cbẋ0 −M−1
b Cbmq̇ (3.10)

τ = M∗q̈ + C∗q̇ (3.11)

3.2 Original Motion Planning Problem 25

M∗ = Mm −MT
bmM−1

b Mbm (3.12)

C∗ = Cm −MT
bmM−1

b Cbm − (Cmb −MT
bmM−1

b Cb)M−1
b Mbm (3.13)

Equations (3.5) and (3.6) reveal that the end-effector’s linear and angular velocities are
functions of the joint rates and the base body’s angular velocity. It has been shown that
the base body’s angular velocity also depends on the joint rates [Pap90]. This dependence
can be numerically integrated to obtain the base body orientation, which is dependent
on the path taken in joint space. Since the end-effector’s position in the inertial frame is
a function of the base body orientation, the end-effector’s position is also a function of
the path taken. However, as the calculation of the base body orientation cannot be done
analytically and is path dependent, it introduces a non-holonomic characteristic to the
free-floating system.

3.2 Original Motion Planning Problem

To reduce the risk of failure and increase the safety, it is important to choose control
algorithms that accurately satisfy the constraints for motion planning. This gives rise to
a nonlinear constrained control problem. For simplicity, consider the original point-to-
point motion control problem where the end effector at time t0 ∈ R is at pose xe(0) =
[reT (0) ψeT (0)] and at time tf ∈ R is at pose xe

des(tf) = [reT
des(tf) ψeT

des(tf)]. The
planning is defined next [LMO18]:

The cost function taken into consideration is to minimize the mechanical energy

J = min
q̇(t),τ (t)

tf∫
t0

(τ T (t) · q̇)2dt (3.14)

The free-floating robot momentum conservation equations yield [YWH16]:

ẋ0(t) = −M−1
b Mbm · q̇(t) (3.15)

Mb, Mbm are the inertia matrices for the base body and the coupling between the base
and arm respectively. The end-effector pose xe(tf) and velocity ẋe(tf) at the final time

26 3 Problem Statement

should reach a desired pose xe
des(tf) with a desired velocity ẋe

des(tf), which results in an
equality constraints:

xe(tf) = xe
des (3.16)

ẋe(tf) = ẋe
des (3.17)

and the boundary conditions that need to be satisfied are:

qmin(t) ≤ q(t) ≤ qmax(t) (3.18)

q̇min(t) ≤ q̇(t) ≤ q̇max(t) (3.19)

τmin(t) ≤ τ (t) ≤ τmax(t) (3.20)

[DP93] states that the free-floating system is non-holonomic. To solve the continuous time
OCP, the thesis use the single shooting transcription method to reduce it to a discretized
version. Controls are discretized using B-splines and Equation (3.15) is approximated
using an integration scheme like Runge-Kutta. The time grid is divided into N via-
points, and de Boor points ci are vectors in Rn, where n is the number of available joints.
B-spline basis functions Bik(·) of order k are used, where (1 ≤ i ≤ N +k−1) as mentioned
in Section 2.2.2.

Thus, the DOCP is:

min
c

J(tf , q(t, c), τ (t)) (3.21)

subject to

gi(q(t, c), τ (t)) = 0 (3.22)

hi(q(t, c), τ (t)) ≤ 0 (3.23)

3.2 Original Motion Planning Problem 27

and τ (t) is solved by the equation in (3.11):

τ (t) = M∗ · q̈(t, c) + C∗ · q̇(t, c) (3.24)

This discretized problem is solved using the Sequential Quadratic Programming method
which requires the Jacobians of the cost function (J) and the constraints (g and h).

As seen in the introduction, there are two workloads which takes high execution time
which are as follows:

3.2.1 Calculation of Jacobians

To solve the nonlinear programming problem arising from the optimal control framework,
the Jacobians of the constraints and the objective function are required. As the number
of constraints exceeds the number of optimization variables [Lam10], the sensitivity based
approach and finite difference approach are the most suitable [Ger12].

3.2.2 Computation of Robot Dynamics

To calculate the derivatives as discussed in the previous section, the constraints need
to be evaluated. Determining the constraints involves the core robot calculation, which
requires numerically integrating Equation (3.15). This is computationally expensive. For
computing multiple queries using an offline motion planner to create a database for warm
starting of online motion planner, the numerical integration can be parallelized for all the
queries using GPGPU computation.

The next chapters deal with novel methodologies for the above workloads and provide
solutions with better time complexities.

4 Computation of Robot Dynamics

An offline motion planner is used to create trajectories for various final end-effector poses
and velocities. These trajectories can then be used to warm-start an online (real-time)
motion planner. Giving good initial guesses to the optimization planner is of utmost
importance, and the feasibility and optimality of the solution depends on the initial guess.
With a bad initial guess, the motion planner could reach an unfavorable locally optimal
solution or simply not converge. Thus, generating feasible warm-starting solutions for
an online motion planner with an offline motion planner will guarantee a robust and
near-global optimal solution for the problem. As solving the OCP is time-consuming,
such multiple queries could be parallelized using either CPU multi-threading or GPU
parallelization. This chapter focuses on the parallelization of the integration of robot
dynamics Equation 3.15.

The ideology behind this is motivated by [CEK16], where the humanoid motion planning
is solved as a semi-infinite optimization program, and the core robot and constraints
computations are calculated using GPUs. However, they do not consider the flight mode
where the system becomes non-holonomic. The challenge in a non-holonomic system is
the integration of the system dynamics within the complete time frame. A single instance
of the integration cannot be parallelized. Whereas in the time frame where contact is
present (no flight phase - holonomic system), the computation of end-effector pose is an
analytical equation and thus can be parallelized on the discretized time steps.

The authors in [YWP16] observed a significant speedup in computing forward dynamics
using different algorithms on the Nvidia CUDA GPU platform, especially for a high num-
ber of links. [YWP18] leveraged sparsity within the joint-space inertia matrix to compute
forward dynamics on GPU. [PNB22] developed a library for forward and inverse dynam-
ics computation with gradients, resulting in a 2.5x speedup compared to multi-threaded
CPU implementation, which is available as open-source software. [LVY13] implemented
the humanoid robot dynamics using CPU multi-threading. However, none of the research
presented a method for free-floating robot dynamics.

This chapter presents a novel method to compute the integration and the dynamics of
the free-floating robot system in parallel for multiple queries. The parallelization is ac-
complished with CPU multi-threading as well as with the use of GPU. Although a single
query’s execution on a GPU is slower than on a CPU, parallelizing thousands of queries
on a GPU provides a significant speedup compared to sequential execution on a CPU.

30 4 Computation of Robot Dynamics

4.1 Methodology

In OCP, the systems dynamics are represented by Ordinary Differential Equations (ODE).
To find solutions of such an ODE, numerical integration techniques are developed such
as one-step methods, multi-step methods, or extrapolation methods. The most com-
mon methods are the one-step methods and particularly the Runge-Kutta methods. The
Runge-Kutta methods use a higher order approximation in each step, thus reducing the
error. The basic principle within the Runge-Kutta methods is as follows [Ger12].

For a general ODE initial value problem, where z ∈ Rnz is the solution vector and f is
the ODE:

ż(t) = f(t, z(t)) (4.1)

To find the values of z which satisfies the ODE from the initial time t0 to final time tf .
The infinite time interval from t0 to tf is discretized by a grid in N intervals:

GN := {t0 < t1 < · · · < tN−1 < tN = tf} (4.2)

Consider the integral representation of Equation (4.1):

z(ti+1)− z(ti) =
ti+1∫
ti

f(t, z(t))dt (4.3)

Numerically integrating Equation (4.1) provides approximate values of z. Let the approx-
imation of z at time ti+1 be zN(ti+1). Then zN(ti+1) can be represented with the Runge
Kutta scheme as:

zN(ti+1) := zN(ti) + hi ·
s∑

j=1
(bj · kj) (4.4)

kj = f(ti + (cj · hi), zN(ti) + hi ·
s∑

l=1
(ajl, kl(ti, zN(ti); hi)) (4.5)

where s ∈ N are the s stages of the Runge Kutta method, hi is the step size. bj, cj, ajl

are the coefficients such that [ajl] is the Runge-Kutta matrix, and bj, cj are the weights
and nodes respectively. The typical arrangement of this data is within a mnemonic tool
commonly referred to as a Butcher table. The step size hi can stay fixed or can be
adjusted to increase the efficiency of the algorithm, depending on the accuracy required
for the solution.

4.2 Implementation 31

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s
...
cs as1 as2 · · · ass

b1 b2 · · · bs

Table 4.1: General Butcher Table

Dormand-Prince Runge-Kutta algorithm (DOPRI5) [DP80] is a seven stage method and
computes six function evaluation per step. These six evaluations calculate the fourth and
fifth order accurate solutions. The difference between these solutions is taken as the error
of the fourth order solution. It is the default method within MATLAB and GNU Octave
for the function call "ode45 " [ODE45]. The seven stages are as follows:

k1 = f(tn, yn)

k2 = f(tn + h

5 , yn + h

5k1)

k3 = f(tn + 3h

10 , yn + 3h

40k1 + 9h

40k2)

k4 = f(tn + 4h

5 , yn + 44h

45 k1 −
56h

15 k2 + 32h

9 k3)

k5 = f(tn + 8h

9 , yn + 19372h

6561 k1 −
25360h

2187 k2 + 64448h

6561 k3 −
212h

729 k4)

k6 = f(tn + h, yn + 9017h

3168 k1 −
355h

33 k2 + 46732h

5247 k3 + 49h

176k4 −
5103h

18656k5)

k7 = f(tn + h, yn + 35h

384k1 + 500h

1113k3 + 125h

192 k4 −
2187h

6784 k5 + 11h

84 k6)

4.2 Implementation

This section demonstrates the parallelization of multiple queries for integrating the system
dynamics of the free floating robot. The dynamics as developed in Section 3.1.3 are used
within the system dynamics (ODE) of the OCP in Section 3.2.

32 4 Computation of Robot Dynamics

To compute multiple instances of the integration and dynamics, the thesis implemented
the solver using Boost Odeint (version 1.81) [Odeint] and OpenMP API 5.2 [OpenMP] in
C++.

In Algorithm 3, the inputs are the current position and orientation of the base body
(pose), the current velocity of the base body (vel), the joint angles (q), joint velocities
(q̇), and joint torques (τ). The rhs vector is the right-hand side of the ODE. All vectors
are concatenations of all the values for each instance. The total number of threads is
created according to the number of instances to be computed.

Algorithm 3 CPU Parallelization of Integration
1: for threadID ← 0 to numThreads do
2: for t← t0 to tf do
3: state← (pose, vel, q, q̇, τ)
4: Update: rhs← f(state, t)
5: state← Integrate(rhs, state, t0, tf)
6: end for
7: (pose, vel, q, q̇, τ) ← state
8: end for

Algorithm 4 computes the integration and robot dynamics on GPU, and uses Boost
Odeint (version 1.81) [Odeint], ArrayFire [ArrayFire], and Thrust CUDA (version 11.7)
[Thrust]. Input parameters include base body pose (pose) and velocity (vel), joint angles
(q), velocities (q̇) and torques (τ). Data is transferred between host and device with d← h

and h ← d notation. The rhs vector, representing the right-hand side of the ODE, and
integration occur on the GPU.

Algorithm 4 GPU Parallelization of Integration
1: for t← t0 to tf do
2: (d← h): state← (pose, vel, q, q̇, τ)
3: CUDA: rhs← f(state, t)
4: CUDA: state← Integrate(rhs, state, t0, tf)
5: end for
6: (h← d): (pose, vel, q, q̇, τ) ← state

4.3 Results

While computing in parallel on the CPU, it is necessary to take care of keeping the code
thread-safe, managing memory access between each thread, allocating memory for shared
and private variables for threads, avoiding race conditions, synchronizing threads, load
balancing, and minimizing overhead. As shown in Figure 4.1 (machine 181, Table 2.2),

4.3 Results 33

for a final time of 10 seconds, a maximum speedup of approximately 7.5x, and for 50
seconds, a speedup of approximately 7.6x is achieved. The x-axis represents the number
of threads initiated.

Figure 4.1: Speed Up vs Number of Threads for Machine 181

The speedup at 11 threads decreases compared to 10 threads because the OpenMP API
initiates a maximum of 8 threads for two steps. For the second step, only one thread has
a workload, which increases the computation time. In Figure 4.2 (machine 231, Table
2.2), the maximum speedup achieved is more than 15x when 56 threads are initiated. As
the number of threads increases, the acceleration in speed reduces due to the additional
time needed for thread initialization overhead and thread synchronization.

Similar to parallelization with CPU multi-threading, this thesis developed and imple-
mented a novel method for the integration and robot dynamics computation on GPUs
with the machines presented in Table 2.1. The challenges encountered with GPU par-
allelization are different from those with CPU parallelization, including synchronization,
overhead, thread divergence, and others. After computation, it was found that one in-
stance of the integration on the GPU is approximately 250x slower than the serial CPU
version.

34 4 Computation of Robot Dynamics

Figure 4.2: SpeedUp vs Number of Threads for Machine 231

5 Computation of Jacobians

As shown in Section 3.2.1, to compute the Jacobians of the constraints, the derivatives of
the constraints needs to be evaluated. From the various methods, this thesis focuses on
sensitivity based approach and finite difference approach.

5.1 Methodology

This section presents the methodology for both the sensitivity based approach and the
finite difference method, along with the mathematical background required for under-
standing these techniques. The section aims to provide a comprehensive understanding
of these methods and their application.

5.1.1 Sensitivity-based approach

In the reduced discretization in Section 3.2, the system dynamics f are solved using the
one-step method and are not imposed as equality constraints. It is exploited that the
state xk at time tk depends implicitly on the initial value x0 ∈ Rnx and the control values
u ∈ Rnu up to time point tk−1:

xk = Xk(x0, u0, · · · , uk−1), k = 1, · · · , n (5.1)

The states can be recursively solved using the non-linear functions Xk:

x1 = x0 + h0 · f(t0, x0, u0) := X1(x0, u0) (5.2)

x2 = x1 + h1 · f(t1, X1(x0, u0), u0) := X2(x0, u0, u1) (5.3)

xN = xN−1 + hN−1 · f(tN−1, XN−1(x0, u0, · · · , uN−2), uN−1) (5.4)

xN := XN(x0, u0, u1, · · · , uN−1) (5.5)

36 5 Computation of Jacobians

The derivatives of X w.r.t. x0 and ci (de Boor of controls using B-splines as described in
Section 2.2.2) are:

X′
k,x0 = ∂X′

k

∂x0
(5.6)

X′
k,ci

=
[

∂X′
k

∂c0

∂X′
k

∂c1
· · · ∂X′

k

∂cN

]
(5.7)

The derivatives of the objective function J with respect to the initial x0 = x(t0) and
final xN = x(tN) values of the state variables in the OCP are represented by J ′

x0 and J ′
xN

respectively, and let z = (x0, c). The Jacobian of the objective function J′(z) is defined
in [Ger12]:

J′(z) =
[
J ′

x0 + J ′
xN
·X′

N,x0 [J ′
xN
·X′

N,ci
]
]

(5.8)

The derivatives of the inequality constraints g with respect to the state variables at time
ti, where 0 ≤ i ≤ N , are denoted by gx

′[ti]. The Jacobian of the inequality constraints
G′(z) is defined in [Ger12]:

G′(z) =

gx

′[t0] [0]
gx

′[t1] ·X′
1,x0 [gx

′[t1] ·X′
1,ci

]
... ...

gx
′[tN] ·X′

N,x0 [gx
′[tN] ·X′

N,ci
]

 (5.9)

The derivatives of the equality constraints h with respect to the initial x0 and final xN

values of the state variables in the OCP are represented by h′
x0 and h′

xN
respectively. The

Jacobian of the equality constraints H′(z) is defined in [Ger12]:

H′(z) =
[
h′

x0 + h′
xN
·X′

N,x0 [h′
xN
·X′

N,ci
]
]

(5.10)

The sensitivity matrices are Sk ∈ Rnx·(nx+N ·nu):

Sk := ∂Xk(z)
∂z

(5.11)

5.2 Implementation 37

The computation of the sensitivity differential equations S′(t) involves the derivatives of
f with respect to x and u, which are denoted as f ′

x and f ′
u, respectively:

S′(t) = f ′
x(t, X(t; z), u(t; z)) · S(t) + f ′

u(t, X(t; z), u(t; z)) · ∂u

∂z
(t, z) (5.12)

Integrating Equation (5.12) will result in the sensitivities Equation (5.11). This inte-
gration can be coupled with integrating the robot dynamics Equation (3.15) using the
numerical integration method of DOPRI5 as described in Section 4.1.

5.1.2 Finite Differences-based approach

Another approach to calculate the Jacobian matrices is the finite difference (FD) method
[Ger12]. FD is a class of numerical methods to solve differential equations. The time is
discretized and the value at these discreet points is approximated by finite differences. FD
is approximated using the Taylor series expansion. However, this method lacks precision,
which can hinder convergence. FD can be very computationally expensive [CEK16]. The
Jacobians in Equations (5.8), (5.9) and (5.10) can be also described as:

J′ =
[

d(φ)
dc0

d(φ)
dc1
· · · d(φ)

dcN

]
(5.13)

G′ =

d(φ0)
dc0

d(φ1)
dc0

· · · d(φN)
dc0...

d(φ0)
dcN

d(φ1)
dcN

· · · d(φN)
dcN

 (5.14)

H′ =

d(h0)
dc0

d(h1)
dc0

· · · d(hN)
dc0...

d(h0)
dcN

d(h1)
dcN

· · · d(hN)
dcN

 (5.15)

5.2 Implementation

The sensitivity differential equation (5.12) indicates that each column can be computed
in parallel. This can be achieved by utilizing CPU multi-threading and creating threads
based on the number of optimization parameters (∈ R(N+k−2)·n) and the total number of
cores available on the machines used for computation.

38 5 Computation of Jacobians

Algorithm 5 requires the derivative of the system dynamics with respect to the state f ′
x(·),

the derivative of the system dynamics with respect to the control f ′
u(·), control input u,

parameter vector z, start and end times t0 and tf , and initial sensitivity matrix S(t0) as
inputs. The finite-difference method is employed to obtain the values of f ′

x(·) and f ′
u(·).

Algorithm 5 Compute Sensitivity Matrices
1: while t < tf do
2: Compute: ∂u

∂z
(t, z)

3: S′(t)← f ′
x · S(t) + f ′

u · ∂u
∂z

(t, z)
4: Integrate S′(t) in Algorithm 1 or Algorithm 2
5: t← t + ∆t
6: end while

The derivative of a function f(x) at x, with step size h, can be computed by Algorithm
6 that utilizes the central finite differences formula. To parallelize the computation of
Jacobian matrix elements, OpenMP API [OpenMP] is employed. The function f(x)
serves as the constraints in the OCP.

Algorithm 6 Central Finite Differences
1: f ′(x)← f(x+h)−f(x−h)

2h

5.3 Results

Setting the various tolerances of the OCP solver with accuracy is crucial when computing
Finite Differences for the OCP. In this thesis, the central finite difference method is imple-
mented to solve the motion planning problem, with 100 random starts for the OCP, with
each start needing to reach 100 different desired end-effector pose and velocity configura-
tions, amounting to 10,000 unique instances. The sensitivity-based approach provides an
average speedup of approximately 2 times faster than using FD, with a solution accuracy
ranging around 10−8. In contrast, the accuracy achieved with FD varied from 10−5 to
10−7. Apart from the accuracy, the solutions - generated trajectories for both methods are
similar. The success rate for the sensitivity-based approach is approximately 98 percent
for the 10,000 queries, while for the finite difference-based method, it is approximately 95
percent.

Although parallelizing the computation of sensitivities resulted in a speedup of 1.2 to 1.5
times, using Finite Differences caused a slowdown of approximately 1.1 to 1.3 times. Cal-
culating FD or sensitivities at each iterations takes a few microseconds. The bottlenecks
occur due to the large number of QP solutions in the SQP, which leads to the bottleneck in
calculating the sensitivities or FDs at each iteration. However, sensitivities offer superior

5.3 Results 39

execution speed and solution accuracy in both serial and parallel algorithms compared
to Finite Differences. Thus, it is recommended to use sensitivity differential equations
for computing Jacobian matrices instead of Finite Differences, despite the complexity of
implementation.

6 Conclusion

The present study has explored methodologies to accelerate the motion planning for free-
floating robots through GPU and CPU parallelization. By examining the point-to-point
motion, bottlenecks within the OCP were identified and analyzed. The computation of
robot dynamics takes up to 40 percent of the total computation time and calculating the
Jacobians takes up to 15 percent. It was found that parallelizing the robot dynamics
computation on CPU resulted in a maximum speedup of 15x, while computing it using
GPU showed that one iteration is 250x slower than the CPU iteration for the given
hardware.

The results obtained from parallelizing the robot dynamics and its integration on GPU
and CPU can be applied in various ways. The CPU parallelization may be used with a
parallel CPU implementation of the NLP solver and the constraints computation using
the MPI framework. Otherwise, if the NLP solver can also be implemented on GPUs,
the complete pipeline may be computed using GPGPU. While multiple shooting is an
alternative for using GPU parallelization for the different phases within the shooting
nodes, it becomes less desirable when hundreds of phases (given a 250x speed-down for
one iteration, at least 250 phases would be required to reach a break-even) are required
to achieve a significant speedup.

Regarding Jacobian computation, it was found that the sensitivity-based approach is more
suitable than the finite difference based approach as it is faster (almost 1.5x) and produces
more accurate results. The results are also applicable for more complex robotic systems
such as humanoids, where the number of state and control variables are high, and there
are more constraints to be satisfied.

Although parallelizing with CPU did not result in significant gains, this study provides
a foundation for future research to enhance planning efficiency. The future work can in-
clude implementing the findings in both free-floating and humanoid robotic systems, and
examining practical applications such as automatic differentiation (AD) for computing
the Jacobians. AD has already been quite useful in various other fields, including ma-
chine learning, finance, and physical modeling. It can also be parallelized and is already
implemented in libraries such as TensorFlow and PyTorch.

The study’s results are relevant for developing more efficient motion planning algorithms
for robotic systems. The findings contribute to understanding the challenges and op-
portunities of parallelizing motion planning. This information can be useful in different

42 6 Conclusion

domains such as orbital robotics and humanoids. Additionally, the study provides valu-
able insights into the limitations of current approaches and potential avenues for future
research.

Although this study demonstrated parallelization’s potential to improve motion planning
efficiency, future research needs to address several limitations. For example, the study
only focused on classical control methodologies for free-floating robots. Future research
could examine how machine learning could apply these findings.

Overall, this master’s thesis lays a foundation for further research to enhance motion
planning efficiency for free-floating robotic systems. The findings can benefit researchers
and practitioners interested in faster computation of motion planning.

Bibliography

[Amd67] Amdahl, G. M.
Validity of the Single Processor Approach to Achieving
Large Scale Computing Capabilities
In: Proceedings of the April 18-20, Spring Joint Computer
Conference (, 1967), pp. 483–485.

[ArrayFire] ArrayFire
https://arrayfire.com/ (visited on 04/07/2022).

[Bet98] Betts, J.
Survey of Numerical Methods for Trajectory Optimization
In: Journal of Guidance, Control, and Dynamics, 21 (1998)
2.

[CEK16] Chrétien, B.; Escande, A.; Kheddar, A.
GPU Robot Motion Planning using Semi-Infinite Nonlin-
ear Programming
In: IEEE Transactions on Parallel and Distributed Sys-
tems, 27 (2016) 10.

[CUDA Programming Guide] GPUs vs CPUs
https ://docs .nvidia . com/cuda/cuda- c - programming-
guide/index.html (visited on 04/07/2022).

[Dij59] Dijkstra, E. W.
A note on two problems in connexion with graphs
In: Numerische mathematik, 1 (1959) 1, pp. 269–271.

[Direct Compute] DirectCompute
https://developer.nvidia.com/directcompute (visited on
04/07/2022).

[DP80] Dormand, J.; Prince, P.
A family of embedded Runge-Kutta formulae
In: Journal of Computational and Applied Mathematics,
6 (1980) 1.

https://arrayfire.com/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/directcompute

II Bibliography

[DP93] Dubowsky, S.; Papadopoulos, E.
Kinematics, dynamics, and control of free-flying and free-
floating space robotic systems
In: Robotics and Automation, IEEE Transactions on, 9
(1993).

[Ger12] Gerdts, M.
Optimal Control of ODEs and DAEs
De Gruyter, 2012.

[Ger18] Gerdts, M.
User’s Guide: OCPID-DAE1 - Optimal Control and Pa-
rameter Identification with Differential-Algebraic Equations
of Index 1
In: Ingenieur Mathematik (, 2018).

[Gus88] Gustafson, J. L.
Reevaluating Amdahl’s Law
In: Commun. ACM, Association for Computing Machin-
ery, 31 (1988) 5, pp. 532–533.

[HNR68] Hart, P.; Nilsson, N.; Raphael, B.
A Formal Basis for the Heuristic Determination of Mini-
mum Cost Paths
In: IEEE Transactions on Systems Science and Cybernet-
ics, 4 (1968) 2, pp. 269–271.

[Intel Website] Moore’s Law
https://www.intel.com/content/www/us/en/newsroom/
opinion/moore-law-now-and-in-the-future.html (visited
on 04/07/2022).

[Kel17] Kelly, M.
An Introduction to Trajectory Optimization: How to Do
Your Own Direct Collocation
In: SIAM Review, 59 (2017) 4, pp. 849–904.

[Khronos Group OpenCL] OpenCL
https://www.khronos.org/opencl/ (visited on 04/07/2022).

[KSL96] Kavraki, L.; Svestka, P.; Latombe, J.-C.; Overmars, M.
Probabilistic Roadmaps for Path Planning in High-Dimensional
Configuration Spaces

https://www.intel.com/content/www/us/en/newsroom/opinion/moore-law-now-and-in-the-future.html
https://www.intel.com/content/www/us/en/newsroom/opinion/moore-law-now-and-in-the-future.html
https://www.khronos.org/opencl/

III

In: Robotics and Automation, IEEE Transactions, 12 (1996)
4, pp. 566–580.

[KWP11] Karaman, S.; Walter, M. R.; Perez, A.; Frazzoli, E.; Teller,
S.
Anytime Motion Planning using the RRT-star
In: International Conference on Robotics and Automation
(, 2011).

[Lam10] Lampariello, R.
Motion Planning for the On-orbit Grasping of a Non-
cooperative Target Satellite with Collision Avoidance
In: International symposium on Artificial Intelligence, Robotics
and Automation in Space, 10 (2010).

[LaV06] LaValle, S. M.
Planning Algorithms
Cambridge: Cambridge University Press, 2006.

[LaV98] LaValle, S. M. et al.
Rapidly-exploring random trees: A new tool for path plan-
ning
In: Technical Report. Computer Science Department, Iowa
State University (, 1998).

[LMO18] Lampariello, R.; Mishra, H.; Oumer, N.; Schmidt, P.; De
Stefano, M.; Albu-Schäffer, A.
Tracking Control for the Grasping of a Tumbling Satellite
With a Free-Floating Robot
In: IEEE Robotics and Automation Letters, 3 (2018) 2.

[LVY13] Lengagne, S.; Vaillant, J.; Yoshida, E.; Kheddar, A.
Generation of whole-body optimal dynamic multi-contact
motions
In: The International Journal of Robotics Research (,
2013).

[Moo65] Moore, G.
Cramming more components onto integrated circuits
In: IEEE Solid-State Circuits Society Newsletter, 11 (1965)
3.

IV Bibliography

[NP17] Nanos, K.; Papadopoulos, E. G.
On the Dynamics and Control of Free-floating Space Ma-
nipulator Systems in the Presence of Angular Momentum
In: Frontiers in Robotics and AI, 4 (2017).

[ODE45] ODE45
https://de.mathworks.com/help/matlab/ref/ode45.html
(visited on 04/07/2022).

[Odeint] Odeint
https://www.boost.org/doc/libs/1_81_0/libs/numeric/
odeint/doc/html/index.html (visited on 04/07/2022).

[OpenMP] OpenMP
https://www.openmp.org/ (visited on 04/07/2022).

[PAM21] Papadopoulos, E.; Aghili, F.; Ma, O.; Lampariello, R.
Robotic Manipulation and Capture in Space: A Survey
In: Frontiers in Robotics and AI, 8 (2021).

[Pap90] Papadopoulos, E.
On the dynamics and control of space manipulators
In: Dept. Mech. Eng., MIT, Cambridge, MA, Ph.D disser-
tation (, 1990).

[PNB22] Plancher, B.; Neuman, S. M.; Bourgeat, T.; Kuindersma,
S.; Devadas, S.; Reddi, V. J.
GRiD: GPU-Accelerated Rigid Body Dynamics with Ana-
lytical Gradients
In: International Conference on Robotics and Automation
(ICRA) (, 2022).

[RM website] Space Robots at RM DLR
https : / / www . dlr . de / rm / desktopdefault . aspx / tabid -
12513/ (visited on 04/06/2022).

[Thrust] Thrust
https://docs.nvidia.com/cuda/thrust/ (visited on 04/07/2022).

[YT93] Y., X.; T., K.
Space Robotics: Dynamics and Control
In: Kluwer Academic Publishers (, 1993).

[YWH16] Yoshida, K.; Wilcox, B.; Hirzinger, G.; R., L.
Space Robotics - Springer Handbook of Robotics
Springer International Publishing, 2016.

https://de.mathworks.com/help/matlab/ref/ode45.html
https://www.boost.org/doc/libs/1_81_0/libs/numeric/odeint/doc/html/index.html
https://www.boost.org/doc/libs/1_81_0/libs/numeric/odeint/doc/html/index.html
https://www.openmp.org/
https://www.dlr.de/rm/desktopdefault.aspx/tabid-12513/
https://www.dlr.de/rm/desktopdefault.aspx/tabid-12513/
https://docs.nvidia.com/cuda/thrust/

V

[YWP16] Yang, Y.; Wu, Y.; Pan, J.
Novel GPU-based Parallel Implementation Scheme and Per-
formance Analysis of Robot Forward Dynamics Algorithms
In: Computing Research Repository (, 2016).

[YWP18] Yang, Y.; Wu, Y.; Pan, J.
Unified GPU-Parallelizable Robot Forward Dynamics Com-
putation Using Band Sparsity
In: IEEE Robotics and Automation Letters (, 2018).

List of Tables

2.1 GPU Machines . 19
2.2 CPU Machines . 19

4.1 General Butcher Table . 31

List of Figures

1.1 Space Robots at Institute of Robotics and Mechatronics (RM) 1

2.1 Moore’s Law . 13
2.2 GPU vs CPU architecture . 15

3.1 Free Floating Robot . 21
3.2 Robot Geometry . 22

4.1 Speed Up vs Number of Threads for Machine 181 33
4.2 SpeedUp vs Number of Threads for Machine 231 34

	Sperrvermerk
	Acknowledgments
	Contents

	Formula symbols and indices
	List of abbreviations
	Introduction
	State of the Art
	Motion Planning
	Graph-based motion planning
	Sampling-based motion planning
	Optimization-based motion planning

	Trajectory Optimization
	Optimal Control
	OCPID-DAE1

	Parallel Computing
	Moore’s Law
	Amdahl’s Law
	Gustafson's Law
	GPGPU
	Compute Unified Device Architecture (CUDA)
	CPU Multithreading

	Computing Hardware

	Problem Statement
	Free Floating Robots
	Geometry
	Kinematics
	Dynamics

	Original Motion Planning Problem
	Calculation of Jacobians
	Computation of Robot Dynamics

	Computation of Robot Dynamics
	Methodology
	Implementation
	Results

	Computation of Jacobians
	Methodology
	Sensitivity-based approach
	Finite Differences-based approach

	Implementation
	Results

	Conclusion
	Bibliography
	List of Tables
	List of Figures

