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Current models to determine the risk of airborne disease infection are typically based on a backward quantification of observed
infections, leading to uncertainties, e.g., due to the lack of knowledge whether the index person was a superspreader. In
contrast, the present work presents a forward infection risk model that calculates the inhaled dose of infectious virus based on
the virus emission rate of an emitter and a prediction of Lagrangian particle trajectories using CFD, taking both the residence
time of individual particles and the biodegradation rate into account. The estimation of the dose-response is then based on
data from human challenge studies. Considering the available data for SARS-CoV-2 from the literature, it is shown that the
model can be used to estimate the risk of infection with SARS-CoV-2 in the cabin of a Do728 single-aisle aircraft. However,
the virus emission rate during normal breathing varies between different studies and also by about two orders of magnitude
within one and the same study. A sensitivity analysis shows that the uncertainty in the input parameters leads to uncertainty
in the prediction of the infection risk, which is between 0 and 12 infections among 70 passengers. This highlights the
importance and challenges in terms of superspreaders for risk prediction, which are difficult to capture using standard
backward calculations. Further, biological inactivation was found to have no significant impact on the risk of infection for
SARS-CoV-2 in the considered aircraft cabin.

1. Introduction

Numerous pandemics have occurred in the past. Examples
include the pandemics caused by the infection with SARS-
CoV-1 in 2002/03, the H1N1 swine flu virus in 2009/10, and
most recently SARS-CoV-2. With regard to the latter, it is well
known from many observations during the COVID-19 pan-
demic that the majority of infections occurred by airborne
transmission of SARS-CoV-2 [1] indoors rather than outdoors
[2]. Therefore, the ventilation of indoor spaces or cabins and
compartments of various public transportation vehicles (e.g.,
buses, passenger trains, and airplanes) is of particular concern
as the passengers sit close together. In order to compare the
infection risk of pandemic or endemic diseases (influenza,
SARS-CoV-2) at different locations (e.g., train vs. supermar-
ket) or countermeasures at the same location (e.g., the ventila-
tion concept), absolute risk assessment capabilities must be

established. In addition, an improved understanding of infec-
tious disease transmission is essential to determine and, if nec-
essary, minimize the risk of infection for the passengers and
the crew on trains and airplanes during future waves of air-
borne diseases. The studies conducted for this purpose must
take into account a variety of influences: on the one hand,
the number and size of virus-carrying aerosol droplets emitted
by an infected person, as well as their transport pathways and
residence times in partially air-conditioned or ventilated
enclosed spaces, must be predicted and measured. On the
other hand, the viruses inhaled by other people and their
infectivity must be determined for each person. All of this
can only be achieved with sufficient reliability through a clever
combination and mutual validation of observations, measure-
ments, and numerical simulations.

In 1955, Wells [3] proposed the idea that pathogens are
exhaled and inhaled in discrete quantities. He defined a
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quantum as the dose sufficient to cause disease in approxi-
mately 63% of the exposed individuals. Riley et al. [4] deter-
mined a quantum emission rate of 1.5 quanta/s based on the
number of detected infections during an outbreak of measles
in a school in 1974. They assumed that the air in the rooms
was well mixed so that the pathogens were homogeneously
distributed throughout the room immediately after emis-
sion. This approach became known as the “Wells-Riley”
model. Most studies predicting the risk of infection are based
on determining the above-mentioned quantum by backward
calculation [5–7]. The Wells-Riley model has also been used
in several studies to estimate the risk of SARS-CoV-2
infection. For example, Sun and Zhai [8] used it to infer a
quantum emission rate of 0.238 quanta/s from a detected
transmission on a bus in Hunan, China, based on the num-
ber of ill individuals. In addition, Buonanno et al. [9] used a
derived method to estimate the quantum emission rate for
SARS-CoV-2 infections by substituting unknown values for
SARS-CoV-2 infections—such as the number of RNA copies
emitted and quanta per RNA—with known values for SARS-
CoV-1 infections, resulting in quantum emission rates rang-
ing from less than 1 quantum/h to more than 100 quanta/h.

Since the introduction of the well-mixed room assump-
tion by Riley in the 1980s, computing power has increased
significantly. Moreover, passenger comfort and air quality
have become more important in all modes of transportation.
As a result, many model-based computational fluid dynamic
(CFD) simulations have been performed over the recent
years to study the ventilation of various modes of public
transportation—including buses, trains, and airplanes—with
the goal of evaluating and, if necessary, improving thermal
comfort and air quality. Specially designed measurements
have also been performed to validate the computational fluid
dynamic (CFD) methods used for this purpose. For example,
Zhang et al. [10] replicated the aerosol dispersion from an
infected passenger in a city bus in a laboratory experiment
and demonstrated that opening doors and windows reduced
the concentration of pollutants in the city bus by about half.
Other approaches focused on ventilation in trains, such as
the CFD study by Konstantinov and Wagner [11] and the
experimental study by Schmeling et al. [12]. In addition,
Shinohara et al. [13] performed measurements in a naturally
ventilated commuter train to estimate the air change rates
and to assess the infection risk using CO2 decay methods.
Their measurements show a strong correlation between the
air exchange rates and the train speed. They also observed
a significant reduction (91% to 94%) in the modeled infec-
tion risk at high speeds and with open windows. Woodward
et al. [14] performed CO2 and aerosol measurements in a
train car as well as flow visualizations using artificial fog
and found that the flow patterns in the cross section of the
car were strongly influenced by the ventilation system and
differed considerably between the center and the end of the
car. Similar studies focusing on aerosol transport have also
been conducted for the aircraft cabin. For example, Gupta
et al. [15] calculated cough-induced aerosol transport in an
aircraft cabin as part of transient CFD simulations using
the commercial fluid simulation software Fluent. Later,
Gupta et al. [7] used CFD-predicted particle dispersion to

determine the risk of infection with the influenza virus based
on posterior quantum estimation and to evaluate the effect
of N95 masks. You et al. [16] utilized CFD to predict
contaminant transport and back-calculate the quantum
emission rate of a SARS-CoV-1 superspreading event in a
Boeing 737 aircraft cabin resulting in 11 secondary infec-
tions, where exact seat locations of the index person and
infected subjects are known. However, the quantum emis-
sion rate is usually determined based on the well-mixed
room assumption by Riley et al. [4] as the boundary condi-
tions at the time of infection are usually not known with suf-
ficient accuracy. Therefore, a disadvantage of this posterior
quantum estimation is that the predicted risk is often inde-
pendent of the detailed particle transport. Furthermore, the
quantum dose often represents an outstanding event that
led to many infections, e.g., as observed in the study con-
ducted by You et al. This can give superspreader events a
higher weight than normal infections, which in turn has a
negative impact on the accuracy of infection risk prediction.
For example, Mikszewski et al. [17] showed that the rate of
quantum emission varied between 15 and 4214 quanta/h
based on 16 events reported in 6 studies. Despite this large
scatter, there are now a number of numerical studies that
use the backward quantum estimation. One example is the
work of Wang et al. [5], who investigated the SARS-CoV-2
infection risk in Chinese passenger trains. Their study is
based on CFD simulations using a quantum emission rate
of 14 quanta/h obtained by Dai and Zhao [18], who fitted
quantum emission rates and reproduction numbers for dif-
ferent infectious diseases. For validation, Wang et al. had
access to a unique dataset of 2334 Chinese train rides with
at least one SARS-CoV-2-positive person, resulting in 234
secondary infections. Details on the seat positions of the
index and secondary cases were also available. These data
were collected as part of China’s COVID-19 testing strategy
and published by Hu et al. [19]. In addition to the shortcom-
ings of the backward quantum estimation, Pourfattah et al.
[20] reviewed infection risk models and observed that bio-
logical inactivation of the pathogens is often neglected,
which leads to inaccurate risk prediction.

Therefore, rather than relying on posterior estimation of
quantum emissions or using other indirect methods, the
focus of the present work is the development of an infection
risk model based on measured data from infected humans.
Although human challenge studies are ethically problematic,
they have been performed for several pathogens [21–23]
including SARS-CoV-2 [24]. Furthermore, even though the
required human challenge studies raise ethical issues, they
also provide controlled data on the inoculation dose and
the corresponding infection rate (among participants) and
thus the dose-response relationship. To calculate the inhaled
dose, the amount of exhaled infectious virions is required,
which is determined based on the typical distributions of
the number and size of aerosol droplets generated during
human respiratory events, as summarized by Pöhlker et al.
(preprint) [25] and the virion distribution as a function of
aerosol particle size given by, e.g., Alsved et al. [26] for
SARS-CoV-2. However, the viral load of the aerosol droplets
as a function of the diameter is difficult to determine and
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rarely available. This has led researchers to assume that the
virus concentration (measured in RNA copies/ml) in the
aerosol particles is comparable to the virus concentration
in the throat or nose [27, 28]. That this assumption is not
always true was shown by Lai et al. [29], who compared
the viral load in aerosol exhaled during breathing and
coughing by individuals infected with SARS-CoV-2. They
showed that virus emission during coughing was raised by
increasing the viral load on the “smaller” aerosol particles
(<5μm) but not on the “larger” particles (>5μm), even
though most of the exhaled particle volume was present as
“larger” particles [25]. This observation supports that the
size of aerosol particles depends on the site of their forma-
tion in the respiratory tract (smaller particles are formed in
the deeper airways) and that viruses primarily colonize cer-
tain sections of the respiratory tract. Consequently, the viral
concentration of aerosol particles is high when they are
formed at the site of infection. In addition, this is supported
by observations by Alsved et al. [26] who determined the
SARS-CoV-2 virus concentration by examining exhaled
aerosol particles from infected individuals by distinguishing
8 different particle size bins from 0.14μm to 8μm and found
a maximum virus concentration in the 1.7-2.8μm particle
size bin (for singing) and only one-fifth of the concentration
for the 2.8-4.5μm particle size bin.

The model presented below requires pathogen-specific
parameters. After introducing the model, we apply it to pre-
dict the risk of SARS-CoV-2 infection in an aircraft cabin
using the aerosol RNA emission, e.g., determined by Malik
et al. [30] and Li et al. [31], the proportion of infectious units
per RNA presented by Sender et al. [32], and the biological
inactivation of SARS-CoV-2 determined by Dabisch et al.
[33]. All in all, a model-based prediction of the probability
of infection can be realized with additional consideration
of the dose-response model derived from the human chal-
lenge study performed by Killingley et al. [24]. Furthermore,
the particle transport in the cabin of the Do728 aircraft is
calculated by CFD using a method that has been validated
in the past by comparison with measurements (see Schmel-
ing et al. [34]). Accurate knowledge of particle trajectories
and sizes is important for realistic model predictions of the
particle deposition on surfaces, particle flight time as a func-
tion of size, and biological inactivation of viruses. Further-
more, the sensitivity of the input parameters (i) biological
inactivation rate, (ii) number of exhaled viruses, (iii) infec-
tious units per RNA, and (iv) flight or exposure time to the
risk of SARS-CoV-2 infection in the Do728 aircraft cabin
is discussed at the end of the paper.

2. The Infection Risk Model

The risk of infection is modeled in two main steps:

(1) The inhalation rate of the infectious dose Din is
determined by means of the exhalation, transport,
and the inhalation processes shown in Figure 1 and
discussed in Sections 2.1 to 2.3. Different cases are
discussed in Section 2.4

(2) The risk of infection I is estimated based on the dose
inhalation rate from the first step using a dose-
response relationship (Section 2.5)

Figure 1 illustrates the process steps of virus transport:
exhalation, transport, and inhalation. For exhalation, R
(RNA/s) and P (1/s) describe the emission rates of virions
and particles, respectively. f describes the fraction of infec-
tious virions (TCID50/RNA) at the time of exhalation. The
virus stability s(1) indicates how many of the infectious
virions remain infectious during transport, and CB describes
the particle concentration in the breathing zone. Finally, the
inhalation is represented by the pulmonary ventilation rate
pin (m3/s). These parameters are explained in more detail
below, assuming that the pathogen is an RNA virus,
although it could be a DNA virus, a bacterium, or a fungus.
Therefore, the pathogen load is given in units of RNA
(copies), and the infectious dose is expressed in units of
50% tissue culture infectious dose (TCID50).

2.1. Exhalation. The exhalation process includes determin-
ing the virus and/or particle emission rate and the infectious
RNA fraction, as described below.

2.1.1. Virus and Particle Emission Rate: Rj, Pj. During
human exhalation, particles of different sizes are exhaled in
a multimodal particle size distribution (PSD) [25]. The size
of the particles is assumed to depend on the formation
mechanism and therefore the site of formation in the respi-
ratory tract. In general, smaller particles are formed deeper
down in the alveolar region of the lung and the largest par-
ticles are formed in the upper respiratory tract, i.e., in the
mouth and nose. In addition, the pathogens may infect cer-
tain areas of the respiratory tract more severely than others
or may be cleared more rapidly from certain regions of the
respiratory tract. Since the virus concentration of the respi-
ratory liquid may vary along the respiratory tract, the virus
concentration v (RNA/ml) of the aerosol liquid depends on
the site of formation. Further, since the particle size indicates
the site of formation in the respiratory tract, it also indicates
the virus concentration of the aerosol particles. Therefore,
the virus emission rate for the jth diameter range Rj depends
on the mean virus concentration vj, the mean particle vol-
ume V j (m

3), and the mean number of particles emitted

by a human per second P
h
j (1/s) for the jth particle size bin,

respectively:

Rj ≈ vjV jP
h
j 1

Multiplying vj by V j gives the number of virions per par-

ticle for the jth size bin. Further, multiplication by the
human particle emission rate gives the corresponding path-
ogen emission rate.

In equation (1), the virus concentration in the aerosol
liquid vj is a necessary parameter which can be taken from
Alsved et al. [26], who measured v in eight size bins based
on a single participant. Alternatively, the virus concentration
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from nasal or throat swabs could be used instead as for
example done by Henriques et al. [35]. However, as
described above, this value may differ from the actual v at
the site of particle generation. Studies have shown that there
is little or no correlation between the virus concentration in
exhaled particles and the virus concentration in the upper
respiratory tract (URT) [30]. Moreover, the risk of transmis-
sion is more strongly correlated with virus emission via
exhaled particles than with virus concentration in the URT
[36]. Thus, we avoid using the viral load of the URT. In
addition, when using the latter approach, evaporation must
be taken into account, as it significantly reduces the particle
volume [27, 37] (depending on the ambient humidity and
composition of the mucosal fluid), resulting in a higher virus
concentration in the particle.

The volume of the aerosol particles can be approximated
by V = πD3/6, assuming that the particles are of spherical
shape. Again, data from the literature are required to esti-
mate the number of aerosol particles emitted per second

by human exhalation for different size bins P
h
j , as for exam-

ple provided by Pöhlker et al. [25].
Several studies [29, 38] measure the virus emission rate R

from humans directly. However, these studies typically do
not distinguish between different particle sizes and are there-
fore not suitable to determine Rj.

2.1.2. Fraction of Infectious RNA Copies f . Not all copies of
the virus are infectious [32]. The receptors of the virus or
the RNA itself may be damaged, thus preventing the virus
from infecting cells or replicating. Therefore, it is necessary
to determine the number of infectious virus copies among
all virions. In the case of living pathogens—such as bacter-
ia—this would be equivalent to the fraction of living bacteria
to all bacteria. f would ideally be measured in the aerosol
immediately after exhalation. However, data are scarce so
the value in respiratory tissue must be used in the absence
of better data.

2.2. Particle Transport. As mentioned above, particle trans-
port is commonly circumvented by assuming that particles

are perfectly homogeneously distributed in space immedi-
ately after emission, the so-called well-mixed room assump-
tion. In contrast, we use information about the velocity and
turbulent kinetic energy in the flow field to predict the
Lagrangian transport of individual particles (see Section 3.1).
Since the virus copies are inactivated over time while being
suspended in the air, the duration of the transport is relevant
to estimate the virus inactivation. The particle concentration
in the breathing zones and the virus stability are discussed in
more detail below.

2.2.1. Fraction of Particles Reaching the Breathing Zone Bj.
The breathing zone (BZ) is defined near the target’s face
(we use a hemispherical shape with the center at the nose,
similar to [39]). Then, the number of particles in the jth size
bin NB,j [1] in the BZ is divided by the volume of the BZ VB

(m3) to obtain CB,j (1/μm
3):

CB,j =
NB,j

VB
2

With equation (2), Bj can be calculated:

Bj =
CB,j

Pj

=
NB,j

VBPj

3

For a steady Pj, the number of particles of the jth size bin
in the BZ NB,j is proportional to the particle emission rate of

this size bin Pj (particles have to be counted to their initial
size bin, even after evaporation). This assumption would
be violated if the particles were interacting, but according
to [40], the number of particles is too small to allow for
interaction. Therefore, Bj is constant for any particle emis-

sion rate, so that Pj can be chosen freely (Pj must be greater
than zero, otherwise equation (3) is not defined).

2.2.2. Virus Stability s. Virus stability describes the resistance
of a virus to inactivation. The loss rate d depends on the
pathogen/strain and on environmental factors, such as UV
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Figure 1: Process steps and terms for the calculation of the inhalation rate of the infectious dose Din.
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radiation, temperature, and humidity [33]. To determine the
biological inactivation, it is necessary to consider both the
loss rate (%/min) of the pathogen of interest and the travel
time τi required for the ith particle to reach the BZ. The
mean stability s in the BZ is obtained by calculating the
probability of inactivation for each pathogen copy and then
averaging the results:

s =
1
n
〠
n

i=1
1 − d

τi/T0 4

Here, n is the number of CFD particles in the BZ, d(1) is
the fraction of virions being inactivated during T0 (s), and τi
(s) is the residence/travel time of the ith particle at the time
of inhalation.

2.3. Inhalation pin. The particle concentration for the jth size
bin in the BZ CB,j is described above. The pulmonary inha-
lation rate pin (m3/s) can be used to calculate the inhalation
rate of particles for the jth size bin (the exact deposition site
in the respiratory tract is neglected, further discussion in
Section 2.5). Based on the literature, typical inhalation rates
for passengers at rest are 6 l/min (or 10-4m3/s) [41].

2.4. Case Distinction for the Inhalation Rate of the Infectious
Dose Din. First, we consider Din by making useful assump-
tions, i.e., a steady-state and size-independent particle trans-
port. Then, we take the particle size into account and finally
consider an unsteady case.

2.4.1. Steady-State and Size-Independent Particle Transport.
Bivolarova et al. [42] showed experimentally that there is
no significant difference in the distribution between particles
with diameters of 0.7μm and 3.5μm. Therefore, under cer-
tain circumstances, the particle transport can be assumed
to be independent of the particle size. With this assumption,
the inhalation rate of the infectious dose Din is given in
TCID50/s:

Din = Rf sBpin, 5

Din =Dintx, 6

where the meaning of the parameters in equation (5) is sim-
ilar to those described in Sections 2.1 to 2.3, but for all diam-
eters instead of a specific bin size. Hence, the subscript j,
indicating the jth size bin is omitted. Thus, the model
depends only on the fraction of particles reaching the BZ,
not their absolute number, size, or viral load. For example,
if 3% of emitted particles reach the BZ, then 3% of RNA cop-
ies reach the BZ independently of the size or viral load of the
particles. However, this assumption only holds true if the
particle transport is independent of the particle size.

In a steady state, Din is constant and can be multiplied by
the exposure time tx to obtain the total inhaled infectious
dose Din (TCID50) (equation (6)).

As mentioned above, in a steady state, the number of
particles in the BZ CB is proportional to the particle emis-

sion rate P. Therefore, CB/P is a constant, which we call B.
Using a realistic human particle emission rate poses two
problems: on the one hand, there is a significant person-to-
person variation in particle emission rates, which causes
uncertainty. On the other hand, particle emission of humans
may be low (in total or for certain diameters), creating statis-
tical uncertainty. Since equation (5) is independent of P, any
particle emission rate can be used.

Substituting equations (3) and (4) into equation (5) gives

Din = Rf
1
n
〠
n

i=1
1 − d

τi/T0 CB

P
pin, 7

where all parameters are available from the literature or CFD
results.

2.4.2. Steady PSD and Size-Dependent Particle Transport.
Particle size must be considered, for example, when compar-
ing particles with ballistic trajectories (dominated by gravity
and inertia) to particles, where the drag force is dominant.
By considering m different ranges of particle diameters,
equation (7) can be solved separately for each diameter
range. For this, R must be replaced by Rj in accordance with
equation (1). The sum of the infectious dose inhalation rates
of all diameters results in the total Din:

Din = 〠
m

j=1
vjV jP

h
j f

1
n
〠
n

i=1
1 − d

τi/T0 CB,j

Pj

pin, 8

where the subscript j denotes the jth diameter range (size

bin) for v, V , P
h
, P, and CB, which then applies to size-

dependent particle transport.

2.4.3. Unsteady Virus Emission and Size-Dependent Particle
Transport. While COVID-19 is commonly transmitted by
asymptomatic individuals via normal breathing or talking,
other diseases may be transmitted primarily by coughing
or sneezing. Breathing and talking can be approximated by
a steady virus emission rate R, but coughing and sneezing
are highly unsteady. Therefore, Din (from equation (8)) must
be integrated over time to model unsteady virus emission
rates:

Din = 〠
m

j=1

t1

t0

vj t V jP
h
j t f

1
n
〠
n

i=1
1 − d

τi/T0 CB,j

Pj

pin dt,

9

where vj and P
h
j are functions of time, while the other

parameters are assumed to remain constant. We emphasize
that the particle emission rate (Pj) in the CFD can remain
constant even during a coughing event, since only the frac-
tion of released particles reaching the BZ is relevant, not

the absolute number of particles. In contrast, P
h
j (the realistic

particle emission rate of a human) is time-dependent to
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calculate the amount of virions released (see equation (1)). A
limitation of equation (9) is that it assumes that the suscep-
tible person does not move until all emitted particles are
removed from the room by deposition or ventilation.

2.5. Risk of Infection with Dose-Response Based on Human
Challenge Data. The Wells-Riley model is based on the
assumption that each inoculated pathogen has a certain
chance to infect the host and that all hosts are equally sus-
ceptible. The risk of infection is then

I Din =V 1 − exp khDin , 10

where Din (TCID50) is the inhaled infectious dose, in this
context V is the vulnerability of the susceptible individual
ranging from zero to one, and kh (1/TCID50) is a fitting
parameter representing the infectivity of the virion. V
depends on the immunity, e.g., through previous infections
or vaccines. A value of 1 indicates the highest level of vulner-
ability, whereas a value of 0 indicates 0% risk of infection
due to total immunity.

The parameter kh can be obtained from the results of a
human challenge study with nh participants of which mh fall
sick after inoculation with dose Dh:

kh =
ln 1 − mh/nh

Dh
11

2.6. Reference Case for SARS-CoV-2. The risk of infection
depends on many parameters, some of which cannot be
accurately predicted due to high variability from person to
person (e.g., virus emission rate). Therefore, we define a ref-
erence case with realistic parameters. After evaluating the
results of the reference case, we perform a sensitivity analysis
to estimate the outcome for other values. The values chosen
for the reference case are shown in Table 1 and discussed
below.

2.6.1. Particle Size. Alsved et al. [43] found SARS-CoV-2
RNA in seven samples of exhaled aerosol particles < 4μm
but only in two samples with particles > 4μm indicating that
SARS-CoV-2 is predominant in smaller particles. Among
another 22 participants, Coleman et al. [44] detected 85.4%
of the RNA in particles < 5μm. Lai et al. [29] found a 5-
fold higher virus load in particles < 5μm compared to
particles > 5μm. The studies above measured the particles
immediately after exhalation, which means that the particle
size could be further reduced by evaporation after the mea-
surement. In contrast, Lednicky et al. [45] investigated air
samples in a car of an infected person during a 15-minute
drive with closed windows and found more than 97% of
the RNA in particles < 2 5μm with the only viable virus in
particles < 0 5μm. Santarpia et al. [46] collected aerosol
samples from hospital ward air, and only those in particles
< 4μm were culturable (confirming they were active). Since
low numbers of pathogens reduce the likelihood of success-
ful culture [47], the observation that only pathogens from
small particles are viable could be either due to the fact there
are fewer pathogens or because they are actually less infec-

tious. Both explanations have the same implication that
small particles are most relevant.

In summary, the vast majority of SARS-CoV-2 virions
are found in particles < 5μm. Thus, a simplification of the
infection risk model is possible, if all particles < 5μm behave
similarly, which we investigate in Section 3.2.2. The simplifi-
cation eliminates the virus concentration vj from the equa-

tion and instead requires the total virus emission rate R
(see equations (7) and (8)). For most pathogens including
SARS-CoV-2, there is significantly more data available in
the literature for R than for vj.

2.6.2. Virus Emission R. We consider virus emission from
continuous activities, such as breathing or talking, which
we assume to be steady state. The person-to-person variabil-
ity in virus emission is substantial. For example, Zhou et al.
[48] measured the SARS-CoV-2 emission of 18 participants
and observed that two of them emitted 85% of the total RNA
copies. The strongest emitter exhaled 66% of the total RNA
despite a low particle volume emission.

Most studies do not find exhaled RNA in approximately
30 to 50% of infected COVID-19 patients (see Table 1)
resulting in a 0% risk of infection for all other passengers.
Outliers with exceptionally high emission rates (100 times
the median) occur occasionally. Jacot et al. [49] analyzed
4172 SARS-CoV-2 positive nasopharyngeal swabs and
found a median viral concentration of 5 × 106 RNA/ml.
Ten percent of the swabs contained more than 5 × 108
RNA/ml (100 times the median), indicating that a small per-
centage of individuals could cause the majority of infections.
However, as discussed above, the viral load in aerosol is not
necessarily comparable to the nasopharyngeal viral load.
Therefore, we cannot infer the probability distribution of
exhaled RNA from the probability distribution of RNA in
the URT. Nevertheless, this finding supports the large
person-to-person variation and relevance of superspreaders.

Table 1 provides an overview of virus emission rates
from the literature. The lowest and highest observed virus
emission varies significantly within and between the individ-
ual studies. We choose a value of 5 × 102 RNA/s, which lies
between the mean values of 4 6 × 101 RNA/s observed by
Malik et al. [30] and 5 6 × 103 RNA/s observed by Li et al.
[31]. Of note, the number of exhaled virions remains high
over time after symptom onset, but the probability of exhal-
ing any virions decreases [30, 43, 50].

2.6.3. Fraction of TCID50 per RNA f . This parameter is nec-
essary since not all RNA copies are infectious/active. To
determine the infectivity of viruses, they are cultured, typi-
cally on Vero E6 cells. This requires a large number of
SARS-CoV-2 copies: Kriegel et al. [47] estimated that 106,
107, and 108 copies result in a 20%, 50%, and 75% culture
probability, respectively. In addition, Zhou et al. [52]
reported that it is possible to find active SARS-CoV-2 on
dry surfaces with >105 copies.

Data on the TCID50/RNA ratio in exhaled aerosol is
sparse. Adenaiye et al. [53] cultured 141 aerosol samples
on Vero E6 cells, of which 2 were culture positive. Lai

6 Indoor Air



et al. [29] were able to culture 4 aerosol samples (2 delta and
2 omicron) but did not quantify them.

Santarpia et al. [46] were able to quantify RNA/PFU of
3/18 aerosol samples in the range of 0 721 × 106 − 1 98 ×
106 RNA/PFU. PFU and TCID50 can be converted by a fac-
tor of 0.7 [17]. Due to the difficulties in assessing the number
of infectious units in aerosol, we consider human tissue as a
surrogate. Here, the contaminated mucosal fluid is more eas-
ily accessible, and infectiousness was determined in several
studies. Sender et al. [32] reviewed 13 studies that measured
infectious units in respiratory tract tissues of humans and
monkeys and found that typical values are in the range of
10–5 to 10–3 TCID50/RNA. Hence, we choose a ratio of 10–
4 TCID50/RNA for the reference case.

However, this ratio is not necessarily equal in aerosol
and the respiratory tract. Schaffer et al. [54] reported that
more than 90% of WSNH influenza viruses lose infectivity
during the first minute—probably during the atomization
process—and Löndahl & Alsved [55] stated that changing
environmental conditions (e.g., RH and temperature during
exhalation) may lead to an abrupt inactivation of SARS-
CoV-2. Furthermore, Hakki et al. [56] observed that the
fraction was reduced by a factor of 100 during the course
of infection, probably due to the increasing amount of anti-
bodies neutralizing the virus copies. Recently, Alsved et al.
[57] published the first direct measurements of the exhaled
infectious virus copies in TCID50 per second in the breath
of 3 of 16 individuals. While the infectivity was below the
detection limit for breathing, values from 3 to 136 TCID50/

s were emitted during talking and singing. When such data
becomes available for breathing, it can be used in the model
to replace the product of R and f .

2.6.4. Virus Stability s. The virus stability depends on humid-
ity, temperature, UV radiation, and potentially other factors.
Several studies have investigated the lifetime of SARS-CoV-2
in aerosol. Van Doremalen et al. [58] found an average half-
life of approximately one hour. On the other hand, Fears
et al. [59] observed no significant decay even after 16 h. Niazi
et al. studied the effect of RH on inactivation of human rhi-
novirus [60] and influenza A virus [61]. They found that the
salt in an aerosol particle can be crystalline or soluble in the
water and that there is an RH hysteresis zone, in which the
state of the salt (solid or liquid) depends on its previous
state. They observed that the virus loss rate at the same
RH is lower, when the aerosol comes from a low RH (when
the salt is crystalline). Therefore, not only the current RH
but also the previous RH can affect the loss rate. In addition,
Dabisch et al. [33] performed a thorough investigation of the
loss rate of SARS-CoV-2 for different combinations of
temperature and relative humidity (RH). Following their
research, we choose an inactivation rate of 0.6%/min, corre-
sponding to 20°C and 20% RH, which is closest to the
conditions in the Do728 aircraft cabin and not in the hyster-
esis zone observed by Niazi et al. [60, 61], so we expect no
ambiguity in the loss rate. With the inactivation rate d =
0 6%/min, we calculate the mean stability s for all BZs in
accordance with equation (4).

Table 1: Virus emission rate values from the literature.

Author Strain
Pos. Breath/
participant [1]

Activity
Min

(RNA/s)
25th

(RNA/s)
Median
(RNA/s)

75th
(RNA/s)

Max
(RNA/s)

Malik et al. [30] Ancestral1 70/100 Breathe 1.3 4.1 Avg. 46.3 35.2 537

Ma et al. [51] Ancestral 14/49 Breathe 28.6 — — — 6 3 × 103

Alsved et al. [43]

Ancestral
(n = 15) 19/38 Breathe 0.33 — 1.15 — 3.67

Alpha
(n = 22) Talk 0.5 — 1.83 — 51.67

Unknown
(n = 1) Sing 0.33 — 1.33 — 130.0

Coleman et al. [44]

Ancestral
(n = 4) 13/22 Breathe — 0 0.04 0.126 —

α (4), β (8), Talk — 0.26 0.53 1.51 —

δ (1), κ (3), unknown (2) Sing — 0.15 0.79 1.35 —

Lai et al. [29]
Delta (n = 3) 19/32 0 — — — 1 × 104

Omicron
(n = 29)

Zheng et al. [38] Omicron 11/36 2 6 × 103 — Avg. 1 4 × 104 — 5 5 × 104

Li et al. [31] Omicron BA.5 11/27 Breathe 4.0 — Avg. 5 6 × 103 — 3 1 × 104

Li et al. [31] Omicron BA.2 15/51 Breathe 5.83 — Avg. 14 — 806
1The strain is not explicitly stated in the paper, but samples were taken from July 18 to November 16, 2020, when the ancestral strain was dominant.
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2.6.5. Particle Concentration in Breathing Zones CB. The par-
ticle concentration CB is the number of particles in the BZ
divided by the volume of the BZ. We define the BZ in a
hemispherical shape with a radius of 20 cm. The base of
the hemisphere is tilted so that the volumes of the hemi-
sphere and the manikin do not intersect. The center of the
base is where a person’s nose would be. Figure 2 illustrates
four seated manikins with particles in the BZ highlighted
in red, whereas the other particles are blue.

2.6.6. Inhalation Rate pin. The Inhalation rate depends on
age, sex, and fitness but mainly on physical activity and is
lowest at total rest [41]. Since aircraft passengers are usually
at rest, we assume 6 l/min for all passengers, which is a com-
monly chosen value for passengers in similar models/calcu-
lations [14, 62].

2.6.7. Exposure Time tx. We choose a short-haul flight dura-
tion of 2 hours, which is typical for single-aisle passenger
aircraft. Hence, the exposure time is 2 hours.

2.6.8. Dose-Response Model Based on a SARS-CoV-2 Human
Challenge Study. Killingley et al. [24] conducted a human
challenge study, where 34 participants were inoculated with
a dose of 10 TCID50 ancestral SARS-CoV-2, which led to the
infection of 18/34 participants.

With I 10 TCID50 = 18/34, kh = 7 54 × 10−2 in equation
(11), which gives the dose-response relationship:

I Din = V 1 − exp −7 54 × −2Din 12

Equation (12) is based on the assumption that each path-
ogen has the same probability of infecting the individual. In
addition, we assume that the participants of the human chal-
lenge study are representative of the human population,
which is a strong assumption given that the participants
were young, healthy, and unvaccinated. However, observa-
tions by Holt et al. [63] suggest that although age is a risk
factor for developing severe COVID-19, it is not a risk factor
for getting infected. Under these assumptions, a dose of one
TCID50 results in a risk of infection of 7.3% in accordance
with equation (12).

In the human challenge study, the inoculation dose was
administered by means of nasal drops, which cover a large
area of the nasal cavity and are slowly cleared to the stomach
and therefore do not reach other parts of the respiratory
tract [64]. The dose-response may depend on the suscepti-
bility of the tissue of the deposition site. However, the entire
human respiratory tract contains cells that express receptors
required for infection with SARS-CoV-2 making the whole
respiratory tract potentially susceptible [32, 65]. A similar
argument was made by Henriques et al. [35] in their assess-
ment of the risk of infection.

Lastly, the human challenge study was conducted with
10 TCID50 of the ancestral strain. However, due to the lack
of data for other strains, we use the dose-response for the
ancestral strain.

2.6.9. Vulnerability of Susceptible Individuals V . The vulner-
ability V of individuals can be safely reduced with vaccines.

The rate of protection against infection depends on the type
of vaccine [66], the number of injections [67], the variant of
SARS-CoV-2 (the omicron variant has particularly high
immune escape capabilities [68]), the subvariant [69], and
the time since the last vaccination shot [67].

Thus, assessing a realistic protection rate for the passen-
gers on the Do728 is complex and beyond the scope of our
study. Therefore, we assume a vulnerability V (unity minus
protection rate) of one. This corresponds, for example, to
the initial stage of the pandemic, when no one is vacci-
nated/recovered, or to a stage where immunity from previ-
ous infections and vaccines has completely waned.

3. Demonstration of the Infection Risk
Model in an Aircraft Cabin

In the following, we estimate the risk of SARS-CoV-2 infec-
tion in a Do728 aircraft cabin to demonstrate the model. To
the best of our knowledge, this is the first attempt to couple
CFD particle transport with data from a human challenge
study to predict the risk of SARS-CoV-2 infection.

Figure 3 shows the Do728 aircraft cabin with a single
aisle, 14 rows, and five seats in each row, amounting to a
total capacity of 70 passenger seats. The mixed ventilation
concept is shown in Figure 4, with fresh, cool air being sup-
plied from the ceiling and warm air exhausted near the floor
for optimal passenger comfort. The relative humidity of the
air during the flight is approximately 15%.

3.1. CFD Setup of the Do728 Aircraft Cabin. The flowchart in
Figure 5 shows the tool chain for the CFD setup. A combina-
tion of RANS and URANS simulations, using the k-ω SST
model [70] implemented in OpenFOAM, is performed to
predict the flow field. Second-order upwind discretization
schemes are used for the convective terms of the transport
equations, and second-order central schemes are used for
the other terms. The URANS is used for the initial genera-
tion of the particle cloud. After four seconds, the volatile
moisture carried by the particles is completely evaporated
and the momentum of the particles introduced at the begin-
ning is dissipated. Therefore, the characteristics of the parti-
cle cloud can be copied to create new particle clouds in front
of any passenger. In our study, the cloud contains 8 × 105
particles with D μm ∈ 0 5,50 . The particle transport is
then predicted using an OpenFOAM solver and the velocity
and kinetic turbulent energy data from the RANS simulation.
A similar CFD prediction using the same finite volume

Figure 2: BZs are illustrated by black dotted lines, particles in BZ
are marked in red, and the rest of the particles are indicated in blue.
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method of the particle transport in a generic train compart-
ment compared favorably with measurements in [71].

The mesh contains approximately 150 million cells with
cell widths ranging from 0.5mm in the wall layer to 20mm
in the center regions. All seats are occupied by virtual man-
ikins, releasing 73W of heat, thus mimicking the heat release
of the human body. More information about the CFD setup
can be found in [34].

3.2. Predicted Particle Transport. Figure 6 shows the particles
scattered in the cabin (at the height of the BZs) after 10minutes
when the number of floating particles has reached a steady state
(see Section 3.2.1). The particles in the BZs are highlighted in
red, whereas the other particles are shown in blue. The figure
also indicates the number of particles in each BZ. Excluding
the index person (IP), most particles are found in the BZ of seat
8E, followed by seat 8D next to the source. It can be further
observed that the particle concentration decreases with increas-
ing distance from the IP and that the concentration is higher on
the side of the aisle where the IP sits. In addition, the particles
effectively disperse within the same row, rather than to the back
or front, while the rows behind the IP still contain more parti-
cles than the rows in front of the IP.

In the following sections (3.2.1 and 3.2.2), the assumptions
discussed in Section 2 will be applied to the reference case.

3.2.1. Development of the Steady State. The blue solid line in
Figure 7 shows the number of particles with D < 5μm sus-
pended in the air in the entire cabin over time. Additionally,
a parameterized exponential function is plotted by the green
dotted line, which seems to match the CFD results very well.
After 50 s, the number of particles suspended in the air
reaches 50% of the number of suspended particles in the
steady state, while after 410 s (less than 7 minutes), the par-
ticle removal rate corresponds to 99.9% of the seeding rate.

Therefore, the number of suspended particles in the cabin
is nearly constant, and we consider this to be the steady state
after 7min. Since 7min is only a small part of the total flight
duration, we neglect the first 7min and consider only the
steady-state phase.

3.2.2. Influence of the Particle Size. Figure 8 shows the parti-
cle size distribution in all seat rows except for row 1 and row
2 due to insufficient particle counts. The horizontal cross
sections of the seat rows are illustrated in Figure 6 by black
dotted lines, where all particles between the floor and the
ceiling are counted. The markers in Figure 8 represent the data,
while the lines have no physical meaning and connect markers
of the same seat row for illustration purposes. Eight different
size bins are indicated by the gray dotted vertical lines.

The PSD of the source is constant in the simulation (not
shown in Figure 8). Thus, if the particle size had an effect on
the particle transport, the PSDs in the domain would not be
expected to be constant. This is only observed for particles
with D > 5μm, with a clear declining trend in number
density with increasing diameter. This is plausible as larger
particles are more likely to settle down due to a higher mass
to drag ratio. In contrast, no significant differences are
observed between the four bins < 5μm in any seat row. This
shows that the number of particles per size bin is nearly
constant in each seat row. The blue markers connected by
the blue line illustrate the geometric mean, which is also
nearly constant for D < 5μm but shows a decreasing trend
for D > 5μm.

In summary, for D < 5μm, the particle size distributions
in the seat rows are constant, i.e., proportional to the PSD of
the source. This confirms the finding of Bivolarova et al. [42]
that particles of any size < 5μm are equally likely to be
transported to any seat row and, therefore, that viruses car-
ried by, e.g., 1μm particles end up in the same locations as
viruses carried by, e.g., 4μm particles. Consequently, the
particle diameter has no significant influence on the virus
transport in the considered scenario (geometry, boundary
conditions). Although particles > 5μm behave differently
than the smaller ones, these larger particles are less relevant
for the transport of virions as they carry only a minor frac-
tion of RNA copies (see Section 2.6).

3.3. Virus Stability in the Breathing Zones. Figure 9 shows
the mean stability in each BZ—containing at least one parti-
cle—resulting from the assumed loss rate of 0.6%/min. The
trend shown is similar to particle dispersion: the further
away from the IP, the lower the virus stability (due to longer
travel time). More than 99% of the virions remain active
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Figure 3: Sketch of the Do728 cabin layout.

Figure 4: Mixed ventilation concept in the Do728 cabin.
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near the IP (e.g., seats 8D, 8E, and 9C). The lowest value is
found at seat 14A, where 96.0% of the infectious virions
remain active during transport. This reveals that the biolog-
ical decay of SARS-CoV-2 is insignificant in the Do728 air-
craft cabin. The low relative humidity and temperature
favor virus stability. In addition, the high air change rate
removes virus-laden particles before a significant amount
of virions is inactivated.

3.4. Inhaled Dose and Infection Risk. Figure 10 shows the
inhaled infectious dose for each passenger, calculated using
the dose inhalation rate obtained from equation (5) and
the assumed exposure time of 2 hours. As expected, the
doses follow the same trend as the particle dispersion—with
the highest values found near the IP and the lowest values in
the two front rows. The values shown here should be consid-
ered as expected or mean values, since the number of

RANS

Boundary
conditions Flow field

�i

CB
Lagrangian

particle
simulation

URANS Exhaled
particle cloud

Age of
particles in BZ

Number of
particles in BZ

Diameter of
particles in BZ

Figure 5: Flowchart of the numerical simulations: first, the boundary conditions are defined and the flow field is predicted by a RANS
simulation. This flow field is used as the initial condition for a URANS simulation, where particles are exhaled and partially evaporated
and their momentum dissipated to form a particle cloud. The characteristics of the resulting particle cloud are then used as the initial
condition for the Lagrangian particle transport simulation in the RANS flow field.
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Figure 6: Scatterplot of particles at the height of 1m to 1.5m. The particles in the BZs are highlighted in red, and the number of particles in
the BZ is indicated on the corresponding BZ.
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infectious virions is discrete (e.g., 0 or 1) and cannot attain
decimal values such as 0.78, as found at seat 8E. This could
also be interpreted as a 78% probability to inhale a dose of
1 TCID50. Of note, 0.78 is the highest infectious dose
observed. This means that no passenger is expected to inhale
an infectious dose of 2 TCID50 or more.

Figure 11 shows the risk of infection derived from the
infectious dose calculated with equation (10) for all seats.
The highest risk of infection is observed at seat 8E with a
probability of 5.72% followed by seat 8D with 4.53%. The
risk of infection for the passengers in the row in front of
the IP is lower than 1%, whereas in the row behind the IP,
the risk of infection is up to 4.18% on seat 9D. The aisle
seems to have a protective effect, as the maximum risk on
the A and B seats is 0.64% on seat 7A. While the risk of
infection on the A and B seats is lowest for the rows near
the IP, the opposite is true for the rows further away from
the IP. For example, in rows 5, 6, and 12, the risk of infection
is highest on the A and B seats.

3.5. Sensitivity Analysis. The risk of infection shown in
Figure 11 depends on several parameters that cannot be
clearly defined but may vary from case to case and from per-
son to person. Table 2 provides an overview of the possible
ranges for the different parameters. Most importantly, the

virus emission rate of an infected individual could vary from
0 to 5 5 × 104 RNA copies emitted each second. The fraction
of TCID50 per RNA copy also varies over three orders of
magnitude between 10−6 and 10−3. Since, in accordance with
equation (5), the inhaled infectious dose is directly propor-
tional to these two parameters, the inhaled infectious dose
could vary by several orders of magnitude, depending on
the selected values for each parameter. Thus, we perform a
sensitivity analysis to examine the situation in the Do728
aircraft cabin for the reference case and other selected
values. Figure 12 shows the probability of 0, 1, and >2
secondary infections for the reference case discussed above
(reference dose factor = 1).

In the reference case, the probability of two or more
transmissions is 3.07%, the probability of 1 transmission is
21.85%, and the probability of no transmission is 75.08%.
Reminder: only inhaled doses of zero or one TCID50 are
expected in the reference case. This means that the individ-
uals infected in this scenario inhaled only a single TCID50.

We chose a virus emission rate of 5 × 102 RNA/s. How-
ever, if the virus emission rate was 100 times higher, as
observed by Zheng et al. [38], for example, the inhaled infec-
tious dose would also be 100 times higher. Therefore, the
“reference dose factor” (RDF) would be 100, and the model
would predict at least two transmissions. The blue dotted
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Figure 9: Mean biological stability in BZs.
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line in Figure 12 also shows the number of expected infec-
tions on the right-hand y-axis. For the reference case
(RDF = 1), the model predicts less than one infection. In
contrast, for a 100 times higher dose (RDF = 100), 12 infec-
tions are predicted. On the other hand, the highest virus
emission for breathing observed by Alsved et al. [43] is only
3.67 RNA/s. With this value, the RDF would be less than
10−2 resulting in a risk of infection close to zero. This shows
the importance of choosing the right values and highlights
the importance of the person-to-person variation in virus
emission. Knowing that a person sitting in seat 8C is
SARS-CoV-2 positive could result in 0 to 12 infections,
depending on their virus emission rate. Even more than 12
infections are possible with an RDF > 100, e.g., with a 100-
fold virus emission and a 10-fold f . Thus, a probability den-
sity function of the virus emission rate would be helpful, to

model the probability of the IP being a low, medium, or high
emitter. Sawano et al. [50] found such a PDF to have a log-
normal shape—however, with a very limited number of par-
ticipants. Henriques et al. [35] used the distribution of the
viral load in the upper respiratory tract, for which there is
ample data [49], and 10% of cases have a 100-fold higher
viral load compared to the median. However, as we pointed
out above, the viral load in the upper respiratory tract does
not necessarily correlate with the number of exhaled virions.

Based on the RDF, any other combination of values can
be quickly evaluated; e.g., a 5 times longer flight time (10 h)
and 10% of the virus emission of the reference case (50
RNA/s) would result in an RDF of 0.5 and approximately a
13% chance of one transmission.

3.5.1. Loss Rate and Mean Stability. While the mean stability
is proportional to the inhaled infectious dose and can there-
fore be easily evaluated with the RDF, the loss rate is not
proportional to the mean stability (see equation (4)). The
loss rate can be looked up in the literature, but how it trans-
lates into the mean stability depends on the individual travel
time of the particles. Figure 13 shows the relationship
between the loss rate and the virus stability for the Do728
cabin. The figure shows the relationship for the BZs—with
at least one CFD particle—in light gray lines. It take particles
the longest to reach seat 14A. Therefore, the loss rate has the
greatest impact on this seat: at a loss rate of 20%/min, only
approximately 22% of the particles remain active after being
transported to the BZ. In contrast, the particles in the BZ of
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Figure 10: Infectious dose Din (TCID50) inhaled during the duration of the flight.
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Figure 11: Infection risk of individual passengers.

Table 2: Summary of selected values for the reference case.

Parameter Symbol Possible range Reference case

Virus emission R 0 − 5 5 × 104 RNA/s 500 RNA/s

TCID50/RNA f 10−6 − 10−3 10–4

Inactivation rate d 0.0-6.4%/min 0.6%/min

Flight duration tx 0.5-18.5 h 2 h

Inhalation rate pin 6-54 l/min 6 l/min

Vulnerability V 0-1 1
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seat 8E have the shortest travel time, and at a 20%/min loss
rate, 80% of the particles still remain active. The figure also
shows the median and average stability; both are approxi-
mately 50% at a loss rate of 20%/min. Dabisch et al. [33]
found that the loss rate of SARS-CoV-2 increases with
higher temperature and higher relative humidity. For 70%
relative humidity (RH) at 30°C, they observed a loss rate of
6.4%. These conditions are not typical of aircraft cabins,
but at this loss rate, the average and median survival rate
are approximately 90%. Therefore, they would reduce the
RDF by a factor of about 0.9 (compared to no decay) and have
a small but noticeable impact on the risk of infection. Never-
theless, compared to the possible range of other parameters,
such as flight time, virus emission rate, and fraction of
TCID50/RNA, the impact of the biological decay on SARS-
CoV-2 transmission in the Do728 cabin is insignificant.

4. Discussion

In contrast to the usual backward quantum calculation from
known outbreaks, the proposed model predicts the risk of
infection by means of a “forward” calculation. This requires
several parameters from the literature. For example, if virus-
laden particles of different sizes are transported to different
regions, e.g., because the larger particles settle faster, then
the concentration of virus copies per ml for different size
bins would be required. This data is currently scarce, but a
simplification can be made by assuming that the particle size
does not affect the particle transport, thus rendering the
virus concentration unnecessary. We have shown that this
assumption holds true for SARS-CoV-2 virions emitted by
breathing in the Do728 aircraft cabin, since particles smaller
than 5μm behave in a sufficient similar way and particles
larger than 5μm carry only a minor fraction of the viable

virions. The simplified model still requires virus-specific
data from the literature: virus emission rate, fraction of
TCID50 per RNA, biological loss rate, and dose-response.
In the typical Wells-Riley model, all these parameters are
combined in the quanta, since one quantum is defined as
the number of particles representing a risk of infection of
≈63%. The quantum emission rate is typically calculated
backward from known events, using the well-mixed room
assumption. While this allows all the necessary data to be
gathered from a single event, important information about
virus-laden particle size, particle dispersion, and the virus-
specific parameters is lost. This is particularly problematic
when considering the high person-to-person variation in
virus emission. In the backward calculation, it is not possible
to determine whether many people were infected due to
unfavorable airflow (or seat positions), high virus emission
rate, high fraction of TCID50/RNA, high virus stability, high
dose-response, or pure chance.

In contrast, the presented approach offers the possibility
to vary the virus-specific parameters individually. This
allows to consider different virus emission rates of weak
and strong emitters and to study superspreaders. We used
the virus emission rate measured directly in the exhaled
aerosol, instead of calculating it from the virus concentration
in the upper respiratory tract. Moreover, the reference dose
factor allows a quick sensitivity analysis of the individual
parameters. Finally, the airflow and particle transport are pre-
dicted by CFD simulations instead of assuming a well-mixed
room. The main drawback of this approach is the extensive
data gathering and the uncertainty of the virus-specific param-
eters, which may also raise ethical questions, especially for the
dose-response based on human challenge data.

While many studies focus on unsteady respiratory
events—such as coughing or sneezing—we investigate virus
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emission during normal breathing since SARS-CoV-2 is
often transmitted by pre- and asymptomatic individuals.
Coughing or sneezing can release many RNA copies at once,
whereas the continuous emission during breathing leads to
an accumulation of respiratory particles in the air over time.
Our CFD results show that in an aircraft cabin with typical
ventilation, a steady state is reached after about 7min and
50% of the final particle concentration is reached after 50 s.

The particle dispersion in the Do728 aircraft cabin
shows that the particle concentration reaches the highest
values near the IP, especially on the same side of the aisle
as the IP. The same trend is observed for virus stability,
inhaled infectious dose, and consequently risk of infection.
This shows that the risk of airborne transmission becomes
negligible with increasing distance even though aerosol par-
ticles are capable of occasionally traveling long distances and
remaining airborne for long periods of time. This implies
that maintaining distance is helpful not only in case of larger
ballistic droplets but also against airborne particles, at least
for the considered scenario. In the case of SARS-CoV-2,
the virus emissions rates in the literature range from 0 to
5 5 × 104 RNA/s, resulting in a wide possible range of 0-12
expected infections. In addition, the fraction of TCID50 per
RNA can vary by a factor of 100 during the course of infec-
tion. After the biological inactivation during transport into
the breathing zones, at least 96% of the virions remain active,
showing that biological decay is not significant in the consid-
ered case. However, the model is capable of modeling the bio-

logical inactivation. And at lower air change rates—hence
longer residence times and different climatic conditions—the
biological inactivation could become significant. Furthermore,
other viruses or bacteria may have higher loss rates, which
could make biological inactivation more relevant.

Due to the large possible range of predicted infection risks,
caused by the uncertainty in the input parameters, validation
of the model is difficult. To properly validate the model,
known outbreaks are not sufficient, as we would also need to
know, for example, the virus emission rate and fraction of
TCID50 per RNA of the index person during that outbreak.
We are not aware of the existence of such data. However, with-
out knowing the virus emission rate, we could assume any
virus emission rate in the range from 0 to 5 5 × 104 RNA/s
to obtain the desired risk of infection, which would be a vali-
dation of the parameter values rather than the model itself.
In summary, the high person-to-person variability and the
ethical problems of controlled experiments with humans
make validation unfeasible. However, the same problem arises
for the backward quantum calculation.

Finally, since the model treats virus-specific parameters
individually, the risk of infection with a hypothetical muta-
tion with a different value in a single virus-specific parame-
ter can be estimated.

4.1. Limitations. Several assumptions and approximations
lead to the presented results. We expect the largest discrep-
ancies between the model prediction and the actual risk to
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Figure 13: Mean virus stability in the BZs over biological loss rate in the Do728 aircraft cabin.
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be due to the following: uncertainties in the virus-specific
parameters discussed above possibly lead to the largest
uncertainties in the predicted risk of infection. In addition,
due to the lack of data, we mixed virus-specific parameters
from different SARS-CoV-2 strains, e.g., the dose-response
from the ancestral strain with virus emission from later
variants. In addition, we assume that the (unvaccinated)
participants in the human challenge are representative of
the whole population. Lastly, we assume a steady flow field
in the aircraft cabin for the particle transport to reduce com-
putational resources and perform a RANS simulation.

5. Conclusion

We present a model that directly estimates the risk of
infection, as opposed to the backward quantification required
in the Wells-Riley model. The model captures relevant
pathogen-specific parameters, such as the biological loss rate
and the pathogen emission rate, as well as pathogen-
independent parameters, such as the particle transport, the
inhalation rate, and the exposure time. Since the particle size
has no significant effect on particle transport for the consid-
ered particles (<5μm), the available data is sufficient to apply
the model for SARS-CoV-2.

To the best of our knowledge, this is the first coupling of
dose-response data from a SARS-CoV-2 human challenge
study and particle transport predicted by CFD to predict
the risk of infection. We have applied the model to predict
the risk of SARS-CoV-2 infections in a Do728 aircraft cabin
and draw the following conclusions:

(i) SARS-CoV-2 human challenge data can be used to
estimate the risk of infection in aircraft cabins by
“forward” calculation

(ii) The model captures the local risk of infection: the
highest risk was observed in the same row, on the
same side of the aisle as the index person. The risk
of infection decreases rapidly with increasing dis-
tance from the index person

(iii) The model captures biological decay: at least 96% of
active virions remain active during particle trans-
port. While this is less significant in this particular
scenario, biological inactivation could be relevant
in other circumstances, such as different ventilation
rates or different pathogens

(iv) Particle size only has a minor impact on SARS-
CoV-2-laden aerosol transport in the Do728 cabin,
thus allowing for a simplification of the model

(v) The high person-to-person variability, e.g., in the
virus emission rate, results in a wide range of possi-
ble outcomes from 0 to at least 12 subsequent infec-
tions. This poses a challenge in selecting the values
for the model’s input parameters but provides the
opportunity to better investigate the effect of super-
spreaders more efficiently

(vi) The sensitivity analysis offers the possibility to per-
form a quick assessment of the potential risk of
infection in the aircraft cabin if different values were
chosen for the input parameters

The accuracy of the model is highly dependent on the
values of the input parameters. Therefore, only if the required
data is available does the proposedmodel represent an alterna-
tive to the common Wells-Riley model with reverse quantum
calculation. In this case, the individual influences of the virus-
specific parameters can be modeled with the presented
method, which is not possible with the quantummethod. This
also highlights the importance of fast data collection with
regard to virus emission rate, fraction of infectious units in
the exhaled breath, loss rate in aerosol, and dose-response
when a new airborne disease emerges.
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