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Summary
One of the most challenging tasks in macroeconomic models is to describe the macro-level
effects from the behavior of meso- or micro-level actors. Whereas in 1759, Adam Smith was
still making use of the concept of an ‘invisible hand’ ensuring market stability and economic
welfare (Rothschild, 1994), a more and more popular approach is to make the ‘invisible’ visible
and to accurately model each actor individually by defining its behavioral rules and myopic
knowledge domain (Castelfranchi, 2014; Cincotti et al., 2022). In agent-based computational
economics (ACE), economic actors correspond to dynamically interacting entities, implemented
as agents in a computer software (Axtell & Farmer, 2022; Klein et al., 2018; Tesfatsion, 2002).
Such agent-based modeling (ABM) is a powerful approach utilized in economic simulations to
generate complex dynamics, endogenous business cycles and market disequilibria. For many
research topics, it is useful to combine agent-based modeling with the stock-flow consistent
(SFC) paradigm (Caiani et al., 2016; Caverzasi & Godin, 2015; Nikiforos & Zezza, 2018).
This architecture ensures there are no ‘black holes’, i.e. inconsistent sources or sinks, in an
economic model. SFC-ABM models, however, are often intransparent and rely on very peculiar,
custom-built data structures, thus hampering accessibility (Bandini et al., 2009; Hansen et
al., 2019). A tedious task is to generate, maintain and distribute code for ABM, as well as to
check for the inner consistency and logic of such models.

Statement of need
sfctools is an ABM-SFC modeling toolbox, which i) relies on transparent and robust data
structures for economic agents, ii) comes along with a simple descriptive modeling approach
for agents, iii) provides an easy project builder for Python, making the software runnable and
accessible on a large number of platforms, and iv) is also manageable from a graphical user
interface (GUI) for ABM-SFC modeling, shipped as part of the toolbox, assuring analytical
SFC-check and double accounting consistency. The package is shipped in the form of an
open-source project.

sfctools was designed to be used by both engineering-oriented and economics-oriented scholars
who have basic education in both fields. It can be used by a single developer or by a small
development team, splitting the work of model creation in terms of consistency and economic
logic from the actual programming and technical implementation. This allows software solutions
from rapid prototyping up to more sophisticated, medium-sized ABMs. sfctools is therefore a
versatile virtual laboratory for agent-based economics.

Unlike more generic frameworks like mesa or AgentPy , it concentrates on agents in economics.
Table 1 shows the different feature coverage of selected modeling frameworks and of sfctools.1

1A more detailed review about ABM and simulation tools can be found in (Abar et al., 2017).
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Most other available software packages focus on enabling (multi-) agent-based frameworks at
a generic level. However, a standard implementation of accounting balances and the possibility
to design and manipulate them in an agent-based environment has not yet been covered. The
strength of sfctools is therefore three-fold: it tackles the SFC modeling aspect, includes the
ABM aspect and provides a graphical interface.

Table 1: Comparison of sfctools with other modeling frameworks.

SFC
as-
pect

ABM
as-
pect GUI available Language

Scientific
Area

sfctools x x x Python Economics
Mesa (Masad & Kazil,
2015)

x (x)* Python Generic

AgentPy (Foramitti, 2021) x (x)* Python Generic
ABCEconomics
(Taghawi-Nejad, 2017)

x x Python Economics

Foundation (Stephan
Zheng, 2020)

x Python Economics,
AI

SFC Models (Romanchuk,
2016)

x Python Economics

NetLogo (Gooding &
Gooding, 2019)

x x (own) Generic

LSD (Valente, 2008) x x C++ Economics,
Generic

FLAME (Chin et al., 2012) x x Java Generic
FAME (Schimeczek et al.,
2023)

x x Java,
Python

Energy
Economics,
Generic

JABM (Phelps, 2012) x Java Generic

*) via plotting interface
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Figure 1: Overview of the sfctools toolbox.

Figure 1 shows the basic structure of the modeling framework. The framework supports an
efficient, yet powerful SFC-ABM model creation and execution workflow. Users can either
program their models directly, using the sfctools Python package, or can use the graphical
user interface (sfctools-attune) to design their models at all aggregation levels. This refers
to the implementation of behavioral rules and structural parameters (green boxes), and the
design of a set of individual balance sheet transactions (plain gray box). Once the basic model
setup is created, the users can check for stock-flow consistency by analytically examining
the transaction flow matrix (TFM), taking all theoretically allowed transactions and changes
in stocks into account. When running the model, the aggregate and disaggregate TFM is
available also as a numerical result. The same is true for data structures on the individual
agent level (yellow box): the balance sheets, income statements and cashflow statements of
individuals can be consistently logged and accessed on runtime or ex-post. In the background,
the sfctools core framework will take care of all computational operations and thereby assure
stock-flow consistency at all times.
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Figure 2: Screenshot of the user interface. 1: Transaction editor, 2: Transactions overview, 3: Graph
view.

Figure 2 shows a screenshot of the user interface attune (agent-based transaction and accounting
graphical user interface) shipped along with the sfctools framework. In this simple graphical
interface, transactions can be edited, sorted and graphically analyzed. Also, structural para-
meters are edited in form of a yaml-styled summary. The GUI allows for several development
productivity tools, such as the analytical pre-construction of the TFM. The main window of
the GUI consists of three sub-panels: First, it shows the transaction editor panel (1). Here, the
user can directly access the balance sheets of the ‘sender’ and the ‘receiver’ agent, which are
both equipped with a double entry balance sheet system. Also, the entries for income and cash
flow can be manually set in this transaction, and the user can define which flows and stocks
are addressed. Second, the user can access already created transactions within the transactions
overview panel (2). Here, entries can be edited, deleted or sorted, and distinguished features
are given as an overview. Third, a graphical representation of the agents is generated in the
graph view (3), where different flows and relations are visualized and can be filtered by balance
sheet items or by involved agents in an interactive way. The user can freely lay out and colorize
the created agent relations in a graph structure.

Model example
Let us consider a simple model example, namely a three-agent model consisting of a consumer
agent (A), a bank (B) and a consumption good producer (C). We employ two transactions
(labeled 1 and 2). In the first transaction, B grants a loan to A. Subsequently, A uses its bank
deposits to obtain some goods at C. In this simple model, the first transaction only affects the
stocks, whereas the second transaction (consumption) is an actual flow.

The model creation workflow is as follows

1. Set up the agents (boxes in the graph view): We add the three agents A, B and C to
the model graph. Each node will contain a construction plan for an agent.

2. Set up the transactions (arrows between boxes): Agent A is a consumer and is affected
both by both transactions, agent B is a bank and is affected only by transaction 1,
agent C is a consumption good producer and is affected only by transaction 2. Once
the transactions are registered in the project, they can be deliberately used during the
simulation by importing them from an automatically-generated transactions.py file.
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3. Generate the TFM: To ensure our model is fully stock-flow consistent, we check if all
rows and columns of the TFM matrix sum up to zero.

A B C Total
Consumption -x 0 +x 0
Δ Deposits -d+x +d -x 0
Δ Loans +d -d 0 0
Total 0 0 0 0

4. By exporting our model to Python code via saving the project from the GUI, we
automatically generate a fully consistent model, usable in any Python script.

Thanks to the user friendliness of sfctools, there is little work to be done in terms of coding.
In the GUI, we have the possibility to code the three agents in a custom-designed agent
parametrization language for sfctools-attune. The code is complemented by a simple Python
script to finally run the model. The full example can be found on the project documentation
page2 under Examples.
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