
sfctools - A toolbox for stock-flow consistent,
agent-based models
Thomas Baldauf 1

1 German Aerospace Center (DLR), Institute of Networked Energy Systems, Curiestr. 4, 70563
Stuttgart, Germany

DOI: 10.21105/joss.04980

Software
• Review
• Repository
• Archive

Editor: Sebastian Benthall
Reviewers:

• @npalmer-professional
• @alanlujan91

Submitted: 11 October 2022
Published: 12 July 2023

License
Authors of papers retain copyright
and release the work under a
Creative Commons Attribution 4.0
International License (CC BY 4.0).

Summary
One of the most challenging tasks in macroeconomic models is to describe the macro-level
effects from the behavior of meso- or micro-level actors. Whereas in 1759, Adam Smith was
still making use of the concept of an ‘invisible hand’ ensuring market stability and economic
welfare (Rothschild, 1994), a more and more popular approach is to make the ‘invisible’ visible
and to accurately model each actor individually by defining its behavioral rules and myopic
knowledge domain (Castelfranchi, 2014; Cincotti et al., 2022). In agent-based computational
economics (ACE), economic actors correspond to dynamically interacting entities, implemented
as agents in a computer software (Axtell & Farmer, 2022; Klein et al., 2018; Tesfatsion, 2002).
Such agent-based modeling (ABM) is a powerful approach utilized in economic simulations to
generate complex dynamics, endogenous business cycles and market disequilibria. For many
research topics, it is useful to combine agent-based modeling with the stock-flow consistent
(SFC) paradigm (Caiani et al., 2016; Caverzasi & Godin, 2015; Nikiforos & Zezza, 2018).
This architecture ensures there are no ‘black holes’, i.e. inconsistent sources or sinks, in an
economic model. SFC-ABM models, however, are often intransparent and rely on very peculiar,
custom-built data structures, thus hampering accessibility (Bandini et al., 2009; Hansen et
al., 2019). A tedious task is to generate, maintain and distribute code for ABM, as well as to
check for the inner consistency and logic of such models.

Statement of need
sfctools is an ABM-SFC modeling toolbox, which i) relies on transparent and robust data
structures for economic agents, ii) comes along with a simple descriptive modeling approach
for agents, iii) provides an easy project builder for Python, making the software runnable and
accessible on a large number of platforms, and iv) is also manageable from a graphical user
interface (GUI) for ABM-SFC modeling, shipped as part of the toolbox, assuring analytical
SFC-check and double accounting consistency. The package is shipped in the form of an
open-source project.

sfctools was designed to be used by both engineering-oriented and economics-oriented scholars
who have basic education in both fields. It can be used by a single developer or by a small
development team, splitting the work of model creation in terms of consistency and economic
logic from the actual programming and technical implementation. This allows software solutions
from rapid prototyping up to more sophisticated, medium-sized ABMs. sfctools is therefore a
versatile virtual laboratory for agent-based economics.

Unlike more generic frameworks like mesa or AgentPy , it concentrates on agents in economics.
Table 1 shows the different feature coverage of selected modeling frameworks and of sfctools.1

1A more detailed review about ABM and simulation tools can be found in (Abar et al., 2017).

Baldauf. (2023). sfctools - A toolbox for stock-flow consistent, agent-based models. Journal of Open Source Software, 8(87), 4980. https:
//doi.org/10.21105/joss.04980.

1

https://orcid.org/0000-0002-9119-7413
https://doi.org/10.21105/joss.04980
https://github.com/openjournals/joss-reviews/issues/4980
https://gitlab.com/dlr-ve/esy/sfctools/framework/
https://doi.org/10.5281/zenodo.8118870
https://sbenthall.net
https://orcid.org/0000-0002-1789-5109
https://github.com/npalmer-professional
https://github.com/alanlujan91
https://creativecommons.org/licenses/by/4.0/
https://github.com/projectmesa/mesa/
https://github.com/joelforamitti/agentpy
https://doi.org/10.21105/joss.04980
https://doi.org/10.21105/joss.04980

Most other available software packages focus on enabling (multi-) agent-based frameworks at
a generic level. However, a standard implementation of accounting balances and the possibility
to design and manipulate them in an agent-based environment has not yet been covered. The
strength of sfctools is therefore three-fold: it tackles the SFC modeling aspect, includes the
ABM aspect and provides a graphical interface.

Table 1: Comparison of sfctools with other modeling frameworks.

SFC
as-
pect

ABM
as-
pect GUI available Language

Scientific
Area

sfctools x x x Python Economics
Mesa (Masad & Kazil,
2015)

x (x)* Python Generic

AgentPy (Foramitti, 2021) x (x)* Python Generic
ABCEconomics
(Taghawi-Nejad, 2017)

x x Python Economics

Foundation (Stephan
Zheng, 2020)

x Python Economics,
AI

SFC Models (Romanchuk,
2016)

x Python Economics

NetLogo (Gooding &
Gooding, 2019)

x x (own) Generic

LSD (Valente, 2008) x x C++ Economics,
Generic

FLAME (Chin et al., 2012) x x Java Generic
FAME (Schimeczek et al.,
2023)

x x Java,
Python

Energy
Economics,
Generic

JABM (Phelps, 2012) x Java Generic

*) via plotting interface

Baldauf. (2023). sfctools - A toolbox for stock-flow consistent, agent-based models. Journal of Open Source Software, 8(87), 4980. https:
//doi.org/10.21105/joss.04980.

2

https://doi.org/10.21105/joss.04980
https://doi.org/10.21105/joss.04980

Basic structure

World

Agents

Numerical
Transaction Flow

Matrix
(aggregate &
disaggregate)

ABM Level

SFC Level

Single Transaction

Top-Level
SFC-ABM

Model
ac

ce
ss

ob
je

ct
 c

re
at

io
n,

fu
nc

tio
n

ca
lls

,..
.

Structural
Parameters

(Settings)

provides links
between
agents

(Economic Data
Structures)

access
 (on runtime)

senders and
receivers

(pre-defined)

read-out

part of

ac
ce

ss

Analytical
Transaction Flow

Matrix
(aggregate &
disaggregate)

constitutes
(on runtime)

(justifies)

Behavioral Rules
define

Graphical User
Inerface

sfctools-attune

Python Application

import

co
de

 /
de

si
gn

constitutes
(pre-defined)

code / design

Figure 1: Overview of the sfctools toolbox.

Figure 1 shows the basic structure of the modeling framework. The framework supports an
efficient, yet powerful SFC-ABM model creation and execution workflow. Users can either
program their models directly, using the sfctools Python package, or can use the graphical
user interface (sfctools-attune) to design their models at all aggregation levels. This refers
to the implementation of behavioral rules and structural parameters (green boxes), and the
design of a set of individual balance sheet transactions (plain gray box). Once the basic model
setup is created, the users can check for stock-flow consistency by analytically examining
the transaction flow matrix (TFM), taking all theoretically allowed transactions and changes
in stocks into account. When running the model, the aggregate and disaggregate TFM is
available also as a numerical result. The same is true for data structures on the individual
agent level (yellow box): the balance sheets, income statements and cashflow statements of
individuals can be consistently logged and accessed on runtime or ex-post. In the background,
the sfctools core framework will take care of all computational operations and thereby assure
stock-flow consistency at all times.

Baldauf. (2023). sfctools - A toolbox for stock-flow consistent, agent-based models. Journal of Open Source Software, 8(87), 4980. https:
//doi.org/10.21105/joss.04980.

3

https://doi.org/10.21105/joss.04980
https://doi.org/10.21105/joss.04980

Figure 2: Screenshot of the user interface. 1: Transaction editor, 2: Transactions overview, 3: Graph
view.

Figure 2 shows a screenshot of the user interface attune (agent-based transaction and accounting
graphical user interface) shipped along with the sfctools framework. In this simple graphical
interface, transactions can be edited, sorted and graphically analyzed. Also, structural para-
meters are edited in form of a yaml-styled summary. The GUI allows for several development
productivity tools, such as the analytical pre-construction of the TFM. The main window of
the GUI consists of three sub-panels: First, it shows the transaction editor panel (1). Here, the
user can directly access the balance sheets of the ‘sender’ and the ‘receiver’ agent, which are
both equipped with a double entry balance sheet system. Also, the entries for income and cash
flow can be manually set in this transaction, and the user can define which flows and stocks
are addressed. Second, the user can access already created transactions within the transactions
overview panel (2). Here, entries can be edited, deleted or sorted, and distinguished features
are given as an overview. Third, a graphical representation of the agents is generated in the
graph view (3), where different flows and relations are visualized and can be filtered by balance
sheet items or by involved agents in an interactive way. The user can freely lay out and colorize
the created agent relations in a graph structure.

Model example
Let us consider a simple model example, namely a three-agent model consisting of a consumer
agent (A), a bank (B) and a consumption good producer (C). We employ two transactions
(labeled 1 and 2). In the first transaction, B grants a loan to A. Subsequently, A uses its bank
deposits to obtain some goods at C. In this simple model, the first transaction only affects the
stocks, whereas the second transaction (consumption) is an actual flow.

The model creation workflow is as follows

1. Set up the agents (boxes in the graph view): We add the three agents A, B and C to
the model graph. Each node will contain a construction plan for an agent.

2. Set up the transactions (arrows between boxes): Agent A is a consumer and is affected
both by both transactions, agent B is a bank and is affected only by transaction 1,
agent C is a consumption good producer and is affected only by transaction 2. Once
the transactions are registered in the project, they can be deliberately used during the
simulation by importing them from an automatically-generated transactions.py file.

Baldauf. (2023). sfctools - A toolbox for stock-flow consistent, agent-based models. Journal of Open Source Software, 8(87), 4980. https:
//doi.org/10.21105/joss.04980.

4

https://doi.org/10.21105/joss.04980
https://doi.org/10.21105/joss.04980

3. Generate the TFM: To ensure our model is fully stock-flow consistent, we check if all
rows and columns of the TFM matrix sum up to zero.

A B C Total
Consumption -x 0 +x 0
Δ Deposits -d+x +d -x 0
Δ Loans +d -d 0 0
Total 0 0 0 0

4. By exporting our model to Python code via saving the project from the GUI, we
automatically generate a fully consistent model, usable in any Python script.

Thanks to the user friendliness of sfctools, there is little work to be done in terms of coding.
In the GUI, we have the possibility to code the three agents in a custom-designed agent
parametrization language for sfctools-attune. The code is complemented by a simple Python
script to finally run the model. The full example can be found on the project documentation
page2 under Examples.

Acknowledgements
I want to thank several people who directly or indirectly got in touch with this software for
their constructive remarks: Ardi Latifaj during his master thesis work for his extensive feature
requests, Franscesco Lamperti and researchers at Scuola Superiore Sant’Anna for their critical
remarks about the framework concept, Patrick Mellacher for his pre-release feedback, Joel
Foramitti for his advice on agent-based open-source development, Jonas Eschmann and Luca
Fierro for their feedback on the graphical interface and Patrick Jochem for scientific advice on
projects being developed using the framework. Karsten Müller and Philipp Harting helped to
test the examples. Special thanks go to Benjamin Fuchs for extensive code reviews during the
pre-release phase and co-maintenance of the repository. Also, many DLR colleagues supported
the project. Last but not least, I am highly grateful to the two reviewers for their excellent
constructive feedback on the paper and the code, which has improved the accessibility of the
framework for a broad community. All remaining errors are mine.

This work was entirely funded by the German Aerospace Center (DLR).

References
Abar, S., Theodoropoulos, G. K., Lemarinier, P., & O’Hare, G. M. (2017). Agent based

modelling and simulation tools: A review of the state-of-art software. Computer Science
Review, 24, 13–33. https://doi.org/10.1016/j.cosrev.2017.03.001

Axtell, R. L., & Farmer, J. D. (2022). Agent-based modeling in economics and finance: Past,
present, and future. Journal of Economic Literature.

Bandini, S., Manzoni, S., & Vizzari, G. (2009). Agent based modeling and simulation: An
informatics perspective. Journal of Artificial Societies and Social Simulation, 12(4), 4.

Caiani, A., Godin, A., Caverzasi, E., Gallegati, M., Kinsella, S., & Stiglitz, J. E. (2016). Agent
based-stock flow consistent macroeconomics: Towards a benchmark model. Journal of
Economic Dynamics and Control, 69, 375–408. https://doi.org/10.2139/ssrn.2664125

Castelfranchi, C. (2014). Making visible “the invisible hand”: The mission of social simulation.
In Interdisciplinary applications of agent-based social simulation and modeling (pp. 1–19).
IGI Global. https://doi.org/10.2139/ssrn.2741107

2sfctools-framework.readthedocs.io/en/latest/

Baldauf. (2023). sfctools - A toolbox for stock-flow consistent, agent-based models. Journal of Open Source Software, 8(87), 4980. https:
//doi.org/10.21105/joss.04980.

5

https://sfctools-framework.readthedocs.io/en/latest/
https://sfctools-framework.readthedocs.io/en/latest/
https://doi.org/10.1016/j.cosrev.2017.03.001
https://doi.org/10.2139/ssrn.2664125
https://doi.org/10.2139/ssrn.2741107
https://doi.org/10.21105/joss.04980
https://doi.org/10.21105/joss.04980

Caverzasi, E., & Godin, A. (2015). Post-keynesian stock-flow-consistent modelling: A survey.
Cambridge Journal of Economics, 39(1), 157–187. https://doi.org/10.1093/cje/beu021

Chin, A., Worth, A., Greenough, A., Coakley, S., Holcombe, M., & Kiran, M. (2012). Flame:
An approach to the parallelisation of agent-based applications. Work, 501, 63259.

Cincotti, S., Raberto, M., & Teglio, A. (2022). Why do we need agent-based macroeconom-
ics? Review of Evolutionary Political Economy, 3(1), 5–29. https://doi.org/10.1007/
s43253-022-00071-w

Foramitti, J. (2021). AgentPy: A package for agent-based modeling in python. Journal of
Open Source Software, 6(62), 3065. https://doi.org/10.21105/joss.03065

Gooding, T., & Gooding, T. (2019). Netlogo. Economics for a Fairer Society: Going Back to
Basics Using Agent-Based Models, 37–43.

Hansen, P., Liu, X., & Morrison, G. M. (2019). Agent-based modelling and socio-technical
energy transitions: A systematic literature review. Energy Research & Social Science, 49,
41–52. https://doi.org/10.1016/j.erss.2018.10.021

Klein, D., Marx, J., & Fischbach, K. (2018). Agent-based modeling in social science, history,
and philosophy. An introduction. Historical Social Research/Historische Sozialforschung,
43(1 (163), 7–27.

Masad, D., & Kazil, J. (2015). MESA: An agent-based modeling framework. 14th PYTHON
in Science Conference, 2015, 53–60.

Nikiforos, M., & Zezza, G. (2018). Stock-flow consistent macroeconomic models: A survey.
Analytical Political Economy, 63–102. https://doi.org/10.1111/joes.12221

Phelps, S. (2012). Applying dependency injection to agent-based modeling: The JABM toolkit.
Centre for Computational Finance and Economic Agents (CCFEA): Colchester, UK.

Romanchuk, B. (2016). SFC models package introduction. https://github.com/brianr747/
SFC_models

Rothschild, E. (1994). Adam smith and the invisible hand. The American Economic Review,
84(2), 319–322.

Schimeczek, C., Deissenroth-Uhrig, M., Frey, U., Fuchs, B., Ghazi, A. A. E., Wetzel, M.,
& Nienhaus, K. (2023). FAME-core: An open framework for distributed agent-based
modelling of energy systems. Journal of Open Source Software, 8(84), 5087. https:
//doi.org/10.21105/joss.05087

Stephan Zheng, S. S., Alexander Trott. (2020). The AI economist: Improving equality and
productivity with AI-driven tax policies.

Taghawi-Nejad, D. et al. (2017). abcEconomics the agent-based computational economy
platform that makes modeling easier. https://abce.readthedocs.io/en/master/

Tesfatsion, L. (2002). Agent-based computational economics: Growing economies from the
bottom up. Artificial Life, 8(1), 55–82. https://doi.org/10.2139/ssrn.305080

Valente, M. (2008). Laboratory for simulation development: lsd. LEM Working Paper Series.

Baldauf. (2023). sfctools - A toolbox for stock-flow consistent, agent-based models. Journal of Open Source Software, 8(87), 4980. https:
//doi.org/10.21105/joss.04980.

6

https://doi.org/10.1093/cje/beu021
https://doi.org/10.1007/s43253-022-00071-w
https://doi.org/10.1007/s43253-022-00071-w
https://doi.org/10.21105/joss.03065
https://doi.org/10.1016/j.erss.2018.10.021
https://doi.org/10.1111/joes.12221
https://github.com/brianr747/SFC_models
https://github.com/brianr747/SFC_models
https://doi.org/10.21105/joss.05087
https://doi.org/10.21105/joss.05087
https://abce.readthedocs.io/en/master/
https://doi.org/10.2139/ssrn.305080
https://doi.org/10.21105/joss.04980
https://doi.org/10.21105/joss.04980

	Summary
	Statement of need
	Basic structure
	Model example
	Acknowledgements
	References

