

Studiengang: Wirtschaftsinformatik

Developing Vessel Behavior Predictions for Maritime Anomaly Detection

Masterarbeit

Fakultät II
Department für Informatik

Abteilung Systemanalyse und -optimierung

Themensteller: Prof. Dr. Axel Hahn
Betreuer: Matthias Steidel
2. Betreuer: Dr. Arto Niemi

vorgelegt von: Finn-Matthis Minßen
Schenumer Weg 9
6041507
26441 Jever
015141460007
E-Mail: finn-matthis.minssen@uni-oldenburg.de

Abgabetermin: 18. Mai 2023

II

Abstract

This thesis proposes an approach to predict vessel tracks in waterways using a Bi-

directional Long Short-Term Memory (Bi-LSTM) model as well as a transformer model.

For this purpose, a concept is developed that combines positions of buoys along the

Elbe and Weser rivers delimiting the waterway with Automatic Information System (AIS)

data. Additionally, tide information as well as weather information will be added to the

created dataset. These data are then used to train both models to predict vessel tracks.

During evaluation, both models will be compared with each other as well as with a linear

prediction. Furthermore, the influence of the tide data and weather information to the

accuracy of the predictions is evaluated. Building upon the developed concept and the

prediction models, this thesis investigates whether the predictions of the model that

makes the most accurate predictions can be used to mark tracks that show anomalous

vessel behavior. Therefore, predictions are then made based on a new created dataset

in the area of interest and deviations that exceed a predefined threshold are flagged as

anomalous. Results show that with the developed concept, vessel tracks inside

waterways can be accurately predicted.

III

Contents

List of Figures .. IV

List of Tables .. V

1 Introduction .. 1

1.1 Problem Description .. 1

1.2 Aim of this Thesis .. 2

1.3 Outline ... 3

2 Maritime Data ... 4

2.1 Automatic Identification System (AIS) .. 4

2.2 Weather Data .. 7

2.3 Waterways .. 8

3 Machine Learning ... 10

3.1 Recurrent Neural Networks ... 10

3.2 Long-Short Term Memory.. 13

3.3 Variations of RNNs .. 14

3.4 Attention Mechanism ... 16

3.5 Transformer ... 17

4 Related Work ... 22

4.1 Vessel Track Prediction ... 22

4.2 Anomaly Detection .. 29

5 Concept .. 33

5.1 Vessel Track Prediction ... 33

5.2 Anomaly Detection .. 38

6 Evaluation .. 40

6.1 Data Preprocessing ... 40

6.2 Models... 46

6.3 Implementation .. 48

6.4 Vessel Track Prediction ... 49
6.4.1 Results ... 51
6.4.2 Discussion .. 61

6.5 Anomaly Detection .. 65

7 Summary and Outlook .. 67

8 References ... 69

Appendix .. VI

IV

List of Figures

1 Waterways along the Area of Interest .. 8

2 Depth of a Waterway ... 8

3 Recurrent Neural Network [22] ... 11

4 Long Short-Term Memory Cell [29] .. 13

5 Bidirectional RNN .. 15

6 Sequence-to-Sequence RNN ... 16

7 Multi-Head Attention .. 18

8 Transformer Encoder Layer ... 18

9 Transformer Architecture [37] .. 20

10 Waterway as Grid .. 34

11 Visualization of Extracted Transition Points (TP) and 𝑑𝑠 .. 34

12 TP with Angle (ß) ... 35

13 Calculation of ß .. 35

14 Process of Generating TPs .. 37

15 Standard Deviation .. 39

16 AIS Positions ... 40

17 Extracted TPs .. 41

18 Tide Buoys ... 42

19 Tide Interpolation ... 43

20 Degree as Sine and Cosine ... 44

21 Bi-LSTM Architecture ... 46

22 Transformer Architecture ... 47

23 Vessel Track Sequence ... 50

24 Approach 1: Training and Validation Error ... 51

25 Approach 1: Range of Prediction Errors ... 53

26 Erroneous Track Predictions .. 54

27 Approach 2: Training and Validation Error ... 55

28 Approach 2: Range of Prediction Errors ... 56

29 Approach 3: Training and Validation Error ... 57

30 Approach 3: Range of Prediction Errors ... 58

31 Outliers 𝑑𝑠 ... 62

32 Outliers 𝐶𝑂𝐺 & ß .. 62

33 Normal Distribution Training Data .. 65

V

List of Tables

1 Outline Thesis .. 3

2 AIS Static Information [11] ... 5

3 AIS dynamic Information [11] ... 6

4 Overview Methods Vessel Track Prediction ... 23

5 Current Approaches Anomaly Detection .. 32

6 AIS Attributes Considered in Concept .. 33

7 Summary of Preprocessed Data .. 45

8 Approach 1: MSE & Validation Loss .. 52

9 Approach 1: Results per Feature ... 52

10 Approach 2: MSE & Validation Loss .. 55

11 Approach 2: Results per Feature ... 55

12 Approach 3: MSE & Validation Loss .. 57

13 Approach 3: Results per Feature ... 58

14 Overall Results per Feature ... 59

15 Results per Feature per Track.. 60

16 Results Anomaly Detection .. 66

1

1 Introduction

1.1 Problem Description

The shipping industry is a critical component of the global economy, with around 80% of

global trade by volume and 70% by value carried out by sea [1]. This high volume of

traffic can lead to high density areas, especially in coastal regions, since the routes that

can be navigated by vessels are limited. Accidents like the one involving a container

vessel that ran aground off the German island Wangerooge can pose major risks to the

environment and disrupt supply chains [2]. Other incidents, such as the collision of a

cargo vessel with a wind farm in the North Sea, have in the past disrupted energy

supplies and thus pose further risks to the energy infrastructure [3]. To avoid these types

of incidents, maritime surveillance and Maritime Situational Awareness (MSA) are

becoming increasingly important. To be able to develop such awareness, predictions of

where a vessel is likely to be in the near future and whether there are any anomalies in

the vessel's behavior are very valuable [4]. An anomaly is generally understood as a

deviation from a standard or expected value [5]. In the context of this thesis, an anomaly

occurs when a deviation from a prediction exceeds a specific threshold. At the basis of

detecting anomalous vessel behavior, are the expected track or coarser patterns, which

can be predicted using data-driven models based on historical data [6][7]. Current

research methods for predicting vessel tracks or anomalous vessel behavior use data

provided via the Automatic Information System (AIS) as a foundation. This data includes

the position as well as the course and speed of the respective vessel [8]. However, other

factors such as weather conditions, tides, regional geographical characteristics as well

as the vessel type itself also influence the track followed. This is not yet sufficiently

considered in research [7]. As Zhang [8] points out, identifying and fusing these

heterogeneous data from multiple sources to predict more accurate vessel tracks

remains a research challenge.

Derived from the problem description, the following questions arise:

1. How can vessel tracks be predicted by incorporating multiple data sources?

2. To what extent does adding multiple data sources improve prediction accuracy?

3. How can the developed method be used to flag anomalous tracks?

2

1.2 Aim of this Thesis

In this thesis, two data-driven models are developed for iterative predictions of vessel

tracks in waterways. These models are to be trained with different combinations of

features. These features are extracted from AIS data and combined with waterway

position, tidal information and weather characteristics. Within this thesis, a concept is

presented on how these data can be combined so that data-driven models can be

trained. The results of each model are then evaluated against each other as well as

against a linear prediction in order to find the model that provides the most accurate

predictions. The models will be trained and tested with data from a region along the West

German coast as well as the Weser and Elbe rivers.

In order to evaluate the results of this thesis, requirements for the concept as well as for

the data-driven models are specified. The requirements for the concept include the

combination of historical vessel data, weather information, tide data and sea chart

information. These datasets have to be combined to create a comprehensive training

dataset for the data-driven models, enabling them to learn patterns and relationships that

contribute to accurate predictions of future vessel tracks. The data-driven models will

also have to meet certain requirements. They should be capable of predicting vessel

tracks specifically in coastal areas. Coastal areas possess unique characteristics, such

as changing tides, complex currents and varying wave patterns, which significantly

influence vessel movements compared to open seas. Hence, the models developed for

coastal areas need to be trained and evaluated using data from coastal areas to capture

these distinct dynamics accurately. This data has to be generated by the concept

developed in this thesis. The data-driven models should produce predictions that closely

align with the actual vessel tracks since achieving high accuracy is essential to ensuring

the reliability and usefulness of the predictions.

This thesis further investigates whether the predictions of the model that delivers the

most accurate predictions can be used to mark tracks that indicate anomalous vessel

behavior. When evaluating this use case, data is selected from a period that was not

considered when training the model. Predictions are then made based on this data, and

deviations that exceed a predefined threshold are flagged as anomalous.

3

1.3 Outline

This structure of this thesis is displayed in table 1:

Chapter Topic Content Summary

1 Introduction Introduction to the topic covered and overview of the aim

of this thesis. Further research questions are raised that

will be answered with this thesis.

2 Maritime Data Background on Maritime Data. This includes AIS data,

weather data and information about waterways.

3 Machine Learning Background on Machine Learning, specifically on

Recurrent Neural Networks, Long Short-Term Memory

cells, Attention Mechanism and Transformer.

4 Related Work Presents the current research in the fields of Vessel

Track Prediction and Anomaly Detection in the Maritime

Domain.

5 Concept Describes a concept to combine AIS data, data about

positions of waterways, tide data and weather

information for predicting vessel tracks. Further a

concept to flag anomalous vessel tracks is also

described.

6 Evaluation Evaluates and discusses the developed concepts. This

involves generating a dataset based on the concept,

which is then used to train data-driven models that make

predictions about vessel tracks. These models are then

compared with each other. Further, it is tested whether

anomalous vessel behavior can be detected using the

model that makes the most accurate track predictions.

7 Summary and Outlook Summaries the results by answering the research

questions. Furthermore, an outlook on interesting

research possibilities resulting from this thesis is given.

1 Outline Thesis

4

2 Maritime Data

In the maritime domain, three main categories of data sources exist. The first category

comprises data received by sensors in a specific coverage area. Among these data are

time stamps, vessel-specific information, vessel characteristics as well as geodata

information. These sensor data can be further categorized into active (radar, sonar)

and passive (AIS). While radar and sonar data are in general not publicly available, AIS

data is receivable with an appropriate receiver. [9]

The second category contains authorized database information about crews or vessel

cargo that are sent through SafeSeaNet or the West European Tanker Reporting

System. This information is used by authorities to keep track of shipping and ensure

compliance with safety and environmental regulations. In general, this data is also not

publicly available. [9]

The third category contains data from internet data sources that are publicly available.

These data can be provided by ports or from services like Marine Traffic [10]. This also

includes weather data or tidal information that is publicly provided by institutions or

companies.

In this chapter we take a deeper look into AIS data since it is free available and mainly

used in vessel prediction tasks and into maritime weather data and waterways because

both also have a great influence in marine traffic.

2.1 Automatic Identification System (AIS)

Particularly important in the maritime domain is data provided by AIS. AIS was developed

to avoid collisions at sea and is used to identify and locate vessels in real time. It is based

on automatic data exchange between vessels regarding their characteristics and the

positions between them and other vessels in the nearby areas. AIS data is collected, on

the one hand, from AIS base stations that monitor traffic in specific areas and, on the

other hand, from satellites that collect data on a global scale. Because it is mandatory

for vessels above 300 GRT (Gross Register Tonnage) to use AIS transmitter, this data

can be used to obtain a view of shipping traffic all over the world. Additionally, the data

is updated frequently, so individual routes of vessels can be displayed. AIS data can be

further divided into dynamic, static and voyage-specific data. Dynamic data contains

information on location, course, speed and navigational status and is transmitted at

intervals of two to ten seconds. Static data may include the identification number, vessel

type, name and call sign of the vessel, while voyage-specific data includes information

5

about the destination and estimated time of arrival. These data are updated every 6

minutes. [11]

Table 2 describes the transmitted AIS static information in more detail, while table 3

describes dynamic AIS information.

AIS Static Information

IMO Vessel identification number

Callsign International radio call sign - assigned to the vessel by its country of

registry

Name Name of the vessel

Type Type of vessel/cargo

Dimension Dimensions of a vessel, to nearest meter

Location of Antenna Location of positioning system’s antenna on board the vessel

Positioning System Type of positioning system, such as GPS, DGPS

Draught Draught of ship

Destination Where a vessel is heading

ETA Estimated Time of Arrival at destination

- UTC month/date hour:minute

2 AIS Static Information [11]

6

AIS Dynamic Information

MMSI Unique nine-digit identification number of a vessel

Navigation status
e.g., “at anchor”, “under way using engine(s)”, “not under
command”, etc.

Rate of turn right or left, in degrees per minute

Speed over ground

(𝑆𝑂𝐺)

vessel’s speed in 1/10 knots

Course over ground

(𝐶𝑂𝐺)

vessel’s course relative to true North

Position latitude/longitude of a vessel

True Heading vessel’s course in degrees

3 AIS Dynamic Information [11]

When using AIS data, for example for data analysis, there are several weaknesses that

need to be considered. First of all, the AIS information must be transmitted through an

AIS transponder that can be switched off by the vessel master [9]. Fishing boats, for

example, sometimes turn off the transponder to hide from the competition where they

are fishing [12]. Accordingly, vessel tracks can be incomplete and important parts of

messages can be missing. Furthermore, data compiled from different sources may

contain irregularities, for example regarding time, which means that the route of a vessel

cannot be tracked quite correctly [9]. Furthermore, data coverage is not equally good

across all areas. Especially in areas with a high vessel density such as the North Sea or

the Baltic Sea, the satellites may not be able to cover all transmitted data due to limited

coverage [9]. The fact that AIS data works as an open-sourced transmitting system is

simultaneously the main advantage and disadvantage of the system, since the AIS data

can be spoofed or hijacked. Accordingly, when working with AIS data, it is necessary to

validate the data and not just rely on a single source [13].

7

2.2 Weather Data

Maritime weather data is another valuable source of information for monitoring and

preventing incidents in the maritime domain. Weather conditions can significantly impact

maritime traffic, with severe weather leading to delays, diversions and even accidents

[9]. Weather data is provided through different sources like the European Centre for

Medium-Range Weather Forecasts (ECMWF) [14]. The ECMWF is a part of Copernicus,

which is the Earth observation component of the European Union’s Space program [15].

It is managed by the EU and the European Space Agency (ESA) and provides data

based on satellite observations and seaborne measurements systems. For the maritime

context, the ERA5 weather dataset, in particular, is of great value [16]. The dataset

provides a comprehensive record of the Earth's climate from 1940 to the present day,

with data available at latitude-longitude grids with 0,25° x 0,25° resolution for atmosphere

features and 0,5° x 0,5° for ocean waves. Era5 includes hourly estimations for a range

of atmospheric variables, including temperature, pressure, wind, humidity, precipitation

and radiation, which can be used for understanding and modeling the Earth's climate

system. The data is collected using a range of sources, including satellites, radiosondes

and surface-based observations. It is then assimilated into an atmospheric model, which

combines the observational data with the model output to produce a consistent and

comprehensive record of the Earth's climate. The data is freely and openly accessible to

users and can be downloaded from the Copernicus servers [15].

For this thesis, which uses the data introduced above in the maritime context, especially

the wind speed, wind direction as well as the wave height are of interest. Wind speed

and wind direction data are based on a global atmospheric reanalysis. The wind speed,

which is specified in meters per second, is calculated based on the vector wind, which is

the horizontal wind component in both the eastward and northward directions. The wind

direction is the direction from which the wind is blowing and is provided in degrees. The

significant wave height is estimated based on the wave model Waves for the Atlantic and

the Mediterranean (WAM). The WAM model calculates the wave spectrum based on

wind fields, which are in turn derived from atmospheric data. The wave spectrum

describes the distribution of wave energy across different wavelengths and directions.

The significant wave height is defined as the average height of the highest one-third of

the waves in a given wave spectrum and is measured in meters.

In addition to the weather itself, the tide can also have a major impact on maritime traffic.

For example, at certain times waterways may not be navigable due to a low tide, or may

only offer sufficient depth for certain vessels. This tide information is provided by the

8

Copernicus Marine Environment Monitoring Service (CMEMS), by regularly measuring

and recording water levels at specific buoys in the sea relative to a fixed reference [17].

The water levels are recorded in 10-minute intervals and can be downloaded freely.

2.3 Waterways

In order for vessels to navigate safely along coastal areas as well as on rivers, waterways

delimit the navigable waters. These waterways are usually marked on both sides with

buoys as defined by the International Association of Lighthouse Authorities (IALA). A

vessel approaching a port has the green buoys on the right side and when leaving the

port, the red buoys on the right side. Figure 1 shows a section of the waterways along

the German coast, including the entrances to the Weser, Elbe and Wilhelmshaven.

 1 Waterways along the Area of Interest

The use of waterways helps to structure traffic and reduce the risk of collisions in high-

density areas. The buoys along the waterway also ensure a minimum depth within the

waterway, allowing vessels to safely navigate through shallow areas [18]. While the

waterway provides a clear path for navigation, the depth and width of the waterway can

vary significantly, as shown in figure 2.

2 Depth of a Waterway

9

If the tide is high, vessels may be able to sail further along the edge of the waterway, as

a minimum depth is still ensured there. This may not be the case at low tide, so vessels

will have to sail in the middle of the waterway. In general, a vessel has to navigate as far

to the right as possible within the waterway, but depending on the tide and other factors,

this distance can vary for each vessel [19].

10

3 Machine Learning

This chapter focuses on the background of time series prediction using machine learning.

In particular, this chapter explains recurrent neural networks (RNN), Long Short-Term

Memories (LSTM) cells and variations of architectures that can be used to predict time

series. In addition, this chapter covers a transformer model that processes data

differently than those previously mentioned, but can also be used to predict time series.

3.1 Recurrent Neural Networks

In the field of neural networks, there are two basic architectures that differ in how the

neurons are connected to each other. These architectures are called feed-forward

networks (FFN) and recurrent neural networks (RNN). Both types of networks consist of

neurons that are used as processing units. These neurons are interconnected within the

network and receive weighted information from the previous neurons, information

passed on to the next neurons via an activation function. Activation functions are needed

to add nonlinearity to a model. In an FFN, the information flows only from the input to the

output in one direction, without feedback connections. These networks are well-suited

for tasks where the input and output are independent, such as image classification or

speech recognition. [20]

In order to process sequential data, such as time-series data, recurrent neural networks

show more accurate results than feed forward networks. These networks were

developed by Rumelhart et al. [21] and process an input sequence 𝑥 one after the other

and thereby update an internal state ℎ that is used to predict the output sequence 𝑦.

Accordingly, the internal state ℎ at timestep 𝑡 is calculated using the input 𝑥 at timestep

𝑡 and the previous internal state ℎ𝑡−1. This can be represented in equation 1:

ℎ𝑡 = 𝑓(ℎ𝑡−1, 𝑥𝑡) 1

This recursive transition can be unfolded for a finite amount of timesteps 𝑡, for example

𝑡 = 3, where ℎ0 is a predefined initial state:

ℎ3 = 𝑓(ℎ2; 𝑥3) = 𝑓(𝑓(ℎ1; 𝑥2); 𝑥3) = 𝑓(𝑓(𝑓(ℎ0; 𝑥1); 𝑥2); 𝑥3) 2

This unrolled computation can be seen in figure 3, which also shows how the internal

state gets updated depending on the previous state ℎ𝑡−1 as well as the current input to

the network 𝑥𝑡.

11

3 Recurrent Neural Network [22]

One reason these networks are good for processing sequential data is that the transition

function 𝑓 can be used with the same parameters for all time steps, since the input data

size is the same for all steps. This avoids the need to learn new parameters for each

time step, which reduces training time and requires less data. Goodfellow et al. [22]

explain this by representing the unrolled recurrence after 𝑡 timesteps with a function 𝑔𝑡.

ℎ𝑡 = 𝑔𝑡(𝑥𝑡 , 𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥2, 𝑥1) 3

ℎ𝑡 = 𝑓(ℎ(𝑡−1); 𝑥𝑡) 4

The function 𝑔𝑡 takes the whole past sequence (𝑥𝑡, 𝑥𝑡−1, 𝑥𝑡−2, … , 𝑥2, 𝑥1) as an input and

can be factorized into repeated applications of a function 𝑓 due to the recursive structure.

This shows that 𝑓 can be applied to all time steps.

During the forward propagation inside an RNN, an output sequence 𝑦 is predicted that

is based on an input sequence 𝑥. Based on the parameter sharing just introduced, this

can be represented as follows: 𝑏 and 𝑐 are biased vectors which are applied before each

activation function while 𝑊 is a weighted matrix for hidden-to-hidden connections, 𝑈 for

input-to-hidden and 𝑉 for hidden-to-output connections. These vectors and matrices are

adjusted during training to improve the prediction result. During the first step, the

previous state ℎ(𝑡−1) and the current time step 𝑥𝑡 are added together with the

corresponding matrices.

𝑎𝑡 = 𝑏 + 𝑊ℎ𝑡−1 + 𝑈𝑥𝑡 5

Then the hidden state ℎ𝑡 is calculated using an activation function, e.g. the hyperbolic

tangent function 𝑡𝑎𝑛ℎ, which maps the input to a value between -1 and 1.

ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑎𝑡) 6

The hidden state is then combined with the associated weighted matrix and finally the

output is generated using another activation function, such as the softmax function.

12

𝑜𝑡 = 𝑐 + 𝑉ℎ𝑡 7

�̂�𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑜𝑡) 8

The total loss 𝐿 for a given sequence compared to the ground truth sequence 𝑦 would

then be the sum of the losses over all time steps, e.g. calculated with the Mean Square

Error (MSE).

𝐿({𝑌1, . . . , 𝑌𝑡 }, {�̂�1, . . . , �̂�𝑡 }) =
1

𝑡
∑ (𝑌𝑡 − �̂�𝑡)𝑡

𝑡=1 9

These loss functions are an essential part of neural networks since they quantify the

difference between the predicted output and the actual output of the network. The loss

can be measured with different functions. For regression problems, where the goal is to

predict a continuous value, the MSE or the Mean Absolute Error (MAE) are often used.

The MSE measures the average squared difference while the MAE measures the

average absolute difference between the predicted and actual values.

During training the model updates the weights through an optimizer and

backpropagation. These optimizers are responsible for updating the model parameters

during training so that the loss function, which measures the difference between the

predicted output and the actual output, is updated. In this process, the gradient of the

loss function is recursively calculated for the nodes within the network by multiplying the

gradients of the previous layer with the weight matrix that connects the two layers. This

calculation is done throughout the whole network which is called backpropagation [20].

There are various optimization algorithms and the choice of the optimizer depends on

the specific problem and the characteristics of the data on which the model should be

trained. One simple optimizer is the Stochastic Gradient Descent (SDG). This optimizer

updates the model parameters in the direction of the negative gradient of the loss

function. However, this optimizer can be slow and ineffective. Another optimizer is the

Adaptive Moment Estimation (Adam) optimizer. This optimizer allows handling different

scales and directions of gradients for each parameter. It further includes a momentum-

based update that incorporates information from past gradients to stabilize the

optimization process. Specifically, the Adam optimizer maintains a running average of

the first and second moments of the gradient, which are respectively the mean and

variance of the gradient values. These estimates are used to compute a per-parameter

learning rate that adapts to the gradient history. The algorithm also includes a momentum

term, which allows the optimizer to move more confidently in the direction of the gradient.

[23]

13

Particularly for deep RNNs, where the gradients can be multiplied by the same weighting

matrix at each time step, the gradients can become very small or even zero when the

weighting matrix is less than 1. This occurs especially in deep networks with many layers

and leads to the vanishing gradient problem, where the gradients become too small to

provide a useful signal for updating the weights [24].

There are several techniques that can be used to mitigate the vanishing gradient

problem. One approach uses activation functions that have larger derivatives [25].

Further initialization methods that can make it easier for the gradients to propagate can

be used [22]. Another approach is using gradient clipping to prevent the gradients from

becoming too large or too small [26], or using a different type of network architecture that

is less susceptible to the problem.

3.2 Long-Short Term Memory

To address the vanishing gradient problem and increase the ability to learn long-time

dependencies, Hochreiter et al. [27] developed Long Short-Term memory (LSTM) cells.

In doing so, they introduced the idea of a cell state that acts like a self-loop, allowing the

gradient to flow over long periods of time. Gers et al. [28] then made these cell state

weights trainable, leading to the widespread use of this architecture. This architecture

has the same inputs and outputs as an RNN but adds an additional cell state that is not

passed to other cells. Instead, it controls the flow of information within the LSTM.

Figure 4 shows a LSTM cell. The input 𝑥𝑡 and the hidden state ℎ𝑡−1 and the cell state

𝑐𝑡−1 enters the cell. From thereon they pass through three different gates, a forget gate,

an input gate and an output gate.

4 Long Short-Term Memory Cell [29]

The forget gate controls the internal cell state, which is set to a value between 0 and 1

using the sigmoid function 𝜎 for the current input 𝑥𝑡 and the previous hidden state ℎ𝑡−1.

14

The output of the previous cell state 𝑐𝑡−1 is then multiplied by the output of the forget

gate. If the forget gate is 0, it means that the cell state should be forgotten, if it is 1, the

cell state should remain unchanged. 𝑊, 𝑈 are again trainable weight matrices and 𝑏, 𝑗

are biased vectors.

𝑓𝑡 = 𝜎(𝑏𝑓 + 𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1) 10

𝑤𝑡 = 𝑓𝑡 ⊙ 𝑐𝑡−1 11

The input gate then calculates which of the new information should be added to the cell

state. The new cell state candidate �̂�𝑡 is calculated by activating the input 𝑥𝑡 and the

previous hidden state ℎ𝑡−1 in a hyperbolic tangent function 𝑡𝑎𝑛ℎ. As with the forget gate,

the previous hidden state ℎ𝑡−1 and the current input 𝑥𝑡 are fed into a softmax function 𝜎

that decides whether the cell state should be updated or not. The new internal cell state

𝑐𝑡 is then calculated by combining the output of the forget gate with the output of the

input gate.

𝑖𝑡 = 𝜎(𝑏𝑖 + 𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1) 12

�̂�𝑡 = 𝑡𝑎𝑛ℎ(𝑏𝑠 + 𝑊𝑠𝑥𝑡 + 𝑈𝑠ℎ𝑡−1) 13

𝑐𝑡 = 𝑤𝑡 + 𝑖𝑡 ⊙ �̂�𝑡 14

Finally, the output gate takes the previous hidden state ℎ𝑡−1 and the current input 𝑥,

again activated through the softmax function 𝜎, as well as the hyperbolic tangent function

of the current cell 𝑐𝑡 state and updates the new hidden state ℎ𝑡 that should be forwarded

to the next cell.

𝑜𝑡 = 𝜎(𝑏𝑜 + 𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1) 15

ℎ𝑡 = 𝑜𝑡 ⊙ 𝑡𝑎𝑛ℎ(𝑐𝑡) 16

LSTMs have led to significantly improved results compared to the native RNNs [22].

Graves et al. [30] e.g. used LSTMs to develop a model to recognize unconstrained

handwriting, Vinyals et al. [31] for image captioning or for predicting time series, e. g. in

the case of vessel tracks by Zhang et al [32], which is also the use case in this thesis.

3.3 Variations of RNNs

As mentioned in the previous section, the original RNN as well as the adjusted LSTM

are especially suitable for processing time series data. However, these have been

refined over time and different architectures of networks have emerged that provide

15

better results depending on the use case [22]. Nevertheless, the basic structure can

always be traced back to an original RNN as well as an LSTM architecture. Accordingly,

the recurrent neural networks shown in the following chapter can be used for both

classical RNNs and LSTMs models.

Bi-directional RNN

A bidirectional RNN, as introduced by Schuster et al. [33], processes input data in both

forward and backward directions. Therefore, they combine two separate RNNs. One

RNN moves forward in time, considering the incoming sequence from the beginning,

while another RNN moves backward, considering the sequence from the end. This

process is shown graphically in figure 5. The outputs of the forward and backward RNNs

are then concatenated to produce the final output of the bidirectional RNN. This makes

the output not only a summary of the past but also on the future sequence and thus may

make it easier to recognize certain patterns.

5 Bidirectional RNN where 𝒙 displays the input at time step 𝒕 where 𝒇 process the input
forward in time and 𝒈 backwards. Hidden state 𝒉 than summarizes the
information from the two neurons.

Sequence-to-Sequence RNN

A sequence-to-sequence or encoder-decoder RNN is designed to handle variable-length

input and output sequences. Thereby the RNN consist of two RNNs, an encoder and a

decoder. As Figure 6 shows, the encoder takes the input sequence and produces a fixed

length context vector that stores all the information of the input. The decoder then takes

16

the context vector and produces an output sequence. Depending on the architecture, the

decoder can get the context vector as an initial state or the vector can be connected to

the hidden units of the decoder at each time step. [34]

6 Sequence-to-Sequence RNN where input sequence 𝒙 is summarized to context vector 𝒄

and then fed to decoder as an initial state that produces output 𝒚.

3.4 Attention Mechanism

The introduced fixed-size context vector in sequence-to-sequence RNNs has to store

the entire information produced by the encoder. Since this vector only has a certain size,

the information may have to be greatly compressed and consequently not store all

relevant information [22]. To solve this problem, Bahdanau et al. [35] proposed a method

that encodes the input sequence into a variable-length context vector. They further

introduced an attention mechanism that determines a relevant subset of the context

vector to generate an output.

Unlike the original encoder-decoder model, where the hidden state was passed from one

layer to another, the attention mechanism creates a hidden state ℎ for every input at time

step 𝑖. Since the encoder is a bidirectional RNN that combines both the preceding and

following values within the sequence, each hidden state ℎ is concentrated on the parts

surrounding the 𝑖-th step. Accordingly, the context vector 𝑐 at time step 𝑖 is calculated as

the weighted sum of all these hidden states.

𝑐𝑖 = ∑ 𝑎𝑖𝑗ℎ𝑗
𝑇
𝑗=1 17

Where 𝑎𝑖𝑗 is the weight of each hidden state ℎ𝑗 that is calculated with an alignment score

scoring how well the inputs around position 𝑗 and the output at position 𝑖 match. As an

alignment function, Bahdanau et al. [36] used the hyperbolic tangent activation, which is

also called additive attention.

17

𝑠𝑐𝑜𝑟𝑒𝑖𝑗 = 𝑎𝑙𝑖𝑔𝑛(𝑠𝑖−1, ℎ𝑗) 18

This score is then normalized using the softmax function 𝜎.

𝑎𝑖𝑗 = 𝜎(𝑠𝑐𝑜𝑟𝑒𝑖𝑗) 19

This attention mechanism was adopted for many applications. Thus, the attention

mechanism was used as a context vector between the encoder and the decoder, since

it is better able to store the information provided by the encoder which is then passed on

to the decoder [32].

3.5 Transformer

In 2017, Vaswani et al. [37] developed a novel architecture that is entirely devoid of

RNNs and focuses only on attention mechanisms.

For this they used a concept called "Self-Attention", which is based on the attention

mechanism concept explained in the previous section but is used within a single input

sequence. In their concept, three different vectors, called query 𝑄, key 𝐾, and value 𝑉

vectors, are created by multiplying the input with three corresponding weight matrices.

These three vectors are then used to calculate the attention scores for the input

sequence. For this, Vaswani et al. [37] used "Scaled-Dot-Product-Attention" where the

dot product of query 𝑄 and key 𝐾 is calculated. This produces a score that indicates the

relevant parts of the sequence that should be focused on. These scores are then scaled

with a scaling factor √𝑑(𝑘) and normalized through a softmax function 𝜎 to find the most

relevant inputs with respect to the whole sequence. The result of the softmax function is

then multiplied by the value matrix 𝑉 to filter out irrelevant inputs.

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝜎 (
𝑄𝐾𝑡

√𝑑𝑘
) 𝑉 20

The attention mechanism is then scaled by using multiple sets of queries 𝑄, keys 𝐾, and

value 𝑉 matrices, referred to as "multi-headed" attention.

𝑀𝑢𝑙𝑡𝑖𝐻𝑒𝑎𝑑(𝑄, 𝐾, 𝑉) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, … , ℎ𝑒𝑎𝑑ℎ)𝑊𝑜𝑢𝑡 ,

 𝑤𝑖𝑡ℎ ℎ𝑒𝑎𝑑𝑖 = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑊𝑄
𝑖 , 𝐾𝑊𝐾

𝑖 , 𝑉𝑊𝑉
𝑖) 21

This should allow each attention head to focus on a different position within the input

sequence. These different heads are then concatenated and multiplied by an associated

weight matrix 𝑊𝑜𝑢𝑡 so that only the relevant information within the input sequence is

captured and forwarded.

18

Figure 7 summarizes the explained process of Multi-Head Attention.

7 Multi-Head Attention

8 Transformer Encoder Layer

The vectors 𝑄, 𝐾, and 𝑉, which result from the input sequence, where multiplied with

three corresponding weight matrices. Further, scaled dot product attention is used to

calculate the attention score to indicate the relevant parts of the sequence that should

be focused on. The attention mechanism can be scaled by combining several heads ℎ,

which allows encoding multiple relationships for each input. All produced attention scores

are then combined to produce a final attention score.

In the model presented by Vaswani et al. [37], the multi-head attention mechanism is

followed by a normalization layer and a fully connected feedforward network. As can be

seen in Figure 8, skip connections inside the encoder improve the flow of information

through the network and the flow of gradients during backpropagation. These layers can

be stacked on top of each other, with the input to the first layer being the input sequence

and the output to subsequent layers being the output of the first encoder layer.

The decoder also consists of several identical layers. It receives the output of the

encoder, which is converted into a set of keys and values. These are then combined with

the output of the decoder from the previous step.

A common problem that can occur when training deep neural networks is the so-called

overfitting. Overfitting is a problem that arises when a model is too complex and starts to

memorize the training data instead of generalizing to new data. To prevent overfitting of

the model, Vaswani et al. [37] used a regularization technique called dropout.

Specifically, dropout is applied to the attention weights and the output of the feed-forward

network within each sub-layer. Dropout was introduced by Srivastava et al. [38] and is

19

widely used in machine learning to prevent overfitting. It is a simple yet powerful

technique that has been shown to improve the generalization performance of deep

learning models. Dropout works by randomly dropping out neurons during training.

Thereby, it forces the remaining neurons to take on more useful and diverse roles, which

improves the generalization performance of the model. When a neuron is dropped out,

it is effectively removed from the network and its input and output connections are

temporarily removed. The remaining neurons in the layer must then learn to compensate

for the missing neuron, which forces them to take on more useful and diverse roles. This

dropout technique is only used during training. During predictions, all neurons are

present but their outputs are scaled by a factor of the dropout rate to compensate for the

dropout during training. This ensures that the expected output of each neuron is the

same during training and prediction.

Unlike RNN networks, transformers map the input at a specific time step against all keys

and consequently do not remember the order of the input tokens. To address this issue,

transformers use positional encoding to provide the model with information about the

position of each token in the input sequence. For this, Vaswani et al. [37] applied a

sinusoidal function that can be summed to the input sequence where 𝑝𝑜𝑠 is the position

in the sequence, 𝑖 the index of the dimension within the positional encoding and 𝑑𝑚𝑜𝑑𝑒𝑙

the dimensionality of the model:

𝑃𝐸(𝑝𝑜𝑠,2𝑖) = 𝑠𝑖𝑛(
𝑝𝑜𝑠

10000

2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

) 22

𝑃𝐸(𝑝𝑜𝑠,2𝑖+1) = 𝑐𝑜𝑠(
𝑝𝑜𝑠

10000

2𝑖
𝑑𝑚𝑜𝑑𝑒𝑙

) 23

During training, the network will then learn how this information can be utilized. In

addition to this approach, other ways of positional encoding can be used. Kazemi et al.

[39], for example, introduced a method called Time2Vec (t2v) that was especially

developed for time series data. This method applies a learnable function to the time index

so that it can capture more complex patterns, such as seasonality and periodicity, where

𝑙 stands for the linear part and 𝑝 for the periodical part of the method.:

𝑡2𝑣𝑙 = 𝑤𝑙 𝑥 + 𝑏𝑙 24

𝑡2𝑣𝑝 = 𝑠𝑖𝑛(𝑤𝑝 𝑥 + 𝑏𝑝) 25

Figure 9 visualizes the whole transformer structure introduced by Vaswani et al. [37]. It

is built like a sequence-to-sequence network, with the RNN replaced by attention. The

authors stacked 6 encoders and 6 decoders and used it for translation tasks, where it

outperformed the best previously reported models.

20

9 Transformer Architecture [37]

As mentioned before, the transformer model was originally introduced for the task of

machine translation, where the goal is to translate a source sequence (e.g., a sentence

in one language) into a target sequence (e.g., a sentence in another language). In this

task the decoder part of the transformer model is used to generate the output sequence

one token at a time, while attending to the relevant parts of the input sequence. However,

in the case of time series forecasting, the task is different. A given sequence of past

values should be used to predict future values of the same sequence. Therefore, only

the encoder part of the model can be sufficient. This part extracts features and captures

temporal patterns from the input sequence that are relevant for predicting the future

values [40]. The features extracted by the transformer model can then be fed into a

simple feedforward neural network to predict the future values.

When predicting long time series, Zhou et al. [41] pointed out that the self-attention

mechanism, as well as the stack of encoder/decoder layers inside the original

transformer architecture, are not computationally efficient. Therefore, the authors

introduced a ProbSparse self-attention mechanism, in which the keys are only combined

with dominate queries which are learned during training. Accordingly, the computational

costs are reduced while maintaining the self-attention idea. Furthermore, they introduced

Informer, a generative style decoder that contains the masked multi-head attention

21

mechanism from the original paper as well as the ProbSparse attention mechanism,

which is used to select the most relevant historical values to predict the future ones. As

results show, the Informer architecture outperforms the original transformer as well as

other LSTM models for long time series forecasting.

Tailored to multivariate time series, Zerveas et al. [42] proposed a method to process the

data in a more efficient way. While the initial approach considers the input sequence as

a whole, their method considers each attribute within the sequence. Zerveas et al. [42]

order the input sequence in a way that makes each token contain a single variable at a

given timestep. Since the computational power for matrix multiplication increases with

the consideration of each attribute, a different kind of attention mechanism, namely

performance attention, is used. Thereby the attention mechanism is calculated using

random feature approximations instead of the exact softmax computation used in the

original transformer architecture. As a result, Zerveas et al. [42] show that their model

increases the accuracy in multivariate classification and lessens regression problems.

22

4 Related Work

In this chapter, previous research on vessel track prediction and anomaly detection in

the maritime domain is presented and contextualized.

4.1 Vessel Track Prediction

Vessel trajectory prediction has been intensively researched in recent years. Zhang et

al. [8] summarize 57 different papers dealing with research in this field. The prediction

methods can be distinguished between statistical and machine learning methods,

allowing methods to also be combined with each other. However, Zhang et al. [8] state

that the area of machine learning has become increasingly important since the year

2020. Accordingly, this work focuses predominantly on machine learning methods while

also considering select hybrid or statistical methods relevant for this thesis. State-of-the-

art methods for predicting vessel trajectories include LSTM cells. These methods are

often extended with other methods from the field of machine learning. An overview of the

methods used in the research surrounding vessel trajectory prediction is given in table

4, sorted by machine learning or statistical methods, grouping research findings by

method and not necessarily by time.

In the approach introduced by Mehri et al. [43], separate models for each type of vessel

were constructed using LSTMs. To train these models, AIS data were used from

November 2017 to the end of December 2017 from the eastern coast of the United States

of America. In addition, geographic information was used to simplify vessel tracks. The

models were then evaluated using the Root-Mean-Square Error (RMSE) and the point-

wise horizontal error and compared with an ordinary LSTM model. The results showed

that the developed method receives a lower point-wise error in predicting the tracks

accuracy with a range of up to 2 kilometers than an ordinary LSTM model.

23

Authors Method

Machine Learning Statistical

Mehri et al. [43] LSTM

Gao et al. [44] MP-LSTM TPNet

Yang et al. [45] Bi-LSTM

Liu et al. [46] Bi-LSTM + attention

Zhang et al. [32] Bi-LSTM + attention

Venskus et al. [47] Autoencoder LSTM

Nguyen et al. [48] Seq-2-seq LSTM

Dijt et al. [49] Encoder-decoder LSTM + CNN

Forti et al. [50] Encoder-decoder LSTM

Capobianco et al.

[51]

LSTM + attention

Sekhon et al. [52] LSTM + attention

Ding et al. [53] Variational LSTM

You et al. [54] Seq-2-seq GRU

Nguyen et al. [4] Transformer

Steidel et al. [18] KDE

4 Overview Methods Vessel Track Prediction

Gao et al. [44] further developed a hybrid method including statistical and deep learning

methods. For this, they combined the TPNet framework and LSTM cells. TPNet is used

to predict vehicle trajectories by modeling them as polynomial continuous curves with

the help of an end point and a curvature point. The authors mention that for predicting

vessel trajectories, this model has certain issues, partly because TPNet handles

predictions as classification rather than regression tasks. However, predictions as

regression task should allow a higher accuracy to be achieved. Accordingly, the authors

24

use an LSTM model to predict the curvature point and consider the prediction as a

regression problem. The endpoint is predicted based on the hypothesis that the values

in the generated and current trajectory are approximately equal. In the final step, the

trajectory is simulated by the cubic spline interpolation based on the predicted curvature

and end point. This model was tested with 1000 tracks of ferry vessels sailing along the

Jiangsu section of the Yangtze River. It was then evaluated against several other models

by comparing various navigation phases, such as straight-line phase and turning phase.

Among the models that were compared, there are both LSTMs that do the prediction and

LSTMs that predict the changes of latitude and longitude and calculate the new position

based on these changes. They also evaluated the model against a dual linear

autoencoder proposed by Murray et al. [55]. The authors show that the developed MP-

LSTM has both the smallest final displacement error and the smallest average

displacement error among the evaluated models. Furthermore, they state that the model

works for both long and short distance predictions.

Yang et al. [45] on the other hand refined an LSTM by designing a Bi-LSTM model where

one part learns dependencies for the states following and the other part for the previous

states. The combination of these two predictions should then lead to a more accurate

prediction of the following states. The model was trained with AIS data from 1364 ship

tracks collected during one month in the Taiwan area. It was then evaluated by

comparing the MAE, MSE and the Mean-Absolute-Percentage Error (MAPE) with

various other methods, such as simple LSTM and RNN models. For this, they randomly

compared 10 vessel tracks. The results showed that the BI-LSTM has the lowest error

in all categories compared to the other models. Based on this, the authors state that the

developed model can accurately predict short-term trajectories.

A Bi-LSTM model can also be found in the work by Liu et al. [56]. They developed a

series of routing algorithms where a Bi-LSTM was augmented with an attention

mechanism to predict the next position of a vessel along the trajectory. The attention

mechanism should make the prediction more accurate by better learning the

dependencies of the AIS data. This method was trained with AIS data from fishery

vessels along the east coast of China from May 2015 to May 2018. The results showed

that the methods predict vessel positions to an error of less than 300 meters after one

hour and an error of 2.73 kilometers after 9 hours when using an iterative process.

Zhang et al. [32] used an auto-encoder LSTM structure to extract trajectory features in a

first step and in a second step combined an attention-based Bi-LSTM model with dropout

layers they call AABIL to predict vessel trajectories. To train the model, AIS data from

the U.S. East Coast from January 2017 was used. Their results showed that the MSE of

25

the constructed model is lower compared to an ordinary LSTM model and they concluded

that a combination of a bidirectional LSTM and an attention mechanism can improve the

accuracy of real-time trajectory predictions.

An autoencoder LSTM model as well as a wild bootstrapping technique was developed

by Venskus et a. [47]. They trained an autoencoder LSTM to predict a region the vessel

should be in after up to 2.4 hours. This approach was then evaluated using the MSE

against a wild bootstrapping technique. To train and evaluate this method they used AIS

data from cargo ships along the Danish waters from 2006 to 2020 as well as

meteorological data from 2019 to 2020. Results showed that the LSTM learns a wider

possible region than the wild bootstrapping technique.

A slightly different approach for trajectory predicting, but also with the use of a sequence-

to-sequence LSTM, was developed by Nguyen et al. [48]. They divided the

Mediterranean Sea into grids of 1 x 1 nautical miles and trained a sequence-to-sequence

LSTM model that predicts the trajectory by predicting the following grids that the ship will

approach. The model was then trained with AIS data from March to May 2015 and

valuated against a Gated Recurrent Unit (GRU) and other networks. Results showed

that the LSTM shows the lowest log perplexity and is therefore well suited for predicting

ship trajectories, as the authors note.

A complex model was developed by Dijt et al. [49], who used AIS data as well as RADAR

and Electronic Navigational Charts (ENC) data to train a model and predict the

trajectories of vessels for up to 6 hours. For this, they developed a model consisting of

three modules. The convolutional module combines the RADAR data with the

coordinates from the AIS data using Convolutional Neural Networks (CNN). The second

module is a recurrent module which consist of an encoder-decoder LSTM model that

predicts the future coordinates of the trajectories. Lastly, a segmentation module is used

which outputs the results as binary string. This model is then trained with de MSE and

the Euclidean distance as error. The authors state that the developed method is capable

of predicting long-term trajectories of inland vessels and show that the developed model

has a lower error than other state-of-the-art models used for trajectory predictions of

pedestrians.

Another track prediction method based on an encoder-decoder LSTM architecture was

proposed by Forti et al. [50]. In this method, the encoder consists of 64 LSTM cells and

the decoder of 32 cells. The performance was evaluated so that the model was given

five and 20 steps as input sequences and the next 20 output sequences were to be

predicted, sampling the timestamps at two-minute intervals. The data were collected

26

from June to September 2018 and include 534 different voyages from the Port of

Piombino to Portoferraio on Elba Island, Italy. The authors performed a qualitative

comparison based on a stochastic Ornstein-Uhlenbeck (OU) model developed by

Millefiori et al. [57] by calculating the RMSE. The authors state that the encoder-decoder

LSTM method achieves competitive performance compared to the OU method,

especially near waypoints.

Based on this approach, Capobianco et al. [51] also developed an encoder-decoder

LSTM. However, they choose a more complex structure in which the encoder is

constructed as a Bi-LSTM and the decoder contains LSTM cells and multi-layer

perceptron that convert the input into an output sequence. Further, they investigated

three different approaches to compressing the information generated by the encoder:

maximum pooling over time, average pooling, and an attentional mechanism. These

methods were then evaluated with both unlabeled and labeled trajectories that

additionally contained the target area. All methods were trained with AIS data from

January to February 2020 provided by the Danish Maritime Authority (DMA) and included

only tanker vessels. The authors then divided the data into input and output sequences

of fixed lengths of up to three hours. Results show that the attention-based aggregation

function leads to more accurate results and that performance can be improved by adding

information about the vessel destination.

Sekhon et al. [52] also developed a method for short-term predictions of ship tracks using

LSTM with spatial and temporal attention. In addition to an LSTM model, their encoder

uses spatial attention to extract information from neighboring vessels that may affect the

trajectory of the vessel under consideration. The decoder then uses both spatial and

temporal attention to learn the important parts of the encoded vector. The final prediction

is also made using LSTMs. The model was trained with AIS data from January 2017

around the Port of San Diego, USA. The results show that both ADE and FDE are lower

when using the LSTM in combination with spatial and temporal attention compared to

methods using only one of the two attention mechanisms as well as an original LSTM

architecture.

Again a different approach was taken by Ding et al [53], who created a variational LSTM

with the idea that it has a stronger learning capacity and is better able to extract features

from trajectory data than an original LSTM model. It was trained with 2017 AIS data from

the U.S. West Coast and then compared to an original LSTM model. To evaluate the

model, the next five to 20 time steps were predicted, with each time step greater than

one minute after the other. The results measured with the MSE show that the variable

27

LSTM is more accurate in predicting the future trajectories, especially in predicting later

time steps.

Instead of an LSTM, You et al. [54] developed an encoder-decoder GRU model that

converges faster than an LSTM model due to the smaller number of cells. The authors

trained the model using AIS data from the first 10 days in June 2017 from the Whuan

Waterway and from the Chongquing Waterway and evaluated the model against an

LSTM and a GRU model using the RMSE. They used a ten-minute time interval to predict

the following five minutes of the vessel trajectory and results showed that the sequence-

to-sequence GRU predicts the lowest RMSE.

Nguyen et al. [7], in turn, place all the focus on the attention mechanism by using a

transformer deep learning model for vessel trajectory prediction. They state that standard

deterministic approaches such as LSTM or GRU cannot capture the multi-model patterns

involved in AIS data and are therefore ineffective for trajectory prediction. With this

assumption in mind, Nguyen [4] proposed a transformer structure to deal with the multi-

model nature of AIS tracks.

In contrast to Gao et al. [44], the prediction by Nguyen [4] is considered as a

classification-based problem rather than a regression problem. Therefore, the AIS data

with attributes latitude, longitude, speed-over-ground and course-over-ground are

discretized into a higher dimensional vector containing all attributes. This transformer

model contains 8 layers, each with 8 attention heads, and was trained and tested with

AIS data along the Danish coast during the first three months of 2019. The model was

then evaluated, among others, against the sequence-to-sequence LSTM model

proposed by Forti et al. [50]. Results show a significantly lower error in the forecast,

measured with the haversine distance, both in the first three hours and after 10 hours.

The authors [4] state that the developed model is more suitable to capture the multi-

model nature of AIS data and extract useful information from historical data than the

previous models.

A statistical approach to predict vessel behavior, which is important for this work due to

the preparation of the data, comes from Steidel et al. [18]. In addition to AIS data, they

used buoys along the waterway to divide the vessel tracks into grids. Within these grids,

behavior is predicted using Kernel Density Estimation (KDE). The dataset used by the

authors consists of 653 cargo ship tracks on the German Elbe River. To evaluate the

prediction performance, the ship domain of Fujii et al. [58] was used. The result was a

prediction error of 85.99 meters measured for a 2.35-hour voyage.

28

In summary, the majority of research focusses on machine learning models using LSTM

cells, which are being refined and specialized for the specific prediction tasks. Besides,

there are other approaches that instead of using LSTM model, use GRU or transformers

to improve the prediction accuracy.

The existing research just introduced can be divided further into different categories. The

table 1 in the appendix divides the type of prediction into three categories: Single Step

Prediction, Track Prediction, and Trajectory Prediction. Single Step Prediction means

that the location of the next moment is predicted. It is also possible to predict multiple

steps using an iterative approach. Track prediction, on the other hand, means that more

than one future position is predicted at the same time. However, only the position is

considered and not the relationship with time. The consideration of time is categorized

into trajectory prediction, where the position and time can be predicted simultaneously.

As can becomes clear, most of the approaches predict vessel trajectories, while only

some specialize in tracks and only Liu et al. [56] predict just the next position and then

use an iterative approach to predict the following positions. Depending on the type of

prediction, an iterative approach can provide more accurate predictions as the model

needs to learn fewer complex dependencies. However, it must be kept in mind that

predicted errors are also added to the model. This makes longer predictions rather less

accurate. Although it is more complex to predict the trajectory, it is attempted by many

researchers because the AIS data provided means the information need not be obtained

further. Additionally, depending on the prediction target, time can also be an important

characteristic, e.g. when an arrival time should be predicted.

Based on this, appendix 1 also classifies the time period in which the predictions take

place between the different papers. In this thesis, predictions of up to one hour are

classified as short, predictions of time spans between one and three hours are classified

as medium, and predictions longer than three hours are classified as long. The

distribution of the different prediction horizons is relatively balanced, although in general

many models can give relatively accurate predictions for a short time, with these

becoming less accurate the longer the movement is predicted.

The table in appendix 1 also classifies which data sources are used to train the models,

dividing them into AIS, meteorological and geographical data. The geographic

information is taken from nautical charts or boundaries to the shore. All approaches use

AIS data to predict the vessel movement and only some supplement this data with

meteorological or geographic data. AIS data are very often the basis for prediction tasks,

as they enable the movements of a vessel to be tracked. However, other data sources

29

can be used to make the prediction more accurate. Tidal information, for example, can

also have an impact on navigation, especially in coastal areas. Nevertheless, there is a

lack of research that combines all three mentioned categories to predict vessel tracks.

Steidel et al. [18] use AIS data as well as data from waterways but predicts tracks using

KDE rather than a data-driven model. However, the information that is extracted from the

waterways can also be useful when predicting vessel tracks, since it limits the space in

which the vessel can sail. The information could also be attempted to be included in a

data-driven model to predict where the vessel navigates, possibly capturing those

dependencies. On top of that, tidal information and other weather data could be used to

provide an even more accurate prediction.

The combination of historical vessel data, tide data, and weather information, which has

not yet been sufficiently considered in research, is incorporated in this thesis. In this

process, a data-driven model is trained to predict a vessel’s next positions within a

waterway. To create a dataset, AIS data as well as data from waterways will be used.

Furthermore, it will be examined to what extent tide and weather information can have

an influence on the prediction. For this purpose, these data will also be added to the

dataset. The model will be trained on this data and the results will be evaluated. In this

thesis, an iterative approach is used to predict the next positions inside the waterway.

This makes the prediction of the model slightly less complex and should lead to more

precise results. The selected approach to predicting vessel tracks fits into appendix 1 in

such a way that it predicts tracks iteratively, using all three combinations of data while

making prediction for a short horizon. Accordingly, the chosen approach complements

the research in a novel manner.

4.2 Anomaly Detection

Data-driven approaches to anomaly detection of vessel behavior often consist of two

parts. In the first part, normal vessel behavior is learned from historical data and then in

the second part, it is compared to other data to detect anomalies. An anomaly thereby

indicates that a certain threshold value has been exceeded. Accordingly, many methods

developed for vessel trajectory prediction also mention that they can be used to detect

abnormal vessel behavior.

Steidel et al. [18] for example mention that their approach to predict vessel behavior

using KDE can also be used for anomaly detection. By dividing a waterway into regions

where the vessel would normally travel, it could be used to detect when the vessel is

moving outside these regions or on the opposite lane inside the waterway.

30

The autoencoder LSTM of Venskus et al. [47] described in the above section can also

be used to detect abnormal vessel behavior. As summarized, in this approach a

prediction region is learned for the vessel and if the actual position of the vessel is outside

this region it is classified as abnormal vessel behavior, according to the authors.

Besides these approaches, there are other approaches that specify on the detection of

anomalies in the maritime domain. One approach for this was developed by Ristic et al.

[59]. Here, anomalies can be detected based on specific positions as well as the speed

of the vessel. To accomplish this, the area of interest is divided into cells where vessels

normally travel. Anomalies are then detected by comparing the position and speed with

the learned distribution. The method was tested with AIS data from January to May 2009

in the Port of Jackson, Australia.

A probabilistic normalcy model of vessel dynamics was created by Guillarme et al. [60]

using unsupervised learning techniques. The authors first partitioned the trajectories,

then clustered these trajectories and finally used the clustered trajectories for modeling

paths alongside which the vessels would usually continue. Using the extracted paths,

the model checks whether new observations fit into the modeled paths and triggers an

anomaly if they do not. Therefore, static AIS data is also used to compare the specified

destination with the detected position. For training the model, AIS data from the

Mediterranean Sea and the Straight of Gibraltar was used.

Another approach was developed by Lei et al. [61], who introduced a data-driven model

that extracts behavioral features from trajectory data. This is done by converting raw AIS

data into region-based motion trajectories. The authors then developed a model that

detects anomalies when a given trajectory deviates from the learned behavior by more

than a certain threshold. The model was tested with three months of AIS data and with

anomalous tracks added randomly.

Vespe et al. [62] note that approaches which divide the area into grids, like Lei et al.’s

[61], require a sufficiently small cell size and are therefore insufficient for global

applications. They therefore developed an unsupervised approach to learning movement

patterns, such as turning points, by analyzing AIS data. To do this, they used a three-

month period of AIS data from the Adriatic Sea and the Red Sea and Gulf of Aden. The

model can then be used to detect vessels that do not move according to the learned

patterns. The authors further suggest that the approach can be used to support other

surveillance technologies such as vessel position prediction.

One approach that is frequently referred to when predicting anomalies is called Density-

Based Algorithm for Discovering Clusters (DBSCAN) by Ester et al. [63]. With this

31

approach, clusters of arbitrary shape can be discovered in an efficient way. To achieve

this, a neighborhood around each datapoint is defined from which dense regions of

points are identified as clusters. Based on this approach and applied to the maritime

sector, Pallotta et al. [64] developed an unsupervised methodology to incrementally

extract information from AIS data and detect low-likelihood vessel behavior. This

approach, called Route Extraction for Anomaly Detection (TREAD), was then further

developed by the authors to detect whether a vessel is off-route, in reverse traffic on the

route or whether the speed is not compatible with the route followed [65]. They used AIS

data in the Ligurian Sea from January to February 2013 and extracted this data into

tracks and then compared these tracks to the extracted routes. An anomaly is flagged

when a threshold value of the route is exceeded. The results show that 87.3 percent of

the routes are correctly classified as anomalous. The authors further state that the ability

to detect anomalies is highly dependent on how regular the traffic patterns in the

observed area normally are.

A slightly different approach comes from Zhao et al. [66], who developed a neural

network composed of LSTM cells to predict traffic patterns. The model further detects if

the behavior of a vessel is abnormal by comparing the predicted position with the actual

one. To train the model, patterns detected by the DBSCAN algorithm were used. The

model was then tested with AIS data from the Zhoushan Islands dating from January

2015. As the authors explain, the capability of detecting anomalies with this approach

depends heavily on the quality of the AIS data.

Table 5 summarizes the approaches listed. It can be seen that all methods rely on

unsupervised clustering methods to learn the normality of the vessel trajectories.

Additionally, all methods rely on AIS data to extract vessel tracks or to learn the traffic

patterns. The approaches then differ in the method of detecting anomalies, although all

recognize a deviation from the learned model above a certain threshold as an anomaly.

32

Authors Learning Method

Ristic e al. [59] Unsupervised clustering into grid cells

Guillarme et al. [60] Clustering + path modeling

Lei et al. [61] Region based movement pattern

Vespe et al. [62] Movement patterns

Pallotta et al. [64] TREAD

Pallotta et al. [65] TREAD + Situational indicators

Zhao et al. [66] DBSCAN + LSTM

5 Current Approaches Anomaly Detection

All but the approach introduced by Steidel et al. [18] can be used without extratcing

information on the waterway which the vessel is navigating. However, the approaches

introduced by Ristic et al. [59] or Guillarme et al. [60] also create clusters through which

the vessel normally passes and then use data-driven approaches to detect deviations

from the learned model. Accordingly, the information extracted from the waterway could

also be used to create these clusters. These clusters would then be more precise, since

only within the waterways a minimum depth would be given in which the vessel could

navigate. Furthermore, instead of the KDE that is used by Steidel et al. [18], a data-

driven model could be used to predict tracks within the waterways more accurately.

Based on this model, deviations from the true track could be measured and if deviations

are above a certain threshold, the track would be marked as abnormal. The usage of a

data-driven model to detect anomalies within waterways may increase the usefulness of

the prediction and would represent an advancement in research.

33

5 Concept

Having framed the research gap and the potential regarding data-driven models to

predict and detect anomalies in vessel behavior above, this section presents a concept

that combines multiple data sources to train data-driven models. In this concept, these

data-driven models can then be used to predict not only vessel tracks iteratively within

waterways but to also detect anomalous vessel tracks.

5.1 Vessel Track Prediction

In this thesis, a concept is developed to iteratively predict vessel tracks within waterways.

To achieve this, different data features from AIS data as well as tide and weather data

are be combined to obtain more accurate predictions. The prediction is based on AIS

data. The considered AIS data attributes were described in table 6.

AIS Attribute Description

Position Latitude and Longitude coordinates in degrees are used to track the

location of each vessel in real-time.

𝑆𝑂𝐺 Speed Over Ground in knots provide information on the speed at

which each vessel was moving

𝐶𝑂𝐺 Course Over Ground in degrees provide information on the

direction in which each vessel was moving.

MMSI This unique identification number assigned to each vessel allows

for individual tracking and analysis of vessel behavior.

Time The time stamp dates each AIS message

6 AIS Attributes Considered in Concept

In addition, the positions of the regions where waterways exist are extracted. It is

assumed that a minimum depth within these waterways is given, that allows the vessels

to navigate through them. Waterways contain starboard and port buoys that border the

waterway. To find vessel tracks inside a waterway, the waterway can be divided into

grids, where four buoys always form a cell. As it can be seen in figure 10, the two

successive starboard buoys (𝑠1, 𝑠2) and the two corresponding port buoys (𝑝1, 𝑝2) always

form a cell 𝐶1. In general, this implies that 𝐶𝑛 consist of the buoys 𝑠𝑛, 𝑠𝑛+1, 𝑝𝑛 and 𝑝𝑛+1.

34

10 Waterway as Grid

In order to filter the AIS data within the waterways from all AIS data, the cells can be

used. If the position of the AIS datum lies within a cell, the cell number is added to the

AIS datum, otherwise the AIS datum is no longer considered.

This filtered AIS data can now be used to create continuous AIS tracks along the

considered waterways. An AIS track is defined as a series of AIS messages for a

particular MMSI received within one minute of the previous message. If the interval

between received messages is longer than one minute, a new track is created. Further,

each track is marked with a track ID. This general procedure of extracting tracks is shown

again as pseudo code in the appendix 2.

As mentioned in chapter 2.3, vessels inside a waterway are obliged to navigate as far

right as possible to the starboard buoy. It is assumed that the distance of the vessel to

the edge of the waterway remains constant within a cell. However, the distance to the

starboard buoy may change, e.g. if the vessel navigates through curves. Additionally, we

assume that the vessel follows the waterway. Accordingly, instead of measuring the

positions within the waterways, we can also measure the distance to the starboard buoy

𝑑𝑠 during a transition point 𝑇𝑃, when crossing from one cell to the next. Figure 11

Visualization of Extracted Transition Points (TP) and 𝒅𝒔 visualizes 𝑇𝑃 between the

starboard 𝑠1 and port buoy 𝑝1 of a cell as well as 𝑑𝑠.

11 Visualization of Extracted Transition Points (TP) and 𝒅𝒔

35

Using 𝑑𝑠 instead of the position based on latitude and longitude from the AIS data,

simplifies the dataset since only one attribute instead of two corresponding attributes

must be considered. Furthermore, the angle ß at the transition from one cell to the next

holds information where the vessel is going next. This is shown in figure 12. where the

vessel on the left wants to cross the waterway 𝑤1 to enter another one 𝑤2. In this case,

the vessel has a different angle than the one on the right, following the waterway 𝑤1.

12 TP with Angle (ß)

To extract the information needed from the preprocessed AIS data, several steps are

necessary. First the 𝑇𝑃 has to be calculated. For this purpose, the last position within the

old cell and the first position within the new cell are selected. These two points form a

line. The starboard and port buoy of the cell through which the positions pass also form

a line. The transition point is then calculated by finding the point of intersection between

these two lines.

In the second step, ß with which the vessel crosses the intersection point is calculated.

Therefore, 𝑇𝑃, the position of the starboard buoy 𝑠2 as well as the first point after crossing

the intersection point 𝑓1 is used.

As it can be seen in 13, these three points form a triangle, from which ß can be calculated.

13 Calculation of ß

36

To calculate ß, the dot product formula can be used. Let 𝑇𝑃, 𝑓1 and 𝑠2 be three given

points and 𝑇𝑃𝑓1 and 𝑇𝑃𝑠2 be the two vectors formed by the points. The dot product of

the vectors is then calculated as

𝑇𝑃𝑓1 ⋅ 𝑇𝑃𝑠2 = |𝑇𝑃𝑓1| ∗ |𝑇𝑃𝑠2| ∗ 𝑐𝑜𝑠(𝑡ℎ𝑒𝑡𝑎) 26

where | 𝑇𝑃𝑓1| and | 𝑇𝑃𝑠2| are the magnitudes of the vectors 𝑇𝑃𝑓1and 𝑇𝑃𝑠2, respectively,

and 𝑡ℎ𝑒𝑡𝑎 is the angle between them. Solving for 𝑡ℎ𝑒𝑡𝑎 leads to:

𝑡ℎ𝑒𝑡𝑎 = 𝑎𝑟𝑐𝑐𝑜𝑠(
𝑻𝑷𝑓1⋅ 𝑇𝑠2

|𝑻𝑷𝑓1| ∗ |𝑇𝑃𝑠2|
) 27

𝑇ℎ𝑒𝑡𝑎 is provided as radian and is once again converted to degree:

ß𝒅𝒆𝒈𝒓𝒆𝒆 = 𝑡ℎ𝑒𝑡𝑎 ∗ (
180

𝜋
) 28

Since the information of the 𝑆𝑂𝐺 and 𝐶𝑂𝐺 attributes may also hold information about the

future vessel navigation, these attributes should be used for the prediction. These

characteristics are interpolated using the average of the last datapoint of the old cell and

the first data point of the new cell. As interpolation value, the average of these two points

is used. This basic process of creating 𝑇𝑃𝑠 by AIS tracks and waterway data is illustrated

as pseudo code in the appendix 3.

Another aim of this thesis is to use tide information to see if it can improve the accuracy

of vessel track predictions. As mentioned in section 2.3, the depth of the waterway

depends on the current tide, which then influences the track the vessel navigates. To

check whether tide information has an influence on the prediction accuracy, it is

combined with the existing dataset. Tide information is provided by the European Center

for Medium-Range Weather Forecasts (ECMWF). These data consist of records of the

water level, recorded at 10-minute intervals from buoys located at specific positions

along the coast and in rivers. Depending on the position of the track, the measurements

from the two nearest buoys are added to the AIS data. These two measuring stands are

referred to as 𝑏1 and 𝑏2. Subsequently, the water levels at the buoys are determined

time-dependently for each 𝑇𝑃 within the tracks. The previous water level and the

following water level of a 𝑇𝑃 are determined within the 10-minute interval and an average

water level is calculated. 𝑏1 and 𝑏2 are then added as features to the exiting dataset. The

intention is that the model can recognize dependencies between the newly added

features and the existing features during training, making the prediction of future TPs

more accurate.

Beside the tide information, weather data should also be added to the dataset, with. wave

height, wind speed and the wind direction being of particular interest. These

37

characteristics can be downloaded from the Era5 dataset mentioned in section 2.2, which

consists of hourly estimations of these characteristics. The Era5 dataset consists of

latitude-longitude grids with a 0,25° x 0,25° resolution [67].

The wave height 𝑤ℎ is available in meters. As explained in section 2.2, the wave height

is an estimation based on the wave model WAM. The wind speed 𝑤𝑠 is calculated based

on the vector wind, which is the horizontal wind component in both the eastward and

northward directions. It is measured through numerous instruments and provided in

meters per second. The wind direction 𝑤𝑑 is available in radians and also measured

through various instruments. These characteristics are then added to the dataset,

according to the time and position of the transition point.

Figure 14 summarizes the process of generating 𝑇𝑃𝑠 within waterways and adding tide

data and weather information.

14 Process of Generating TPs

In the first approach, a dataset will be generated using information from the waterways

in combination with AIS data. This includes the attributes 𝑆𝑂𝐺, 𝐶𝑂𝐺, 𝑑𝑠 and ß, which

represents TPs inside waterways. This data should then be augmented with tide

information 𝑏1 and 𝑏2 as described earlier. In the third step, 𝑤ℎ, 𝑤𝑠, and 𝑤𝑑 should then

be added to the dataset so that the resulting dataset contains information about weather

as well. This dataset should then be used to train data-driven models to predict future

𝑇𝑃s. This prediction task can be considered as a regression task, where the

dependencies of the features representing the transition point are to be learned and

further predicted. As described in chapter 3, both LSTM models and transformer models

can be used to solve these regression tasks, as they are able to learn dependencies

between the given features and predict future TPs as accurately as possible. Thus, they

fulfill the requirements that were set for the data-driven models.

38

5.2 Anomaly Detection

In this thesis, a data-driven model will be used to mark potentially anomalous transition

points within waterways. To achieve this, each prediction for a transition point should be

compared with the true transition point of the track. An anomaly in this context is a

deviation from the prediction and the truth for one of the features 𝑆𝑂𝐺, 𝐶𝑂𝐺, 𝑑𝑠 and ß that

exceeds a certain threshold. The individual thresholds are determined for each feature

based on an analysis of the training data with which the model was trained. For this

purpose, the mean 𝜇 and the population standard deviation 𝜎 are calculated for each

feature 𝑆𝑂𝐺, 𝐶𝑂𝐺, 𝑑𝑠 and ß separately, where n is the total number of observations for all

transition points and x is the value of the feature under consideration:

𝜇 =
(𝑥1+𝑥2+⋯+𝑥𝑛)

𝑛
 29

𝜎 = √
∑(𝑋 − 𝜇)2

𝑛
 30

From this, the normal distribution, which describes the probability distribution of each

characteristic, can be derived,

𝑓(𝑥) =
1

𝜎√2𝜋
𝑒−

1

2
(

𝑥 − �̅�

𝜎
)2

 31

In this normal distribution, the mean value represents the center of the distribution and

the standard deviation represents the dispersion of the values around the mean value.

Based on this, it is now possible to determine the percentage of values present in certain

areas, which is shown in figure 15. Here, the empirical rule can be used [68]. This

statistical rule states that within one standard deviation (𝜇 ± 𝜎), 68% of the total

observations fall within this range. 95% fall within the two standard deviations (𝜇 ± 2𝜎)

and 99.7% within the three standard deviations (𝜇 ± 3𝜎).

39

15 Standard Deviation

Derived from this statistical rule, the threshold to detect anomalies can now be set

depending on the requirement. The standard deviation indicates how much the data

values deviate, on average, from the mean value of the dataset. In this concept, two

standard deviations (2𝜎) is set as a threshold from which a deviation from the actual

value should be marked as an anomaly. This value is taken because it is easy to

determine and still reflects the characteristics of the distribution of the data. Setting the

standard deviation as the threshold means that about 5% of the occurring values would

also be recognized as anomalous. However, the approach presented here allows the

threshold to be set variably. As Kumpulainen [69] pointed out, expert knowledge in the

area of the application is required to set a meaningful threshold. It should be further

emphasized that an anomaly in this thesis is defined only as a deviation from a certain

threshold. This does not mean that a detected deviation represents a specific risk to

vessel traffic within the predicted waterway.

40

6 Evaluation

In this chapter the developed concepts are evaluated. A dataset is generated based on

the presented concept. This dataset is then used to train a Bi-LSTM and a transformer

model, which can then be used to predict vessel tracks. The structure of the models is

presented in section 6.2. The predictions are then compared and the results are

evaluated. Furthermore, it will be evaluated whether anomalous vessel behavior can be

detected with one of the models. For this, the previous presented concept is implemented

and the results are discussed.

6.1 Data Preprocessing

In order to create a dataset that can be used to predict transition points within waterways,

AIS data are needed. In this thesis, commercially available AIS data that were collected

from terrestrial and satellite sources from 1 January 2020 to 30 April 2020 along the

German Bight and the Elbe and Weser rivers were used as a basis. The region of interest

is an area between 54.4°N, 10,7° E, 53.1° S and 5.8° W. As mentioned in section 5.1,

the attributes considered from the AIS data were position, 𝑆𝑂𝐺, 𝐶𝑂𝐺, MMSI and time.

Figure 16 shows the first 200,000 positions from the January 1, 2020 AIS data in the

area of interest.

16 AIS Positions

As set out in section 2.1, AIS data may contain missing or corrupted values that can

negatively affect the accuracy of subsequent analyses. Therefore, it is important to

remove implausible values. Specifically, for the 𝑆𝑂𝐺 attribute, values below 2 knots and

above 30 knots were identified as outliers and removed from the dataset. Similarly, for

41

the 𝐶𝑂𝐺 attribute only values between 0 and 360 degrees were considered feasible and

any values outside of this range were removed.

Next, these AIS data are combined with information about waterways. As can be seen

in figure 1 in section 2.3, the waterways under consideration run north from the East

Frisian Islands to Wilhelmshaven, along the Weser River to Bremen and along the Elbe

River to Hamburg. According to the process described in section 5.1, the AIS data and

the positions of the buoys within the waterways are used to create tracks of vessels,

which in turn contain TPs along the waterways. These TPs further contain the associated

features 𝑆𝑂𝐺, 𝐶𝑂𝐺, 𝑑𝑠 𝑎𝑛𝑑 ß.

The resulting dataset, as it can be seen in figure 17, now displays a list of transition

points inside the waterways, where the blue dots display the feature 𝑑𝑠.

17 Extracted TPs

In the next step, tide information is added to the existing dataset. The tide information

used is provided by the European Center for Medium-Range Weather Forecasts

(ECMWF). These data consist of records of the water level, recorded in 10-minute

intervals, from buoys located at specific positions along the coast and in rivers. Figure

18 displays the position of the used buoys in the area of interest.

42

18 Tide Buoys

Depending on the position of the track, the measurements from the two nearest buoys

are added to the AIS data. This means that the tracks along the Elbe get assigned the

measuring levels of the buoys St. Pauli and Cuxhaven, the tracks along the Weser get

assigned the measuring levels of Bremen and the Alte Weser buoy. The tracks to or from

Wilhelmshaven get assigned the measuring levels of the buoys Wilhelmshaven and

Wangerooge. These two measuring stands are referred to as 𝑏1 and 𝑏2.

Subsequently, the water levels at the buoys are determined time-dependently for each

transition point within the tracks. The previous water level and the following water level

of a transition point are determined and an average value is calculated. Figure 19 shows

the course of the depths of the two closest buoys and the interpolation during an example

track.

43

19 Tide Interpolation

In the next step, wave height 𝑤ℎ, wind speed 𝑤𝑠 and the wind direction 𝑤𝑑 are added to

the dataset. These characteristics can be downloaded from the Era5 dataset mentioned

in section 2.2, which consist of hourly estimations of these characteristics. The Era5

dataset consist of latitude-longitude grids with 0,25° x 0,25° resolution [67]. The

characteristics are then added according to the time and position of the AIS data point.

Should one of the attributes not be available for the existing AIS position, data will be

taken from the nearest grid that contains these attributes. This allows the weather

attributes to be added to each AIS data point.

An important preprocessing step in machine learning is data scaling. During this process,

the values of the preprocessed dataset are transformed to a specific range or distribution.

The main objective of data scaling is to ensure that the features have similar scales and

ranges, which allows the data-driven model to learn more effectively and ensures that all

features contribute equally to the learning process. Without scaling, some features may

dominate the learning process, leading to biased and inaccurate predictions. In this

thesis, the data is scaled using min-max scaling. Thereby, the data is scaled between 0

and 1. The formula for min-max scaling is given as

𝑠𝑐𝑎𝑙𝑒𝑑𝑥 =
(𝑥−𝑚𝑖𝑛(𝑥))

(𝑚𝑎𝑥(𝑥)−𝑚𝑖𝑛(𝑥))
 32

The minimum value is subtracted from each data point 𝑥 and the result is then divided

by the difference between the maximum and minimum of all data points. This scaling is

carried out for the attributes 𝑆𝑂𝐺, 𝑑𝑠, 𝑏, 𝑏2, 𝑤ℎ, 𝑤𝑠.

Alternatively, to min-max scaling, other methods can also be used to scale data. Log

scaling, for example, applies a logarithmic function to the data, which can help to reduce

44

the impact of extreme values and make the data more normal. Standard deviation can

also be used. This method scales the data so that the mean of each feature is zero and

the standard deviation is one. However, since the outliers of the AIS data as well as of

the weather and tide data had already been reduced and the data features have a known

range, min-max scaling was used in this thesis for the features 𝑆𝑂𝐺, 𝑑𝑠, 𝑡1, 𝑡2, 𝑤ℎ , 𝑤𝑠.

However, because the attributes 𝐶𝑂𝐺, ß and 𝑤𝑑 are measured in or converted to

degrees, scaling these values with a min-max scaling may not lead to more precise

results because 0 and 360 point in the same direction but are maximally far away on the

scale. Therefore, another approach was used. As it can be seen in figure 20, degree can

also be displayed using sine and cosine.

20 Degree as Sine and Cosine

This representation was used to transform the attributes measured in degrees into sine

and cosine using

𝑎𝑠 = 𝑠𝑖𝑛(
2𝜋𝑥

360
) 33

and respectively

𝑎𝑐 = 𝑐𝑜𝑠(
2𝜋𝑥

360
) 34

Although this means that the model has to predict two interdependent values instead of

one, a more accurate prediction is expected from this representation.

In summary, by processing and merging the data as set out in the previous steps, a

dataset summarized in table 7 is created:

45

Attribute Description

𝑆𝑂𝐺 Speed Over Ground in knots is interpolated with the last data point

before the transition and the first data point after the transition and is.

scaled with min-max scaler to normalize the values.

𝐶𝑂𝐺 Course Over Ground in degrees, like 𝑆𝑂𝐺, is interpolated with the

last data point before the transition and the first data point after the

transition and is then further divided into sine-𝐶𝑂𝐺 and cosine-𝐶𝑂𝐺.

𝑑𝑠 Euclidean distance between the transition point and the starboard

buoy represents the proximity of the vessel to the starboard buoy

and is scaled with min-max scaler to normalize the values.

ß the angle at which the vessel crosses the starboard and port buoy is

further divided into sine-ß and cosine-ß.

𝑡1, 𝑡2 The water level in meters of the two nearest buoys along the

waterway is modified with a min-max scaler.

𝑤ℎ Wave height in meters is scaled with min-max scaler

𝑤𝑠 Wind speed in meters per second is scaled with min-max scaler.

𝑤𝑑 Angle of the wind direction is further divided into sine-𝑤𝑑 and cosine-

𝑤𝑑.

7 Summary of Preprocessed Data

Overall, 11,167 tracks with at least 20 and up to 60 transition points are used. Thereof,

2,877 tracks (26%) navigate along the Weser, 7,949 tracks (71%) along the Elbe and

the remaining 341 tracks (3%) navigate to or from Wilhelmshaven.

In this thesis, the models will be trained to predict the next transition point based on the

last 10 transition points. In order to be able to use all transition points of the individual

tracks for the training of the models, the tracks are divided using a sliding window

approach in such a way that they always have a length of 10. Thus, there are a total of

205,380 tracks each with a length of 10 and the desired features. These tracks were then

divided into a training set (80%) and test set (20%). In absolute numbers, this means

that 164,304 tracks are used as training data and 41,076 as test data.

46

This data is then used with three different combinations of features. First, the AIS data

combined with data extracted from the waterways should be used. This includes the

attributes 𝑆𝑂𝐺, 𝐶𝑂𝐺, 𝑑𝑠, ß. In the second step, tide data is added to the dataset to see if

these additional data have an influence in the prediction accuracy 𝑏1, 𝑏2. Finally, the

weather attributes 𝑤ℎ , 𝑤𝑠, 𝑤𝑑 are also used. Using these three different combinations of

features, will deliver insights into which combination of features achieves the best

prediction result when used by data-driven models.

6.2 Models

In this thesis, the prediction of vessel tracks is tested with both a Bi-LSTM model and a

transformer model. Furthermore, a linear prediction is used as a base model to better

compare the obtained results.

The linear model is designed to take the feature it should predict as input and then

perform a linear prediction on it. Accordingly, no other features that could affect the

prediction are added to the model. Each sequence that the model gets as input is a 2-

dimensional vector, where the first dimension displays the sequence length and the

second dimension contains the feature that should be predicted. The input data is then

flattened into a single dimension using the Flatten layer, resulting in a one-dimensional

vector. This flattened input is then passed through a single dense layer with each output

feature as neuron. Each neuron performs a linear transformation of the input data, which

means that the output of each neuron is simply the weighted sum of its input, without any

non-linearity.

The architecture of the Bi-LSTM model is displayed in figure 21. The model contains one

Bi-LSTM layer, a dense layer and finally an output layer and is based on the structure

explained in section 3.3.

21 Bi-LSTM Architecture

47

The Bi-LSTM layer contains 128 units and is the core of the model. It processes the input

data sequentially, considering the sequence of input data in addition to the individual

features at each time step. As mentioned in section 3.3, the Bi-LSTM contains two

separate LSTM layers, one processing the input sequence in a forward direction and the

other in a backward direction. This allows the model to capture temporal dependencies

in both directions and can improve the accuracy of predictions. Further, a dropout layer

is added to prevent overfitting during training. The dropout rate was set at 0,2, meaning

that 20% of neurons randomly dropped out during training. This layer is then followed by

a dense layer with 64 units which processes the information from the Bi-LSTM layer.

Finally, a dense layer with the expected features was used that outputs a tensor and

applies a linear transformation to the output of the previous layer.

The number of units as well as the hyperparameters used in the model were found out

with the Keras Tuner [70]. Keras Tuner is a hyperparameter tuning library for

TensorFlow's Keras API. It allows to efficiently search for the best hyperparameters for

deep learning models. Keras Tuner uses various search algorithms and strategies to find

the optimal hyperparameters for a given model architecture and training dataset. For this

purpose, a list of parameters can be passed which are then tried out. The models with

which the best results were achieved can then be trained further.

The structure of the transformer model is shown in figure 22.

22 Transformer Architecture

For the transformer model, the input sequence is first fed into a Time2Vec layer, which

works as described in section 3.5. However, since time is not considered, the mean value

from all values of the respective features is used. From this mean value, two features

are then calculated that represent the position within the sequence. These additional two

features are then concatenated to the input sequence. The output of this layer is then

fed to three consecutive transformer encoder layers. The transformer encoder layer is

48

based on the transformer model introduced in section 3.5, where the input is fed to a

Multi-Head Attention layer and then followed by a Normalization and Dropout layer. The

dropout rate was set to 0,1. Next, a feed forward layer is implemented as a convolutional

layer. The purpose of this layer is to provide each encoder block with the ability to learn

and model complex interactions between the input sequence elements. The output is

then again normalized. After the encoder layers, a global average pooling layer follows.

This layer reduces the tensor to a single scalar value by taking the average of all its

values across a particular axis. This layer reduces the dimensionality of the output while

preserving important spatial information. A dropout layer is then used with the dropout

rate was set to 0,2. Finally, like in the Bi-LSTM model, a Dense layer with 64 units

followed by a final dense layer with the required number of features is added to the

model.

6.3 Implementation

Various frameworks and publicly available libraries were used during data

preprocessing, creating and training the models and in the evaluating process. Python

was used as the main programming language. The libraries and frameworks mainly used

are introduced in the upcoming paragraphs.

TensorFlow + Keras

The data-driven models in this thesis are implemented using TensorFlow. TensorFlow is

an open-source framework developed by Google Brain that provides tools for building

and training machine learning models. TensorFlow can be used on different platforms,

including mobile devices and the web. It also enables the use of Keras, which is a high-

level neural network application programming interface (API). Keras allows to easily

build, train and deploy neural networks, using an API that hides the low-level details of

the underlying deep learning framework. It supports a wide range of neural network

types, including convolutional neural networks (CNNs) and recurrent neural networks

(RNNs) among others. Keras also supports a wide range of loss functions, activation

functions and optimizers which are used to train the neural networks. [71] [72]

Pandas

Pandas is an open-source library for data manipulation and analysis in Python. It

provides data structures for efficiently storing and manipulating large datasets, as well

as tools for reading and writing data in various file formats. It further provides a rich set

of functions and methods for performing data analysis tasks, such as filtering, grouping

49

and aggregation. It also supports data visualization through integration with other

libraries such as Matplotlib. [73]

GeoPandas

GeoPandas is a Python library that builds on top of pandas and adds support for working

with geospatial data. It provides a convenient and efficient way to manipulate and

visualize geospatial data in Python. Geospatial data includes data that is associated with

geographic locations on the Earth's surface, such as latitude and longitude coordinates,

polygons, points, and lines on a map. GeoPandas provides tools for reading, writing, and

manipulating geospatial data in a tabular format, similar to the way that pandas works

with numerical and textual data. [74] In this thesis, GeoPandas is used to process data

that includes geographical positions like AIS data or the positions of the buoys inside the

waterways.

Matplotlib

Matplotlib is a data visualization library for Python. It provides a wide range of tools for

creating static, animated and interactive visualizations in Python. Matplotlib allows to

create high-quality 2D and 3D graphs, plots, histograms, scatterplots and many other

types of visualizations. It is open-source and available under the BSD license, which

means it is free to use, distribute and modify. [75] The figures presented in this thesis

are mainly made using Matplotlib.

NumPy

NumPy is a Python library used for numerical computing. It stands for "Numerical Python"

and is designed to provide fast, efficient operations on large multi-dimensional arrays

and matrices of numerical data. NumPy is a fundamental library for scientific computing

in Python and is used extensively in fields such as data science, machine learning,

physics, engineering and finance. [76]

6.4 Vessel Track Prediction

In this section, three different feature combinations are trained and evaluated using a Bi-

LSTM and a transformer model. These models are then also compared to the linear

prediction result for each feature. The linear prediction will serve as a base model to

better classify the results. The processing of the data to combine the different features

is explained in section 6.1, while the structure of the two data-driven models on which

the data was trained is explained in section 6.2.

50

As mentioned in chapter 5.1, the prediction of vessel tracks can be categorized as a

regression task. In this thesis, a sequence of 𝑇𝑃s is given from which the subsequent

TPs are to be predicted. Thus, this task can be placed in a temporal context. The time

sequence of a vessel track is shown in figure 23, where 𝑇𝑃𝑡 represents the transition

point at timestep t.

23 Vessel Track Sequence

In this thesis, the subsequent five 𝑇𝑃s should be predicted. This prediction process can

be displayed with equation 35, 36, whereby 𝑇𝑃 also includes the other features of the

dataset.

𝑇𝑃𝑡+1 = 𝑓(𝑇𝑃𝑡 , 𝑇𝑃𝑡−1, … , 𝑇𝑃𝑡−9) 35

𝑇𝑃𝑡+2 = 𝑓(𝑇𝑃𝑡+1, 𝑇𝑃𝑡 , … , 𝑇𝑃𝑡−8) 36

To predict the next transition point 𝑇𝑃𝑡+1, the ten most recent transition points are used

(𝑇𝑃𝑡 , 𝑇𝑃𝑡−1, … , 𝑇𝑃𝑡−9). This predicted transition point is then incorporated with the

previous nine transition points to make further predictions for the following transition point

𝑇𝑃𝑡+2. This iterative process is repeated to predict the next five transition points.

Each model is trained for a maximum of 100 epochs. However, if the result do not

improve during the last 10 epochs, the training is stopped and the best weights are

restored. Additionally, each model is trained using the Adam optimizer as it is well suited

for these kinds of predictions and is more efficient than, for example, the SDG optimizer.

The MSE is used to measure loss, obtaining more accurate results compared to the

MAE. During training, a validation split of 0,2 is used, leading to 20% of the training-data

being used as a validation set. This set is then used to evaluate the performance of the

model during training, which is measured as validation loss 𝑣𝑎𝑙𝑙𝑜𝑠𝑠.

51

6.4.1 Results

In the first approach, the Bi-LSTM and the transformer model were trained on a dataset

containing the attributes 𝑆𝑂𝐺, 𝐶𝑂𝐺, 𝑑𝑠 and ß. As mentioned in section 6.1, 𝐶𝑂𝐺 and ß

were further divided into sine and cosine so that this dataset contains six features.

Overall, the training data had 164.304 different tracks with a sequence length of 10. The

test data had 41.076 example tracks with the same sequence-length and features as the

training data.

When comparing the two different models, it is noticeable that the transformer model

with 24.286 trainable parameters is by far the less complex model, while the Bi-LSTM

model has 155.078 trainable parameters. This complexity is reflected in the training of

the models. Figure 24 shows the training and 𝑣𝑎𝑙𝑙𝑜𝑠𝑠 of the two models during the training

per epoch.

24 Approach 1: Training and Validation Error

As can be seen in both models, the training error decreases significantly at the beginning

and only slightly thereafter. It is noticeable that the transformer model on the right already

converges after 30 epochs, while the Bi-LSTM model finally converges after 63 epochs.

When considering the level at which the models converge, the complexity of the Bi-LSTM

leads to a better result compared to the transformer model. As table 8 illustrates, at

0,001751 the Bi-LSTM model reaches a lower MSE than the transformer model at

0,010887. The same applies to the 𝑣𝑎𝑙𝑙𝑜𝑠𝑠. It is below the trainings loss but does not

show signs of over- or underfitting.

52

Model MSE 𝒗𝒂𝒍𝒍𝒐𝒔𝒔

Bi-LSTM 0.001751 0.001176

Transformer 0.010887 0.00808

Considering the average prediction error among the next five transition points with

respect to the features 𝑆𝑂𝐺, 𝐶𝑂𝐺, 𝐷𝑠 and ß, as shown in table 9, the results measured

with the MSE give a good indication of the achieved average result per feature. In

addition to the Bi-LSTM and the transformer model, a linear prediction of each feature is

used a baseline to which the data-driven models can be compared.

Model 𝑫𝒔

(meters)

𝑺𝑶𝑮

(knots)

𝑪𝑶𝑮

(degree)

ß

(degree)

Linear 178.09 0.74 9.97 18.93

Bi-LSTM 106.42 0.68 2.07 1.85

Transformer 182.75 2.73 5.24 7.09

9 Approach 1: Results per Feature

The best result in terms of all features is measured with the Bi-LSTM. The transformer

model, on the other hand, makes more precise predictions than the linear prediction for

𝐶𝑂𝐺 and ß, but less precise predictions for 𝑑𝑠 and 𝑆𝑂𝐺.

The average error for the Bi-LSTM for 𝑑𝑠 is 106,42 meters, which is more than 70 meters

more accurate than the linear prediction and the transformer model’s prediction.

However, the linear prediction and the transformer model achieve very comparable

results of 178,09 meters and 182,75 meters, respectively. For the average error of 𝑆𝑂𝐺,

the linear prediction (0,74) and the Bi-LSTM model (0,68) are very close. However, when

predicting 𝐶𝑂𝐺 and ß, there are three clearly different results. The lowest average error

is achieved by the Bi-LSTM model with an error of 2,07 degrees for 𝐶𝑂𝐺 and 1,85

degrees for 𝑆𝑂𝐺. This is followed by the transformer model with an average error of 5,24

degrees for 𝐶𝑂𝐺 and 7,09 degrees for ß. The linear average errors are significantly

higher with an average error of 9,97degrees for 𝐶𝑂𝐺 and 18,93 degrees for ß.

 8 Approach 1: MSE & Validation Loss

53

The following figure 25 shows the range of errors for each prediction step and for each

feature as well as the average of the prediction errors from the Bi-LSTM, the transformer

model and the linear prediction. As can be seen, the average error of all features does

not consistently increase when predicting the later transition points. This is of interest

since the predicted errors are included in the later prediction. However, the outliers in the

prediction of 𝐶𝑂𝐺 and ß in the Bi-LSTM become larger in later predictions, as well as in

the prediction of 𝑑𝑠 with the transformer model.

For the features 𝑑𝑠 and 𝑆𝑂𝐺, the transformer model predicts the largest error range, with

an error for 𝑑𝑠 of up to 2.700 meters relative to ground truth and up to 11 knots for 𝑆𝑂𝐺.

It is noticeable that the average error for 𝑆𝑂𝐺 for the transformer model increases

significantly in the second step and then decreases again. When considering 𝐶𝑂𝐺 and

ß, the linear prediction predicts large outliers of up to 120 degrees for 𝐶𝑂𝐺 and 100

degrees for ß.

25 Approach 1: Range of Prediction Errors

Looking at individual tracks, it is noticeable that all predictions can produce erroneous

results. As shown in figure 26, the Bi-LSTM model predicts values outside the waterway.

54

26 Erroneous Track Predictions

This phenomenon occurs in the Bi-LSTM model in 0,7% of all test predictions and in the

predictions done with the transformer model in 0,4% of all test predictions. The linear

prediction only produces this error in 0,4% of all test predictions.

For the next predictions, the tide level of the two nearest buoys 𝑏1 and 𝑏2 were added to

the dataset as mentioned in section 5.1. Accordingly, the feature set of each model

increases by two to eight features. Due to this increase, the trainable parameters of the

Bi-LSTM model increase by 2.178, to a total of 157.256, while 8.766 additional

parameters were added to the transformer model, which thus contains a total of 33.052

parameters.

During training, the MSE was adjusted so that only the previous attributes 𝑆𝑂𝐺, 𝐶𝑂𝐺, 𝐷𝑠

and ß were included in the error and not the added attributes 𝑏1 and 𝑏2. Although the

errors of the tide predictions are higher when excluding them from the loss function and

the tidal predictions are included in the further predictions, this approach obtained more

accurate results compared to models trained on all features.

The progression of the training curve, shown in figure 27, is comparable to that in the

first approach without tide information. The validation error of the transformer model has

a higher volatility than that of the Bi-LSTM model and the transformer model already

converges after 28 epochs while the Bi-LSTM model takes 38 epochs.

55

27 Approach 2: Training and Validation Error

When looking at the results for the MSE and the 𝑣𝑎𝑙𝑙𝑜𝑠𝑠 in table 10, the values change

only minimally compared to the training without tide information. Thus, the Bi-LSTM

model remains the one with the lower MSE.

Model MSE 𝒗𝒂𝒍𝒍𝒐𝒔𝒔

Bi-LSTM 0.001815 0.001208

Transformer 0.010076 0.006336

Although the MSE has changed only slightly, the prediction errors of the individual

features of the Bi-LSTM are significantly worse than without tide information. This can

be seen in table 11.

Model 𝑫𝒔

(meters)

𝑺𝑶𝑮

(knots)

𝑪𝑶𝑮

(degree)

ß

(degree)

Linear 178.09 0.74 9.97 18.93

Bi-LSTM 197.46 1.02 2.16 2.03

Transformer 171.21 2.75 5.06 5.95

11 Approach 2: Results per Feature

10 Approach 2: MSE & Validation Loss

56

The transformer model performs slightly better for 𝑑𝑠 than the linear prediction with an

error of 171,21 meters. The Bi-LSTM model got worse and now predicts an average error

of 197,46 meters. The lowest average error for 𝑆𝑂𝐺 is now predicted by the linear

prediction, then followed by the Bi-LSTM model. For 𝐶𝑂𝐺 and ß, the Bi-LSTM model still

reaches the lowest average error, followed by the transformer model.

As for the predictions outside the waterway, the transformer model predicts for 1.3% of

all tracks, negative distances to the starboard buoy. For the Bi-LSTM model, however,

the erroneous predictions increase to 37% of the total test predictions.

28 Approach 2: Range of Prediction Errors

When looking at the range of the prediction errors, displayed in figure 28, it is noticeable

in the Bi-LSTM model that when predicting 𝑑𝑠, the range is increased compared to the

prediction without tide information. With 𝑆𝑂𝐺, the average error especially in the first

prediction step is higher than in the subsequent steps. With the transformer model, there

is little change in the range of prediction of 𝑑𝑠 and 𝑆𝑂𝐺. For ß, however, the ranges

increase up to 30 degrees in the later predictions. This is also associated with the poorer

average predictions.

For the last predictions, 𝑤ℎ, 𝑤𝑠and 𝑤𝑑, which represents the weather characteristics,

were then added to the dataset as mentioned in section 5.1. Adding these additional

57

features increased the feature size to 12, because 𝑤𝑑 was preprocessed like 𝐶𝑂𝐺 and

ß, which means that it was divided into cosine and sine. Due to this change, the

parameters of every model again increased. The Bi-LSTM now had 161.612 trainable

parameters and the transformer model 53.784 trainable parameters.

The progression of the training and validation errors for the linear and Bi-LSTM is again

very similar to the progression of the previous trainings, as it can be seen in figure 29.

29 Approach 3: Training and Validation Error

When looking at the results of the training, as displayed in table 12, it is noticeable that

the MSE of the transformer model reaches with 0,001688 nearly the same results as

during the training with the tide data. The Bi-LSTM model, on the other hand, achieves

with 0,008354 a lower MSE than in the previous trainings.

Model MSE 𝒗𝒂𝒍𝒍𝒐𝒔𝒔

Bi-LSTM 0.001688 0.001188

Transformer 0.008354 0.005513

12 Approach 3: MSE & Validation Loss

Looking at the average errors of the prediction of the following five transition points, the

following picture emerges (Table 13).

58

Model 𝑫𝒔

(meters)

𝑺𝑶𝑮

(knots)

𝑪𝑶𝑮

(degree)

ß

(degree)

Linear 178.09 0.74 9.97 18.93

Bi-LSTM 153.97 1.25 2.11 2.18

Transformer 185.67 2.79 7.4 7.64

13 Approach 3: Results per Feature

As the results show, the lowest prediction error for 𝑑𝑠 is now received by the Bi-LSTM

model. For 𝑆𝑂𝐺, the linear prediction reaches the lowest average error. For the features

𝐶𝑂𝐺 and ß, the three result categories can still be seen. The Bi-LSTM model achieves

the lowest average error, followed by the transformer model and the linear prediction.

30 Approach 3: Range of Prediction Errors

Looking at the prediction error range in figure 30 for 𝑆𝑂𝐺, the average for the Bi-LSTM

is higher in the first prediction step than in the subsequent ones. The error range for ß

predicted by the transformer model is lower compared to the approach with tide data.

The average error and the total error range are shown again in detail in appendix 4 and

5 separately for the different approaches according to the Bi-LSTM and transformer

model. While considering 𝑑𝑠 for the Bi-LSTM, it is noticeable that the error range

59

increases for the second prediction step with the approach that includes tide data and

weather information. However, despite the large range, the average error is lower as in

the other approaches. This phenomenon can also be seen with 𝐶𝑂𝐺 during the fourth

and fifths prediction step. When looking at 𝑆𝑂𝐺, there is a clear deterioration in the first

two prediction steps with the addition of tide data. When looking at the transformer

model, an increase of the error range with the addition of tide data and weather

information for 𝐶𝑂𝐺 occurs from the fourth prediction step onwards. This is also

accompanied by a decrease of the average error. Like the Bi-LSTM, the average error

increases for 𝑆𝑂𝐺 during the first prediction step, when adding tide data.

The following table 14 summarizes the collected results of each approach for each

feature. As the results show, the Bi-LSTM in the first approach achieves the lowest

deviation from the ground truth for every feature.

 Model 𝑫𝒔

(meters)

𝑺𝑶𝑮

(knots)

𝑪𝑶𝑮

(degree)

ß

(degree)

 Linear 178.09 0.74 9.97 18.93

Approach 1

𝑑_𝑠, 𝐶𝑂𝐺, 𝑆𝑂𝐺, ß

Bi-LSTM 106.42 0.68 2.07 1.85

Transformer 182.75 2.73 5.24 7.09

Approach 2

𝑏1, 𝑏2

Bi-LSTM 197.46 1.02 2.16 2.03

Transformer 171.21 2.75 5.06 5.95

Approach 3

𝑤ℎ , 𝑤𝑠, 𝑤𝑑

Bi-LSTM 153.97 1.25 2.11 2.18

Transformer 185.67 2.79 7.4 7.64

14 Overall Results per Feature

When considering 𝑑𝑠, the prediction of the Bi-LSTM model in the first approach, in which

only the features 𝑆𝑂𝐺, 𝐶𝑂𝐺, 𝑑𝑠 and ß were used, achieves an average prediction error of

106,42 meters. This result is about 65 meters more accurate than the best result

achieved with a transformer model, which is achieved in approach 2 where water levels

from two nearest buoys 𝑏1 and 𝑏2 were added. The linear model achieves an average

prediction error of 178,09 meters, which is nearly 70 meters less accurate than the result

achieved with the best Bi-LSTM model.

60

When considering 𝑆𝑂𝐺, the best result is also obtained from the Bi-LSTM in the first

approach by adding the tide data. On average, the average prediction error there is 0,68

knots. It is noticeable that the result does not differ much from that of the linear prediction,

which reaches a deviation of 0,74 knots. The transformer model, on the other hand,

delivers a higher prediction error at 2,72 knots.

For 𝐶𝑂𝐺 and the ß, the Bi-LSTM achieves 2,07 and 1,85 degrees respectively in the first

approach, which is by far the lowest prediction error compared to the other predictions.

The Bi-LSTM model is followed by the transformer model, which achieves an average

prediction error of 5,06 degrees for 𝐶𝑂𝐺 and 5,95 degrees for ß. This is achieved in the

second approach. The largest deviation with 9,97 degrees for 𝐶𝑂𝐺 and 18,93 degrees

for ß is obtained with the linear prediction.

It is noticeable that the prediction results of the Bi-LSTM model become worse when

more data features were added. However, the prediction results of the transformer model

became better when tidal data were added. However, when adding weather data, the

results also got worse.

In table 15, the predictions obtained with the Bi-LSTM model, which obtained the best

result in comparison, are divided according to the waterways along the Elbe and Weser

rivers and Wilhelmshaven.

 𝑫𝒔

(meters)

𝑺𝑶𝑮

(knots)

𝑪𝑶𝑮

(degree)

ß

(degree)

Elbe 100.57 0.65 2.17 1.87

Weser 115.15 0.71 1.90 1.76

Wilhelmshaven 105.15 0.82 2.22 2.64

15 Results per Feature per Track

As the results show, the lowest average prediction error for 𝑑𝑠 is achieved along the Elbe

river with 100,57 meters, followed by the predictions along Wilhelmshaven with 105,15

meters and the Weser river with 115,15 meters. For 𝑆𝑂𝐺, the lowest error is again

obtained along the Elbe. However, the difference between the best and the worst result

applicable to Wilhelmshaven is only less than 0,2 knots

For the other features 𝐶𝑂𝐺 and ß, the lowest error is received along the Weser River.

The prediction results for these two features are, with less than 1-degree difference, also

very close to each other.

61

6.4.2 Discussion

The discussion of the results can be divided into four parts. In the first part, the history of

the training and validation errors for the three approaches is discussed. Second, the

outliers in the prediction as well as erroneous tracks are discussed, followed by a short

discussion about the prediction errors per waterway. Finally, the results are evaluated

against the requirements established at the beginning of this thesis.

When looking at the training and validation errors in figures 24, 27 and 29, the

transformer model converges much faster than the Bi-LSTM model. The faster

convergence is related to the complexity of the models since, as mentioned before, the

Bi-LSTM has significantly more trainable parameters and thus takes longer to find an

optimal solution. Considering the validation error of the transformer model in figure 27,

the volatile performance may somewhat indicate an overfitting of the model. However,

as the result does not deteriorate in the long run, so that the model should not be classed

as overfitted. Attempting to make the transformer model more complex resulted in

overfitting. Accordingly, a model is selected even though it has much fewer trainable

parameters than the Bi-LSTM model. Accordingly, to make the transformer model more

complex, a different architecture needs to be chosen. It is also noticeable that the MSE

changes only slightly when tide data and weather information are added, whereas the

specific predictions of the features do. Thus, it can be concluded that the MSE does not

directly reflect the predictions of the individual features.

When considering the range of prediction errors, as displayed in figure 25, 28 and 30 for

𝑑𝑠, the transformer model predicts a wider range of errors than the Bi-LSTM model.

These outliers in the transformer model’s prediction of the 𝑑𝑠 occur for tracks where the

waterway becomes significantly wider. This can be seen in figure 31 where the 𝑑𝑠 of the

5th prediction is 2.766 meters away from the actual position. In this case, the Bi-LSTM

makes a much more accurate prediction, although it also predicts to an error of 263

meters. In the example at hand, the vessel was sailing far to the left in the waterway,

which is unusual, since it was assumed that vessels sail as far to the right as possible.

This deviation from the assumption of the vessel`s behavior may also contribute to the

large difference between the predicted distance and the actual distance. Accordingly, the

assumption needs to be reconsidered, as it may not hold for all vessel types considered

in the data.

62

31 Outliers 𝒅𝒔

The outliers in the ß's and in the 𝐶𝑂𝐺´s prediction error occur mainly for one location in

the waterway along the Elbe river, which is displayed in figure 32. The waterway runs

along Glückstadt and the buoys are arranged in such a way that it seems as if the ships

do not pass through the waterway from the north or south, but from the west or east.

Since the arrangement of the buoys in the course of the waterway only give the

impression at this intersection, the models can not represent this transition well. Had the

model actually predicted this outlier, this would have indicated that the model had

overfitted and made predictions too close to the training data.

32 Outliers 𝑪𝑶𝑮 & ß

63

In the case of the 𝐶𝑂𝐺, it is particularly noticeable in the first approach that the linear

predictions show significantly greater deviations in the later predictions than the other

two models. This is also accompanied by a worse than average prediction accuracy. This

illustrates that a linear prediction does not provide good results for these features and

that the other two models can predict the values significantly better.

As mentioned in the previous chapter, all predictions can produce erroneous results. This

phenomenon occurs mainly in curve passages where the distance to the previous

transition points becomes significantly smaller. With the introduction of tide information

in the Bi-LSTM model 36% of all tracks were predicted erroneously, which indicates that

with the addition of the features, the model becomes distracted in the prediction and can

no longer represent the dependencies between the features as well as without tide

information. This can also be seen from the fact that the average error in the prediction

of 𝑑𝑠 increases by almost 90 meters. However, the added features seem to help the

transformer model, because all predicted features, except 𝑆𝑂𝐺, got more precise.

The comparison of the results of the different models can be further evaluated with the

aid of figure 4 in the appendix. As shown in the figure, the range of 𝑑𝑠 for the Bi-LSTM

model increases with the addition of tide and weather data from the first prediction step

onwards. The average error, however, is somewhat smaller from the second prediction

step onwards compared to the experiment without tide and weather information. This

suggests that the model has adjusted more closely to the training data, making the

average predictions more accurate. The outliers from the data, on the other hand, can

no longer be represented as well, which explains the higher errors. As a result, deviations

from the norm lead to a larger error. This is also the case for 𝐶𝑂𝐺 during the fourth and

fifth prediction step. For the other features, the error range do not change so much with

the addition of the other data. For the transformer model, the same phenomenon is

noticeable for 𝐶𝑂𝐺 in the fourth and fifth prediction step, as well as in the second

prediction step for 𝑑𝑠 as it can be seen in appendix 5.

All in all, the results displayed in table 14 show that the addition of tide information as

well as weather characteristics does not automatically lead to an improvement of the

predictions. One possible reason for that is that the new features may not be relevant or

informative to the prediction task and therefore may introduce unwanted noise or bias to

the model. Overall, it should also be noted that the Bi-LSTM predicts the lowest average

error. On the one hand, this can be explained by the fact that it was also the most

complex model and thus had more capacity to predict the dependencies. However, even

the less complex transformer model makes reasonable predictions for the number of

trainable parameters it possesses. In particular, the strength of a transformer model is

64

its ability to identify long-term dependencies [37]. In the presented approach, however,

only the first following transition point was predicted. Accordingly, the models did not

have to learn large dependencies. For this kind of prediction, LSTM models are also very

well suited, as can be seen in the results. In summary, both data-driven models show

better results than linear prediction, which justifies the use of these models for this

prediction task. It is also worth noting that the average prediction error for the transformer

model decreases when tide data are added, while the average prediction error of the Bi-

LSTM model increases. That results in general can get worse with the addition of

features has already been described by Kuhn et al. [77] and also by John et al. [78]. This

is also the case in this thesis, especially for the weather data and the tide data for the Bi-

LSTM model. This is the case even though tide and weather data have a real impact on

the navigation of vessels. However, the data-driven models could not use this additional

information to their advantage in order to make more accurate predictions.

When the average error is split among the waterways considered, it is observed that only

minor differences in the prediction results exist between the individual waterways. That

the predictions to and from Wilhelmshaven is slightly worse than for the Elbe and Weser

rivers, can be explained by the fact that the model was trained on only 3% of the total

tracks in this waterway. Therefore, this waterway was underrepresented for the model.

However, since the overall results of the predictions for the different waterways are very

close, it can be concluded that the presented concept for predicting ship tracks in

waterways can be used for more than one waterway.

As the results show, both the concept and the data-driven models meet the requirements

specified for them at the beginning of this thesis. For the concept, the requirements

included the combination of historical vessel data, weather information, tide data and sea

chart information. With this data, data-driven models were to be trained to accurately

predict further vessel tracks. In the concept presented, AIS data along the German coast

were selected as historical vessel data, which were then combined with weather data

and data on waterways extracted from sea charts. Vessel tracks were therefore defined

as subsequent TPs points inside waterways. The data-driven models were required to

make predictions especially in the coastal areas. Further, they were to be trained with

the data generated from the concept and to be able to predict vessel tracks accurately.

A Bi-LSTM and a transformer model were selected as data-driven models and trained

on the data generated from the concept. The results were then compared to those from

a linear prediction. Results showed that both models make more accurate predictions

than the linear model and are therefore better suited for the prediction of ship tracks. It

65

was also discovered that the addition of tide and weather information did not lead to an

overall improvement of the forecast results.

6.5 Anomaly Detection

To evaluate the concept of anomaly detection presented in chapter 5.2, the data on

which the model was trained is analyzed. Therefore, the mean 𝜇 and the standard

deviations 𝜎 are calculated for the features 𝑑𝑠, 𝑆𝑂𝐺, 𝐶𝑂𝐺 and ß. Accordingly, using 𝜇

and 𝜎, the normal distribution is calculated, as displayed in figure 33, where 𝑥 is the value

of the feature.

33 Normal Distribution Training Data

As mentioned in the concept section, a track should be marked as anomalous if the

difference between the predicted feature and the true feature differs by more than two

times the respective sigma. Specifically, a track is flagged as an anomaly if 𝑑𝑠 deviates

by more than 846 meters, 𝑆𝑂𝐺 by more than 6 knots, 𝐶𝑂𝐺 by more than 186 degrees,

and ß by more than 78 degrees.

In order to test the concept of anomaly detection, the model that provides the most

accurate predictions will be used. As pointed out in section 6.4, this has turned out to be

the Bi-LSTM model, which was trained with the parameters 𝑆𝑂𝐺, 𝐶𝑂𝐺, 𝑑𝑠 and ß. This

model is now intended to make predictions on data with which it has not previously been

trained or tested. For this purpose, AIS data from April 28 to May 6 is used. This data is

from the same area as the data used to train the model. It is further prepared using the

66

information on the waterways along the Elbe, the Weser and to and from Wilhelmshaven

as described in section 6.1. In total, predictions about the next 5 transition points are

made for 932 tracks, of which 242 navigate along the Weser River, 643 along the Elbe

River and 47 navigate to and from Wilhelmshaven. Next, the predicted features for each

transition point and the true feature are compared to see if the defined threshold for that

feature has been exceeded. Should this be the case, the track is flagged.

As noted, in certain cases the model can predict a negative distance to the starboard

buoy. Since this would mean that the vessel is sailing outside the fairway, these

predictions are erroneous. In these cases, a 𝑑𝑠 of 0 is assumed instead of the negative

distance.

The results of the marked transition points are shown in table 16. For 𝐶𝑂𝐺 no anomalous

tracks were flagged, therefore it is not listed in the table.

 Overall 𝒅𝒔 > 𝟖𝟒𝟔 % 𝑺𝑶𝑮 > 𝟔 % ß > 𝟒𝟔 %

Weser 242 0 0 3 1.2 6 2.5

Elbe 643 5 0.8 3 0.5 0 0

WHV 47 0 0 0 0 0 0

Overall 932 5 0.5 6 0.6 6 0.6

16 Results Anomaly Detection

As can be seen, the number of overall marked tracks are quite similar for each feature

under consideration. While 0,6% of the total tracks are marked by a deviation at ß and

𝑆𝑂𝐺, 0,5% for 𝑑𝑠 and none is marked by the deviating from 𝐶𝑂𝐺. The marked tracks are

then again divided into the individual waterways considered, whereby it is noticeable that

when considering 𝑑𝑠, none of the tracks along Wilhelmshaven and along the Weser are

marked. For 𝑆𝑂𝐺, none track is marked for Wilhelmshaven, 0,5% for the Elbe and 1,2%

along the Weser. When considering ß, it is noticeable, that only tracks along the Weser

(2,5%) are marked.

Overall, the marked tracks would need to be investigated further to determine if the

anomalies detected were actual deviations vessel's usual route or whether they were

unrealistic predictions of the model. However, this is outside the scope of this thesis.

Nevertheless, the assumption can be made that these marked tracks are related to the

outliers of the predictions mentioned in the previous section.

67

7 Summary and Outlook

At the beginning of this thesis, the following three questions were derived from the

problem description.

1. How can vessel tracks be predicted by incorporating multiple data sources?

2. To what extent does adding multiple data sources improve prediction accuracy?

3. How can the developed method be used to flag anomalous tracks?

Based on the analyses in this thesis, these questions can now be answered. To answer

the first question, a concept predicting transition points which represent vessel tracks

inside waterways was successfully developed and it combined, historical vessel data in

form of AIS data with weather information and tide data. Positions of buoys were

extracted from see chart information and were also combined with AIS data to create

transition points. The data resulting from this concept was then used to train an Bi-LSTM

and a transformer model. These models can be used to iteratively predict the subsequent

transition points that represent the track a vessel will take. In summary, a concept was

developed to predict vessel tracks by incorporating multiple data sources.

Based on the concept developed, the second question can also be answered. Upon

evaluating the vessel track predictions, it turns out that adding tide data and weather

information does not improve the prediction results in general. Only the transformer

model benefited from the addition of tide data and predicted more accurate tracks. In the

approach considered, the model that predicts the most accurate vessel tracks was a Bi-

LSTM model trained without tide and weather information, focusing only on AIS data

combined with position of buoys that delimit waterways. It also turns out that the Bi-LSTM

model made more accurate predictions than the transformer model. However, also the

transformer model performed better than a linear prediction for three of four features.

The model that made the most accurate predictions was then also tested regarding how

successfully anomalous tracks could be flagged. For this purpose, the dataset used to

train the model was analyzed and two standard deviations were set as the threshold for

anomalous tracks. In addition, another dataset was processed in the same region but at

a different time. Having made the most accurate predictions, the Bi-LSTM model was

chosen to predict the tracks. As soon as the deviations were greater than the set

threshold, they were flagged as anomalous tracks. In summary, the method can detect

anomalous tracks by comparing the predictions with the actual measurements. However,

it was found that when using the standard deviation of each feature as a threshold,

depending on the feature, 0,6% of the tracks were marked as anomalous.

68

Future work on this topic could aim to make predictions more precise, e.g., by training

models for each vessel type specifically. The transformer model could also be improved

further. In this thesis, this model overfitted as soon as more layers were added to the

model. With a different architecture, this could be prevented, making even more precise

predictions possible. The concept could also be applied in other coastal regions to test

its usefulness there. In addition, further research could be conducted to determine how

tide information and weather data can be incorporated into historical vessel data to make

vessel track predictions even more accurate.

69

8 References

[1] United Nations Conference on Trade and Development, Review of Maritime

Transport 2021. New York, NY, USA, 2021. [Online]. Available: https://unctad.org/

system/files/official-document/rmt2021_en_0.pdf

[2] M. M. Zuzanna Szymanska, Maersk container ship runs aground off German

island. [Online]. Available: https://www.reuters.com/world/europe/container-ship-

runs-aground-off-german-island-2022-02-03/ (accessed: Mar. 29 2023).

[3] T. M. Executive, Cargo Ship Arrives in Germany with Large Hole After Striking

Wind Farm, 2023. Accessed: May 2 2023. [Online]. Available: https://maritime-

executive.com/article/cargo-ship-arrives-in-germany-with-large-hole-after-striking-

wind-farm

[4] D. Nguyen and R. Fablet, “TrAISformer-A generative transformer for AIS trajectory

prediction,” in CoRR. [Online]. Available: http://arxiv.org/pdf/2109.03958v1

[5] Oxford University Press, Anomaly. [Online]. Available: https://

www.oxfordlearnersdictionaries.com/definition/english/anomaly?q=anomaly

(accessed: May 9 2023).

[6] R. Yan and S. Wang, “Study of Data-Driven Methods for Vessel Anomaly

Detection Based on AIS Data,” in Smart Innovation, Systems and Technologies,

Smart Transportation Systems 2019, X. Qu, L. Zhen, R. J. Howlett, and L. C. Jain,

Eds., Singapore: Springer Singapore, 2019, pp. 29–37.

[7] D. Nguyen, R. Vadaine, G. Hajduch, R. Garello, and R. Fablet, “A Multi-Task Deep

Learning Architecture for Maritime Surveillance Using AIS Data Streams,” in 2018

IEEE 5th International Conference on Data Science and Advanced Analytics

(DSAA), Turin, Italy, 2018, pp. 331–340.

[8] X. Zhang, X. Fu, Z. Xiao, H. Xu, and Z. Qin, “Vessel Trajectory Prediction in

Maritime Transportation: Current Approaches and Beyond,” IEEE Trans. Intell.

Transport. Syst., pp. 1–19, 2022, doi: 10.1109/TITS.2022.3192574.

[9] M. Stróżyna, W. Abramowicz, K. Węcel, D. Filipiak, and J. Małyszko, Data

Analysis in the Maritime Domain, 2022.

[10] MarineTraffic:, Global Ship Tracking Intelligence. [Online]. Available: https://

www.marinetraffic.com/en/ais/home/centerx:-12.0/centery:25.0/zoom:4 (accessed:

Mar. 9 2023).

70

[11] International Telecommunication Union., Recommendation ITU-R M.1371-4.

Technical characteristics for an automatic identification system using timedivision

multiple access in the VHF maritime mobile band. [Online]. Available: https://

www.itu.int/rec/R-REC-M.1371/en

[12] Tim Stephens, Global analysis shows where fishing vessels turn off their

identification devices. [Online]. Available: https://news.ucsc.edu/2022/11/unseen-

fishing.html (accessed: May 2 2023).

[13] A. Androjna, M. Perkovič, I. Pavic, and J. Mišković, “AIS Data Vulnerability

Indicated by a Spoofing Case-Study,” Applied Sciences, vol. 11, no. 11, p. 5015,

2021, doi: 10.3390/app11115015.

[14] ECMWF, ECMWF - About. [Online]. Available: https://www.ecmwf.int/en/about

(accessed: Mar. 31 2023).

[15] About Copernicus | Copernicus. [Online]. Available: https://www.copernicus.eu/en/

about-copernicus (accessed: Mar. 9 2023).

[16] Hans Hersbach et al., “The ERA5 global reanalysis,” Quarterly Journal of the

Royal Meteorological Society, vol. 146, pp. 1999–2049, 2020.

[17] Dashboard - CMEMS In Situ TAC. [Online]. Available: http://www.marineinsitu.eu/

dashboard/ (accessed: Mar. 9 2023).

[18] M. Steidel, J. Mentjes, and A. Hahn, “Context-Sensitive Prediction of Vessel

Behavior,” JMSE, vol. 8, no. 12, p. 987, 2020, doi: 10.3390/jmse8120987.

[19] International Association of Lighthouse Authorities, R1001 the IALA Maritime

Buoyage System. Eden Island, Seychelles, 2018.

[20] M. H. Sazli, “A brief review of feed-forward neural networks,” Communications

Faculty of Sciences University of Ankara Series A2-A3 Physical Sciences and

Engineering, vol. 50, no. 01, 2006.

[21] Rumelhart, David E. Hinton, Geoffrey E., Williams, Ronald J., “Parallel Distributed

Processing: Explorations in the Microstructure of Cognition: Foundations: Learning

internal representations by error propagation,” in pp. 318–362.

[22] Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning: MIT

Press, 2016. [Online]. Available: http://www.deeplearningbook.org/

[23] Diederik P. Kingma and Jimmy Ba, “Adam: A Method for Stochastic Optimization,”

in ICLR.

71

[24] S. Hochreiter, “The vanishing gradient problem during learning recurrent neural

nets and problem solutions,” International Journal of Uncertainty, Fuzziness and

Knowledge-Based Systems, vol. 6, no. 02, pp. 107–116, 1998.

[25] R.L.T. Hahnloser, “On the piecewise analysis of networks of linear threshold

neurons,” Neural Networks, vol. 11, no. 4, pp. 691–697, 1998, doi:

10.1016/S0893-6080(98)00012-4.

[26] Stephen Merity, Nitish Shirish Keskar, and Richard Socher, “Regularizing and

Optimizing LSTM Language Models,” in International Conference on Learning

Representations, 2018. [Online]. Available: https://openreview.net/forum?id=

SyyGPP0TZ

[27] Hochreiter, Sepp, Schmidhuber, Jürgen, “Long Short-term Memory,” in Neural

computation, pp. 1735–1780. [Online]. Available: 10.1162/neco.1997.9.8.1735

[28] Felix Alexander Gers, Jürgen Schmidhuber, and Fred Cummins, “Learning to

Forget: Continual Prediction with LSTM,” Neural Computation, vol. 12, pp. 2451–

2471, 2000.

[29] H. Fan, M. Jiang, L. Xu, H. Zhu, J. Cheng, and J. Jiang, “Comparison of Long

Short Term Memory Networks and the Hydrological Model in Runoff Simulation,”

Water, vol. 12, no. 1, 2020, doi: 10.3390/w12010175.

[30] A. Graves and J. Schmidhuber, “Offline Handwriting Recognition with

Multidimensional Recurrent Neural Networks,” in Proceedings of the 21st

International Conference on Neural Information Processing Systems, 2008, pp.

545–552.

[31] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan, “Show and

Tell: A Neural Image Caption Generator,” CoRR, abs/1411.4555, 2014.

[32] S. Zhang, L. Wang, M. Zhu, S. Chen, H. Zhang, and Z. Zeng, “A Bi-directional

LSTM Ship Trajectory Prediction Method based on Attention Mechanism,” in 2021

IEEE 5th Advanced Information Technology, Electronic and Automation Control

Conference (IAEAC), Chongqing, China, 2021, pp. 1987–1993.

[33] Mike Schuster and Kuldip K. Paliwal, “Bidirectional recurrent neural networks,”

IEEE Trans. Signal Process., vol. 45, pp. 2673–2681, 1997.

[34] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to Sequence Learning with

Neural Networks: arXiv.

72

[35] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly

Learning to Align and Translate,” Sep. 2014. [Online]. Available: http://arxiv.org/

pdf/1409.0473v7

[36] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine Translation by Jointly

Learning to Align and Translate,” Sep. 2014. [Online]. Available: http://arxiv.org/

pdf/1409.0473v7

[37] A. Vaswani et al., Eds., Attention Is All You Need, 17th ed. Red Hook, NY, USA:

Curran Associates Inc., 2017. [Online]. Available: https://dblp.org/rec/journals/corr/

VaswaniSPUJGKP17.bib

[38] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from

Overfitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp. 1929–

1958, 2014. [Online]. Available: http://jmlr.org/papers/v15/srivastava14a.html

[39] Seyed Mehran Kazemi et al., “Time2Vec: Learning a Vector Representation of

Time,” CoRR, abs/1907.05321, 2019.

[40] Q. Wen et al., “Transformers in Time Series: A Survey,” in arXiv. [Online].

Available: http://arxiv.org/pdf/2202.07125v3

[41] H. Zhou et al., “Informer: Beyond Efficient Transformer for Long Sequence Time-

Series Forecasting,” Dec. 2020. [Online]. Available: http://arxiv.org/pdf/

2012.07436v3

[42] G. Zerveas, S. Jayaraman, D. Patel, A. Bhamidipaty, and C. Eickhoff, “A

Transformer-based Framework for Multivariate Time Series Representation

Learning,” Oct. 2020. [Online]. Available: http://arxiv.org/pdf/2010.02803v3

[43] S. Mehri, A. A. Alesheikh, and A. Basiri, “A Contextual Hybrid Model for Vessel

Movement Prediction,” IEEE Access, vol. 9, pp. 45600–45613, 2021, doi:

10.1109/ACCESS.2021.3066463.

[44] D. Gao, Y. Zhu, J. Zhang, Y. He, K. Yan, and B. Yan, “A novel MP-LSTM method

for ship trajectory prediction based on AIS data,” Ocean Engineering, vol. 228, p.

108956, 2021, doi: 10.1016/j.oceaneng.2021.108956.

[45] C.-H. Yang, C.-H. Wu, J.-C. Shao, Y.-C. Wang, and C.-M. Hsieh, “AIS-Based

Intelligent Vessel Trajectory Prediction Using Bi-LSTM,” IEEE Access, vol. 10, pp.

24302–24315, 2022, doi: 10.1109/ACCESS.2022.3154812.

73

[46] C. Liu et al., “TPR-DTVN: A Routing Algorithm in Delay Tolerant Vessel Network

Based on Long-Term Trajectory Prediction,” Wirel. Commun. Mob. Comput., vol.

2021, 2021, doi: 10.1155/2021/6630265.

[47] J. Venskus, P. Treigys, and J. Markevičiūtė, “Unsupervised marine vessel

trajectory prediction using LSTM network and wild bootstrapping techniques,”

NAMC, vol. 26, no. 4, pp. 718–737, 2021, doi: 10.15388/namc.2021.26.23056.

[48] D.-D. Nguyen, C. Le Van, and M. I. Ali, “Vessel Trajectory Prediction using

Sequence-to-Sequence Models over Spatial Grid,” in Proceedings of the 12th

ACM International Conference on Distributed and Event-based Systems, Hamilton

New Zealand, 2018, pp. 258–261.

[49] P. Dijt and P. Mettes, “Trajectory Prediction Network for Future Anticipation of

Ships,” in Proceedings of the 2020 International Conference on Multimedia

Retrieval, Dublin Ireland, 2020, pp. 73–81.

[50] Nicola Forti, Leonardo M. Millefiori, Paolo Braca, and Peter Willett, 2020 IEEE

International Conference on Acoustics, Speech, and Signal Processing:

Proceedings : May 4-8, 2020, Centre de Convencions Internacional de Barcelona

(CCIB), Barcelona, Spain. Piscataway, NJ, USA: IEEE, 2020. [Online]. Available:

https://ieeexplore.ieee.org/servlet/opac?punumber=9040208

[51] S. Capobianco, L. M. Millefiori, N. Forti, P. Braca, and P. Willett, “Deep Learning

Methods for Vessel Trajectory Prediction based on Recurrent Neural Networks,”

IEEE Trans. Aerosp. Electron. Syst., vol. 57, no. 6, pp. 4329–4346, 2021, doi:

10.1109/TAES.2021.3096873.

[52] J. Sekhon and C. Fleming, “A Spatially and Temporally Attentive Joint Trajectory

Prediction Framework for Modeling Vessel Intent,” in Proceedings of the 2nd

Conference on Learning for Dynamics and Control, 2020, pp. 318–327. [Online].

Available: https://proceedings.mlr.press/v120/sekhon20a.html

[53] Mengzhen Ding, Wei Su, Yingjie Liu, Jiuwen Zhang, Jianrui Li, Jinzhao Wu, “A

Novel Approach on Vessel Trajectory Prediction Based on Variational LSTM:

Dalian, China, June 27-29, 2020,” Proceedings of 2020 IEEE International

Conference on Artificial Intelligence and Computer Applications, 2020, doi:

10.1109/ICAICA50127.2020.

[54] L. You et al., “ST-Seq2Seq: A Spatio-Temporal Feature-Optimized Seq2Seq

Model for Short-Term Vessel Trajectory Prediction,” IEEE Access, vol. 8, pp.

218565–218574, 2020, doi: 10.1109/ACCESS.2020.3041762.

74

[55] B. Murray and L. P. Perera, “A dual linear autoencoder approach for vessel

trajectory prediction using historical AIS data,” Ocean Engineering, vol. 209, p.

107478, 2020, doi: 10.1016/j.oceaneng.2020.107478.

[56] Chao Liu, Yingbin Li, Ruobing Jiang, Yong Du, Qian Lu, Zhongwen Guo, “TPR-

DTVN: A Routing Algorithm in Delay Tolerant Vessel Network Based on Long-

Term Trajectory Prediction,”

[57] L. M. Millefiori, P. Braca, K. Bryan, and P. Willett, “Modeling vessel kinematics

using a stochastic mean-reverting process for long-term prediction,” IEEE Trans.

Aerosp. Electron. Syst., vol. 52, no. 5, pp. 2313–2330, 2016, doi:

10.1109/TAES.2016.150596.

[58] Fujii, Y., & Tanaka, K., “Traffic Capacity,” Journal of Navigation, no. 24, pp. 543–

552, 1971. [Online]. Available: doi://10.1017/S0373463300022384

[59] B. Ristic, “Detecting Anomalies from a Multitarget Tracking Output,” IEEE Trans.

Aerosp. Electron. Syst., vol. 50, no. 1, pp. 798–803, 2014, doi:

10.1109/TAES.2013.130377.

[60] Nicolas Le Guillarme and Xavier Lerouvreur, 2013 16th International Conference

on Information Fusion (FUSION 2013): Istanbul, Turkey, 9 - 12 July 2013.

Piscataway, NJ: IEEE, 2013.

[61] P.-R. Lei, “A framework for anomaly detection in maritime trajectory behavior,”

Knowl Inf Syst, vol. 47, no. 1, pp. 189–214, 2016, doi: 10.1007/s10115-015-0845-

4.

[62] M. Vespe, I. Visentini, K. Bryan, and P. Braca, “Unsupervised learning of maritime

traffic patterns for anomaly detection,” in 9th IET Data Fusion & Target Tracking

Conference (DF&TT 2012): Algorithms & Applications, London, UK, 2012, p. 14.

[63] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise,” in Proceedings of

the Second International Conference on Knowledge Discovery and Data Mining,

1996, pp. 226–231.

[64] G. Pallotta, M. Vespe, and K. Bryan, “Vessel Pattern Knowledge Discovery from

AIS Data: A Framework for Anomaly Detection and Route Prediction,” Entropy,

vol. 15, no. 12, pp. 2218–2245, 2013, doi: 10.3390/e15062218.

75

[65] A.-L. J. Giuliana Pallotta, “Data-driven detection and context-based classification

of maritime anomalies,” 2015 18th International Conference on Information Fusion

(Fusion), pp. 1152–1159, 2015.

[66] L. Zhao and G. Shi, “Maritime Anomaly Detection using Density-based Clustering

and Recurrent Neural Network,” J. Navigation, vol. 72, no. 04, pp. 894–916, 2019,

doi: 10.1017/S0373463319000031.

[67] Hersbach, Hans, Bell, Bill, Berrisford, Paul, Biavati, Gionata, Horányi, András,

Muñoz Sabater, Joaquín, Nicolas, Julien, Peubey, Carole, Radu, Raluca, Rozum,

Iryna, Schepers, Dinand, Simmons, Adrian, Soci, Cornel, Dee, Dick, Thépaut,

Jean-Noël, ERA5 hourly data on single levels from 1940 to present: Copernicus

Climate Change Service (C3S) Climate Data Store (CDS). Accessed: Mar. 29

2023.

[68] Graham Upton and Ian Cook, A Dictionary of Statistics, 3rd ed.: Oxford University

Press, 2008.

[69] Pekka Kumpulainen, “Anomaly detection for communication network monitoring

applications,” 2014.

[70] T. O’Malley et al., KerasTuner, 2019. [Online]. Available: https://github.com/keras-

team/keras-tuner

[71] Martín Abadi et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. [Online]. Available: https://www.tensorflow.org/

[72] F. Chollet and others, Keras.

[73] The pandas development team, pandas-dev/pandas: Pandas: Zenodo.

[74] Kelsey Jordahl et al., geopandas/geopandas: v0.8.1: Zenodo.

[75] J. D. Hunter, “Matplotlib: A 2D graphics environment,” Computing in Science &

Engineering, vol. 9, no. 3, pp. 90–95, 2007, doi: 10.1109/MCSE.2007.55.

[76] Charles R. Harris et al., “Array programming with NumPy,” Nature, vol. 585, no.

7825, pp. 357–362, 2020, doi: 10.1038/s41586-020-2649-2.

[77] Max Kuhn and Kjell Johnson, Feature Engineering and Selection: A Practical

Approach for Predictive Models. [Online]. Available: https://bookdown.org/max/

FES/ (accessed: May 9 2023).

[78] George H. John, Ron Kohavi, and Karl Pfleger, “Irrelevant Features and the

Subset Selection Problem,” in Machine Learning Proceedings 1994, William W.

Cohen and Haym Hirsh, Eds., San Francisco (CA): Morgan Kaufmann, 1994, pp.

76

121–129. [Online]. Available: https://www.sciencedirect.com/science/article/pii/

B9781558603356500234

VI

Appendix

1 Research Vessel Track Prediction ... VII

2 Pseudo Code: Create AIS-tracks .. VIII

3 Pseudo Code: Create Transitions-Points .. IX

4 Prediction Error Range Bi-LSTM per Step per Feature .. X

5 Prediction Error Range Transformer per Step per Feature .. XI

VII

1 Research Vessel Track Prediction

Authors Mehri

et al.

[43]

Gao et

al. [44]

Yang

et al.

[45]

Liu et

al. [56]

Zhang

et al.

[32]

Venskus

et al.

[47]

Nguyen

et al.

[48]

Dijt et

al. [49]

Forti

et al.

[50]

Capobianco

et al. [51]

Sekhon

et al.

[52]

Ding

et al.

[53]

You et

al. [54]

Nguyen

et al. [4]

Steidel

et al.

[18]

P
re

d
ic

ti
o

n

Single-Step

Prediction
 X

Track

Prediction
X X X

Trajectory

Prediction
 X X X X X X X X X X X

D
a

ta
 S

o
u
rc

e
s

AIS X X X X X X X X X X X X X X X

Meteorological

data
 X

Geographical

data
X X X X

P
re

d
ic

ti
o

n

H
o

ri
z
o
n

Short <= 1h X X X X X X X X X X

Medium 1h > 3h X X X X X X X

Long >= 3h X X X X X X

VIII

Code 1: Create AIS-tracks

1 '''

2 Input:

3 ais_data: ais-data in the area of interest

4 waterway_data: data with positions of the waterway

5 Output:

6 tracks: tracks that contain ais data and follow along the waterway

7 '''

8 def create_tracks(ais_data, waterway_data):

9 tracks = []

10 # filter ais data that is inside the waterway

11 filtered_ais_data = find_ais_data_within_waterway(ais_data, waterway_data)

12 # group ais data by mmsi

13 ais_grouped = filtered_ais_data.grouby("mmsi")

14 for group in ais_grouped:

15 index = 0

16 for i in range(1, len(group)):

17 previous_ais_point = group[i-1]

18 current_ais_point = group[i]

19 # if next ais_point not within one minute of the last ais_point,

20 # create new track from index to previous_ais point

21 if (current_ais_point -previous_ais_point.time) > minute_1:

22 # save track as ais_track

23 tracks.append([group, index, previous_ais_point, track_id])

24 index = current_ais_point # next track starts from current ais_point

25 # save track as ais_track

26 tracks.append([group, index, current_ais_point, track_id])

27 return tracks

2 Pseudo Code: Create AIS-tracks

IX

3 Pseudo Code: Create Transitions-Points

Code 2: Create Transition-Points

1 '''

2 Input:

3 ais_tracks: ais_tracks that follow along the waterway

4 waterway_data: data with positions of the waterway

5 Output:

6 transition_points: represent transition points inside waterways with the associated

features 7 '''

8 def create_transition_points(ais_tracks, waterway_data):

9 transition_points = []

10 # group ais data by track_id

11 tracks_group = ais_tracks.groupby("track_id")

12 for group in tracks_group:

13 for i in range(1, len(group)):

14 previous_ais_point = group[i-1]

15 current_ais_point = group[i]

16 # the grid indicates in which waterway grid the point is located

17 # only the last point inside the old grid and the first inside the

18 # new grid are needed to create transition points

19 if previous_point.grid != current_point.grid:

20 # calculate the intersection point between the starboard

21 # and port buoy of the waterway and the previous and current point

22 # which crosses the starboard and port buoy

23 inter_p, starboard_buoy = calculate_intersection_point(

24 previous_point, current_point, waterway_data)

25 # calculate the distance to te starboard buoy

26 distance = starboard_buoy.distance(inter_p)

27 sog, cog = interpolate_sog_cog(previous_point, current_point)

28 # The points given as arguments build the triangle from which the angle can

29 # be calculated current point since it is the first point in the new grid

30 ß = calculate_angle(inter_p, starboard_buoy, current_point)

31 # add extracted transition point to final list of all transition points

32 transition_points.add([distance, sog, cog, ß, track_id])

33 return transition_points

X

4 Prediction Error Range Bi-LSTM per Step per Feature

XI

5 Prediction Error Range Transformer per Step per Feature

XII

Abschließende Erklärung

Hiermit versichere ich an Eides statt, dass ich diese Arbeit selbstständig verfasst und

keine anderen als die angegebenen Quellen und Hilfsmittel benutzt habe. Außerdem

versichere ich, dass ich die allgemeinen Prinzipien wissenschaftlicher Arbeit und

Veröffentlichung, wie sie in den Leitlinien der Carl von Ossietzky Universität Oldenburg

festgelegt sind, befolgt habe.

Oldenburg, den 17.05.2023

…………

XIII

