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Abstract. Implicit large-eddy simulations of the high-pressure turbine cascade VKI-LS89
under transonic operating conditions using a high-order accurate discontinuous Galerkin spectral
element method are presented. The subcell shock capturing method by Hennemann et al. [1] is
investigated and compared against simulations with artificial viscosity. Additionally, the effect
of laminar and turbulent inflow conditions are validated against numerical and experimental
results from literature. This analysis shows that the subcell-shock-capturing method performs
well by effectively reducing spurious oscillations across the shock front and acoustic waves while
leaving the rest of the solution domain unaffected.

1 INTRODUCTION

Scale-resolving simulations are an integral part in the validation of lower-cost computational
fluid dynamics (CFD) methods and, with increasing computational resources, are also becoming
an attractive tool for the design process in modern-day turbomachinery. Because such flows are
typically at high Reynolds numbers, possibly transonic and strongly affected by the incoming
turbulence levels, agreement of experimental and numerical results can be challenging [2, 3].
Among the numerical methods used for these high-fidelity large-eddy simulations (LES), high-
order spectral methods, and in particular the discontinuous Galerkin spectral element method
(DGSEM), have become popular, as they feature reduced dispersion and dissipation errors over
lower-order schemes [4, 5]. The high-order polynomial approximations that spectral methods
are based on, however, make this family of schemes susceptible to non-physical Gibbs-type
oscillations at steep gradients or discontinuities such as shock waves.

The development of shock capturing methods tailored for the SEM framework is an active
area of research with a variety of different schemes being proposed in literature [6, 7, 8]. A
popular approach is the explicit addition of artificial viscosity (AV) to the system and thereby
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diffusing steep gradients and eliminating spurious oscillations [9]. Persson & Peraire [6] first
adapted this method for DG schemes and applied the AV as an element-wise constant quantity
that scales with a smoothness-depending shock sensor. They further demonstrated that AV can
either be applied via an additional Laplacian diffusion operator or added as physical viscosity
and incorporated through a viscous flux formulation. The AV approach was later refined by
several authors, who reported improvements through smoothing of the element-wise constant
AV (see e.g. [10, 11, 12]). For a more comprehensive overview of the various artificial viscosity
models, we refer to the excellent review by Yu & Hesthaven [13].

While AV is effective in reducing spurious oscillations, it changes the underlying differential
equation, is parameter-dependent [11] and can result in severe time-step restrictions for explicit
time-integration schemes [6, 14]. A more recently developed shock-capturing method for SEM
is the subcell finite volume (FV) ansatz introduced by Sonntag & Munz [8], Vilar [15] and
Hennmann et al. [1]. Here, each element is divided into subcells based on the interior quadra-
ture nodes and the fluxes are computed based on a FV operation. The novel entropy-stable
approach developed by Hennemann et al. [1] seamlessly blends the inviscid FV subcell fluxes
with the higher-order split-form DG ansatz, where the amount of FV in the blending operation
is determined through a shock sensor based on the energy in the highest modes of the local
polynomial.

In this paper, we present results from implicit LES of the transonic high-pressure turbine
cascade VKI-LS89 under transonic operating conditions using a high-order accurate discontin-
uous Galerkin spectral element method with subcell FV shock capturing. The scheme is tested
for laminar inflow conditions and results are compared to an AV-based approach, as well as
validated against numerical and experimental results from literature. In addition, first results
of a refined simulation with turbulent inflow conditions are presented, as well as a frequency
analysis of the dominant modes using spectral proper orthogonal decomposition (SPOD). The
transonic VKI-LS89 high-pressure turbine cascade is a well-suited test case for the performance
of numerical tools given the plethora of numerical references available in literature (see e.g.
[16, 17, 2, 3]). The subcell-shock-capturing method is shown to perform well by more effectively
reducing spurious oscillations across the shock front compared to the AV approach.

In the following chapter, we introduce the numerical scheme and provide details on the
implementation of the shock-capturing method. Tests of the schemes on the Sod shock tube
case are discussed next and the high-pressure turbine simulations are presented hereinafter.
Conclusions are reserved for the last chapter.

2 METHODOLOGY

The simulations are conducted with the DLR turbomachinery code TRACE to solve the
compressible Navier-Stokes equations in three dimensions. The spatial domain is discretized
with a discontinuous Galerkin spectral element method, which a high-order method based on a
local polynomial ansatz and extensively described and tested in [18, 19, 20].

2.1 Governing equations

We solve the compressible Navier-Stokes equations in three space dimensions, given by
∂q

∂t
+∇x · F(q,∇xq) = 0, (1)
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where q = [ρ, ρu, ρv, ρw, ρE]T is the vector of conserved variables, F is the flux vector and ∇x
is the gradient operator. The flux vector can be decomposed into advective (a) and viscous (v)
fluxes, F = Fa(q)− Fv(q,∇xq), which are given by

Fa
i =


ρui

ρu1ui + δ1ip
ρu2ui + δ3ip
ρu3ui + δ2ip
(ρE + p)ui

 , Fv
i =


0
τ1i
τ2i
τ3i

τijuj − qi

 , i = 1, 2, 3. (2)

Here, the index i refers to the component of the Cartesian coordinates, ρ is the density, ui are
the components of the velocity vector, p is the pressure, E is the specific total energy, τij are the
components of the shear stress tensor and qi is the heat flux vector. The system of equations is
closed by the equation of state for ideal gases, ρE = p/(γ − 1) + ρ(u · u)/2 with γ = 1.4 being
the ratio of specific heats. A summation over repeated indices is assumed for equation (2).

2.2 Discontinuous Galerkin spectral element method

A DGSEM scheme is used for the spatial discretization of the system (1). Here, the compu-

tational domain Th is divided into K non-overlapping hexahedral subelements D: Th =
K⋃
i=1
Di,

where the solution and fluxes are approximated on an N th order polynomial basis within each ele-
ment. By mapping each element from the physical space in Cartesian coordinates x = (x, y, z) to
a reference element in computational space E = [0, 1]3 with generalized coordinates ξ = (ξ, η, ζ),
the governing equations (1) are transformed to

J
∂q

∂t
+∇ξ · F̃(q,∇xq) = 0, (3)

where J(ξ) is the determinant of the Jacobian ∂x/∂ξ and F̃ is the contravariant flux [21].
In the DGSEM, the solution vector q is approximated by piecewise polynomials, without

enforcing continuity over the element interfaces. The polynomial expansion of q within each
element is defined as

qh(ξ, t) =
N∑
i=0

N∑
j=0

N∑
k=0

qijk(t)`
N
i (ξ)`Nj (η)`Nk (ζ), (4)

where qh is the polynomial approximation of q and the basis is formed by a set of Lagrange
interpolating polynomials of degree N ,

`Nj (ξ) =
N∏
i=0
i 6=j

ξ − ξi
ξj − ξi

. (5)

By multiplying (3) with a test function φN = `Ni (ξ)`Nj (η)`Nk (ζ), which follows the same
polynomial expansion as our solution (4), and integrating the resulting system by parts, the
final DGSEM approximation reads∫

DK

J
∂qh

∂t
φNdξ +

∫
∂DK

(F̃∗,a − F̃∗,v)φNdS−
∫
DK

F̃(qh,∇xqh) · ∇ξφNdξ = 0. (6)
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Here, F̃∗,a and F̃∗,v are the advective and viscous numerical fluxes at the element interface,
which are a function of the left and right states. The numerical fluxes are computed based on an
approximate Riemann solver by Roe [22] for the advective part and the Bassy-Rebay-1 (BR1)
scheme [23] for the viscous part.

A nodal-collocation approach, where the integration and quadrature points are both taken to
be the Legendre-Gauss-Lobatto nodes, is applied in this work and yields an efficient numerical
scheme with diagonal mass matrix [21].

We obtain the semi-discrete formulation of the high-order scheme by approximating the
integrals in (6) with quadrature and write the DGSEM scheme (given for one dimension only)
for the i-th node as:

Ji∂tqi +

(
δiN
wN

[
F̃∗ − F̃

]
N
− δi0
w0

[
F̃∗ − F̃

]
0

)
+

N∑
m=0

DimF̃m = 0, (7)

where Dij = `′j(ξi) is the derivative matrix and wi quadrature weights. With the summation-
by-parts property of the volume flux operator in (7), Fischer et al. [24] and Carpenter et al. [25]
showed that the term can be rewritten in the form

N∑
m=0

DimF̃m = 2

N∑
m=0

DimF̃#
(i,m), (8)

which can be used with any symmetric and consistent two-point flux function.
This split-form approximation of the advective fluxes can be tailored to yield a scheme that

accounts for numerical errors arising from the non-linearity of the fluxes and the limited precision
of integration [26, 27]. Specifically, we employ the kinetic-energy conserving two-point fluxes
by Kennedy & Gruber [28] in this work. The system (7) is advanced in time using an explicit
Runge-Kutta scheme. For more details on the scheme, we refer the interested reader to Bergmann
et al. [18, 20], as well as to Kopriva [21].

2.3 Subcell FV blending and artifical viscosity

2.3.1 The shock sensor

Both AV and subcell FV blending base the amount of diffusion on the strength of a shock
sensor. In this work, we employ the sensor introduced by Persson & Peraire [6] and modified
by Hennemann et al. [1], which relates the energy contained in the highest two modes of the
polynomial to its total energy:

E = max

(
m2
N∑N

j=0m
2
j

,
m2
N−1∑N−1

j=0 m2
j

)
. (9)

Here, mj are the modal coefficients of the polynomial.
The weighting function is then defined according to Hennemann et al. [1]:

α =

(
1 + exp (

−s
T

(E− T))

)−1
, (10)
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where T(N) = 0.5 ·10−1.8(N+1)1/4 , s ≈ 9.21, N is the polynomial order and the indicator variable
is chosen to be the product of pressure and density p · ρ.

The sensor is applied to both, AV and FV-blending likewise and results in element-wise
constant viscosities and blending constants respectively. To avoid large jumps to the next
element, the local weights are diffused through an averaging operation between adjacent cells.

2.3.2 Artificial viscosity

Following Persson & Peraire [6], we introduce the artificial viscosity ε via a Laplace operator
into the conservation laws

∂q

∂t
+∇x · F(q,∇xq) = ∇x · (ε∇xq) = ∇x · Fav, (11)

where we have defined the AV flux as

Fav
i = ε


∂iρ
∂iρu
∂iρv
∂iρw
∂iρE

 , i = 1, 2, 3. (12)

and add it to the physical viscous flux before applying the divergence operation: Fv,total
i =

Fv
i + Fav

i .
The AV is scaled with the shock sensor (10) and acts only on regions in the field that exhibit

strong polynomial oscillations, such that ε = α · εmax. The maximum amount of AV is governed
by the time step size, where we require that ∆tvisc ≥ ∆tinv to avoid numerical instabilities
imposed by the viscous time step limit:

εmax ∝ J
1

2N + 1

∑3
i=1 |Jai · u|+ a‖Jai‖∑3

i=1 ‖Jai‖2
. (13)

Here, ai = ∇ξi are the contravariant basis vectors where again ξ = (ξ, η, ζ) = (ξ1, ξ2, ξ3) [21],
a is the speed of sound and | · | and ‖ · ‖ refer to the L1 and L2 norms respectively. A tuning
constant C can be added to (13) to scale the AV.

2.3.3 Subcell FV blending

We start from the inviscid conservation law in the general form ∂tq + R(q) = 0 and define
the hybrid DG-FV scheme as a blending of the advective residual operator of the high-order DG
ansatz (RDG) and the low-order FV approach (RFV ):

∂q

∂t
+ αRFV (q) + (1− α)RDG(q) = 0, (14)

where again α ∈ [0, 1] is the blending factor based on the shock indicator (10).
Following Hennemann et al. [1], the semi-discrete low-order FV approximation of the conser-

vation law on the subcell grid is given as
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(a) Density (b) AV & subcell FV blending factor

Figure 1: Sod shock tube problem at time t = 0.2. Comparison of density (a) and amount of AV &
subcell FV blending (b) for the baseline DGSEM, subcell FV blending (DG-FV) and DG-AV scheme
with different scaling constants.

Ji∂tqi +
1

wi

[
F̃∗i,i+1 − F̃∗i−1,i

]
= 0, (15)

with the nodal values qi representing the mean values within the cells and F̃∗i,i+1 = F̃∗(qi,qi+1)
the interface flux between the subcells i and i+ 1. For further details on the properties and the
implementation of the DG-FV blending scheme, we refer to the paper by Hennemann et al. [1].

3 SOD SHOCK TUBE

We compare the subcell FV blending scheme to the AV variant and the baseline DGSEM
for the solution of the one-dimensional Sod shock tube problem [29] in Figure 1. The domain
is discretized with 20 elements and all simulations are run with a constant polynomial order of
N = 5 and non-dimensional time step of 1.5×10−3 until t = 0.2. The two-point flux formulation
by Kennedy & Gruber [28] is applied to the convective terms and the solution is advanced in
time using an explicit fourth-order Runge-Kutta scheme.

Although numerically stable, the baseline DGSEM shows large, spurious density oscillations
which are damped by both, the AV and the subcell FV variants. The subcell FV most effectively
reduces the spurious overshoots among the shock capturing schemes, while the solutions from
the AV simulations remain weakly oscillatory for both scaling constants C (which determine the
maximum amount of AV). Although larger values of C could reduce the oscillations with the AV
scheme further, a smaller time step size would be required for numerical stability and increase
the computational work.
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4 VKI-LS89

4.1 Numerical setup

For all simulations, the DGSEM is used with Legendre-Gauss-Lobatto (LGL) quadrature
nodes and kinetic-energy conserving Kennedy-Gruber two-point fluxes. A constant polynomial
order of N = 5 is used in all elements and yields a 6th order accurate scheme. The solution
is advanced in time with an explicit 3rd-order Runge-Kutta scheme and a constant time step
of ∆t∗ = ∆t · Uout/c = 3.9 × 10−6, where c = 0.067647m is the chord length and Uout is the
flux-averaged outlet velocity.

A Riemann boundary condition is applied at the inlet and a non-reflecting BC at the outlet
[30], while periodic boundaries are set at the pitch- and spanwise domain faces. For the simu-
lation with turbulent inflow, the synthetic turbulence generator by Shur et al. [31] is employed
with turbulence levels of 6% and a length scale of 3.19mm (see Matha et al. [32] for more de-
tails). In addition to the non-uniform distribution of the LGL nodes, the collocation points are
clustered towards the wall based on the inner-cell stretching method introduced by Hindenlang
et al. [33] to further increase the near-wall resolution. The averaged non-dimensional cell sizes
are (∆ξ+,∆η+,∆ζ+) = (63, 0.7, 39) and are computed from the element size normalized by the
polynomial order (�+ = �+

e /N). ξ, η and ζ refer to the streamwise, normal and spanwise
directions. While the values indicate that we only coarsely resolve the flow, high-order schemes
generally allow for larger cell sizes compared to classical lower-order FV methods [34] and Al-
hawwary & Wang [35] hinted that LES with comparable cell spacings can still produce good
results.

The DG-FV simulations are initialized from a precursor RANS solution and the DG-AV is
restarted from snapshot of the DG-FV (laminar) case. The tuning constant for the DG-AV
simulation is set to 0.2. A summary of the simulation parameters is given in table 4.1. We note

Table 1: Overview of simulations. AV = artificial viscosity, DGFV = DG-FV subcell blending, DOF =
degrees of freedom (high-order grid points), Tstat = statistics interval, tref = c/Uout.

Case: DG-AV DG-FV DG-FV-turb

Reout 1.136×106 1.135×106 1.134×106

Maout 0.915 0.915 0.911
pt,in 1.828×105 Pa 1.828×105 Pa 1.828×105 Pa
Tt,in 413.3K 413.3K 413.3K
Twall 301.15K 301.15K 301.15K
pout 1.03×105 Pa 1.03×105 1.034×105

Shock capturing artificial viscosity FV subcell blending FV subcell blending
Inlet turbulence 0% 0% 6%
Lz 0.1c 0.1c 0.148c
Polynomial order 5 5 5
DOF 69.8×106 69.8×106 111.6×106

Tstat/tref 5.0 7.7 7.4
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(a) DG-AV (b) DG-FV (c) DG-FV-turb

Figure 2: Contour plots of numerical schlieren (‖∇ρ‖) for DG-AV (a), DG-FV (b) and DG-FV-turb (c).
The subplots show the local amount of AV (a) and the blending weights (b, c) at the location indicated
by the red box.

that the dimensions of the computational domain for the DG-FV-turb case are slightly different
to closely match the setup by Dupuy et al. [2].

4.2 Results

In the following section, we describe and compare the data of LES conducted with the DG-AV
and the DG-FV scheme and compare them to results from literature. The frequency analysis in
the subsequent part then only discusses results obtained with DG-FV and laminar inflow.

4.2.1 Comparison DG-AV and DG-FV: flow topology and surface coefficients

We visualize the instantaneous flow field through numerical schlieren images (‖∇ρ‖) for the
three cases DG-AV, DG-FV and DG-FV-turb in Figure 2. The cases with laminar inflow are
characterized by two quasi-steady shocks on the suction side of the blade which induce boundary
layer separation and transition to turbulence, thereby enclosing a laminar separation bubble
(LSB) between the shock waves as indicated by the region of negative skin friction cf in Figure
3 (a). Acoustic waves are generated by the shedding of Von-Karman vortices from the trailing
edge, which travel upstream within the subsonic region until they merge with the second shock
or impinge on the suction side on the next (pitchwise) blade row. The visible differences between
the DG-FV and DG-AV cases are, not surprisingly, limited to the shock region, as both methods
use the same shock indicator function. A stronger overshoot of the skin friction coefficient in
case of the DG-AV simulation suggests that the gradients are less diffused and result in a more
oscillatory solution compared to the DG-FV simulation.

No negative values are encountered in the time- and space-averaged skin friction coefficient
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(a) Skin friction coefficient (b) Heat transfer coefficient

Figure 3: Comparison of the time- and space-averaged skin friction coefficient cf (a) and heat transfer
coefficients α (b) for DG-AV and DG-FV with laminar inflow, as well as DG-FV with turbulent inflow
condition (detail plot of α indicated by dashed box). Experimental reference data MUR235 by Arts
et al. [36] and TUR87 by Cação Ferreira [3]. LES results by Segui [17] and Dupuy et al. [2].

for the case with turbulent inflow (DG-FV-turb), suggesting that it does not feature a LSB past
the first shock, as the formation of the bubble is impeded by the incoming turbulent structures.
This has also been inferred by Dupuy et al. [2], who attributed the destabilization of the LSB to
the production of turbulent spots upstream of the shock, such that backflow only occurs locally.
Time-resolved data further shows that the second, downstream shock is not steady - as is the
case for laminar inflow - but intermittently moves upstream until it merges with the first shock.
Following Dupuy et al. [2], we assume this is caused by an intermittend LSB, but further work
is required to investigate the phenomenon.

We compare the time- and space-averaged heat transfer coefficient α of all three simulations
to the experimental campaigns by Arts et al. [36] and Cação Ferreira [3], as well as to the
LES by Segui [17] and Dupuy et al. [2] in Figure 3 (b). While none of the simulations match
the MUR235 operating point by Arts et al. [36], the DG-FV-turb closely aligns with the LES
by Dupuy et al. [2] and also shows partial agreement with the TUR87 experiments by Cação
Ferreira [3]. The main differences with the very highly resolved LES by Segui [17] is the lack
of the plateau in the heat transfer coefficient upstream of the shock, which indicates that the
DG-FV-turb simulation lacks the production of turbulent spots [2]. The absence of the plateau
in the more recent TUR87 experiments, however, highlights that the true solution is still unclear
while underlining the sensitive nature of the boundary layer transition of the VKI-LS89.

The cases with laminar inflow (DG-AV and DG-FV) show a stronger dip in the heat transfer
coefficient at the location of the LSB and overall lower values over the pressure side, rooted in
the less effective heat transfer of laminar flow. As was the case with the skin friction coefficient,
the DG-AV shows a stronger overshoot past the shock. While the limited diffusion of the DG-
AV scheme could be the cause, another explanation is offered by Cação Ferreira [3], who has
suggested that the AV can decrease the effective Reynolds number and increase the thermal
conductivity, thereby resulting in a higher heat transfer coefficient.
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(a) Probe 1 (b) Probe 2 (c) Probe 3

Figure 4: Power spectral densities of u‖/‖uout‖[Hz−1] over the wall-normal coordinate η for three probe
locations. The contours are on logarithmic scale.

4.2.2 Frequency analysis

We conduct a frequency analysis of the DG-FV simulation to identify the dominant modes
that occur naturally in the unperturbed flow. The power spectral density (PSD) of the wall-
tangential velocity u‖ from time-resolved boundary layer probes in the laminar flow region
upstream of the shock (Probe 1), as well as directly around the two shocks (Probe 2 & Probe
3) are computed using Welch’s method and plotted over the wall-normal coordinate in Figure
4. The spatial correlation of the modes is visualized by conducting a SPOD of 361 snapshots
(FFT samples per block: NFFT = 128 and overlap of 50%) of 2D slices along the centerline
by employing the algorithm published by Towne et al. [37] and Schmidt & Towne [38], with an
implementation available under the Python package https://pypi.org/project/pyspod/.
The input variables are chosen to be the velocity components u‖, u⊥ (normal velocity) and w
and hence the SPOD is calculated with respect to the turbulent kinetic energy norm [39]. In
Figure 5 (a), the mode energy is plotted over the frequency, while Figure 5 (b–d) show the
contours of the first mode at frequencies of 8.3 kHz, 43.8 kHz and 87.5 kHz respectively.

The upstream probe (Figure 4a) shows two distinct peaks in the frequency range of 40 kHz
to 47 kHz and at a higher harmonic of 86 kHz to 92 kHz, as well as a weaker peak at 8 kHz – 10
kHz. These peaks are also visible in the mode energy spectrum in Figure 5 (a), confirming that
the SPOD complements the PSD analysis of the boundary layer probes. At 8.3 kHz, the mode
highlights the wall-tangential movement of the shock-LSB system in-phase with a larger-scale
swinging of the wake (Figure 5a) and the corresponding displacement of fluid. The mode at
43.8 kHz (Figure 5c) corresponds to the Von-Karmann vortex shedding at the trailing edge, as
highlighted by the wake pattern of the SPOD mode, and matches the vortex shedding frequency
of 43 kHz reported by Segui [17] for the MUR129 operating point. Movement of the shock itself
is, however, not observed at this frequency. At the higher harmonic (87.5 kHz, Figure 5d), the
SPOD shows an active mode in the turbulent shear layer in addition to the wake mode. This
implies that while the shock movement is not directly linked with the trailing-edge shedding, the
vortices generated from the shock-induced LSB are at least partially correlated to the primary
Von-Karman shedding.
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(a) mode energy (b) f = 8.3 kHz (c) f = 43.8 kHz (d) f = 87.5 kHz

Figure 5: (a) SPOD spectrum for modes 1 (black) to mode 4 (light gray). (b–d) Contour plots of the
first SPOD modes at frequencies of 8.3 kHz (b), 43.8 kHz (c) and 87.5 kHz (d). Boundary layer probe
positions indicated in black.

5 CONCLUSIONS

We have presented results from implicit large-eddy simulations of the high-pressure turbine
cascade VKI-LS89 under transonic operating conditions using a high-order accurate discontin-
uous Galerkin spectral element method with shock capturing. The subcell finite-volume shock
capturing method by Hennemann et al. [1] is tested under laminar and turbulent inflow condi-
tions and compared against a simulation with Laplacian artificial viscosity, where it is shown
to more effectively reduce spurious overshoots across the shock and match experimental values
more closely. A LSB embedded by two quasi-steady shocks is present for the cases with laminar
inflow, while the turbulent structures for the case with inflow turbulence prevent the formation
of a bubble and only a single shock is present. By conducting a frequency analysis of bound-
ary layer probes and through SPOD of center-line slices, we have shown that shock movement
occurs at a low-frequency of 8.3 kHz and is not directly correlated to the primary Von-Karman
vortex shedding at the trailing edge, or a dominant higher harmonic mode. The heat transfer
coefficient of the simulation with turbulent inflow closely matches the LES by Dupuy et al. [2]
and partially agrees with the experiments by Cação Ferreira [3], but differences with the highly
resolved LES by Segui [17] indicates that further grid refinement might be necessary as part of
future work.
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