
 

 

 

 

Bachelor Thesis: 

 

Stuck Actuator Fault Detection and Isolation  

on the MMX Rover 

 

 

 

 

Author:   Anna Merk 

Course of Study:  Aerospace Engineering (LRB) 

Matriculation Nr.:  01486219 

Supervisor:  Prof. Dr.-Ing. Daniel Ossmann 

Advisor at DLR: Juliane Skibbe 

Summer Semester:  2023 

Submission Date:  05. July 2023 

 

Munich, July 2023 

 



 

II 

 

Abstract 

Since rovers for the exploration of celestial bodies are extremely expensive and long-term 

projects, it is crucial to avoid the collapse of these systems due to faults. Hence, the develop-

ment of Fault Detection, Isolation, and Recovery (FDIR) systems for these rovers is indispen-

sable. The MMX (Martian Moons Exploration) Rover is a small, wheeled rover created for the 

exploration of Mars moon Phobos as part of the MMX Mission by the Japanese Space Agency. 

In this thesis the problems of fault detection and fault isolation on one of the MMX Rover’s 

locomotion units are discussed. The objective is to answer the question of how to detect an 

immobilization fault in the rover's locomotion unit and how to differentiate on which construc-

tional element the fault occurs. 

To address this research topic, experiments are conducted to simulate the expected fault sce-

narios as well as normal operation. Specifically, the fault scenarios of a stuck wheel and a 

stuck leg are induced under various changing parameters, and torque and motor currents are 

measured. Additionally, baseline tests are performed to investigate the influence of Earth's 

gravity, motor drive velocity and direction of rotation. The values of nominal and faulty opera-

tions are compared in order to establish thresholds for fault detection. Machine learning tech-

niques based on logistic regression are employed to enable fault isolation. 

The results of the baseline tests show dependency of the torque and current measurements 

on all mentioned baseline test parameters. The evaluation using the methods described 

demonstrates reliable error detection through a torque threshold. Furthermore, the classifica-

tion algorithm enables 95% accurate determination of the fault location.  
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Kurzfassung 

 

Da Rover für die Erforschung von Himmelskörpern äußerst teure und langfristige Projekte sind, 

ist es entscheidend, das Versagen dieser Systeme aufgrund von Fehlern zu vermeiden. Die 

Entwicklung von Fault Detection, Isolation and Recovery (FDIR) Systemen für diese Fahr-

zeuge ist daher unverzichtbar. Der MMX (Martian Moons Exploration) Rover ist ein kleiner 

Rover auf Rädern, der im Rahmen der MMX-Mission von der Japanischen Raumfahrtagentur 

für die Erforschung des Marsmondes Phobos entwickelt wurde.  

In dieser Arbeit werden Fehler-Detektion und Fehler-Isolation an einer der Lokomotionseinhei-

ten des MMX Rovers diskutiert. Das Ziel ist es, die Frage zu beantworten, wie ein Festfahren 

in der Lokomotionseinheit des Rovers detektiert und lokalisiert werden kann, an welchem Bau-

teil der Fehler auftritt. 

Um dieses Thema anzugehen, werden Experimente durchgeführt, welche die erwarteten Feh-

lerfälle, sowie den normalen Betrieb simulieren. Insbesondere werden die Szenarien eines 

blockierten Rads und eines blockierten Beins unter verschiedenen Parametern herbeigeführt, 

und Drehmoment sowie Motorströme gemessen. Zusätzlich werden Baseline-Tests durchge-

führt, um den Einfluss der Schwerkraft der Erde, der Motordrehzahl und der Rotationsrichtung 

zu untersuchen. Die Werte für den Normalbetrieb und den fehlerhaften Betrieb werden vergli-

chen, um Schwellenwerte für die Fehlererkennung festzulegen. Maschinelles Lernen, basie-

rend auf logistischer Regression, wird eingesetzt, um die Fehlerisolation zu ermöglichen. 

Die Ergebnisse der Baseline-Tests zeigen eine Abhängigkeit der Drehmoment- und Strom-

messungen von allen genannten Parametern. Die Auswertung mit den beschriebenen Metho-

den zeigt eine zuverlässige Fehlererkennung durch einen Drehmoment-Schwellenwert. Dar-

über hinaus ermöglicht der Klassifikationsalgorithmus eine 95% genaue Bestimmung des feh-

lerhaften Bauteils. 
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1 Introduction 

The exploration of Mars has been a longstanding goal of many space agencies worldwide. 

Driven by the scientific curiosity to better understand the Red Planet's geology, climate, and 

potential for life, as well as by the prospect of paving the way for future human missions and 

colonization efforts, a lot of information has been gathered since the mid-1990s. But while the 

exploration of Mars and its surface has become increasingly more popular in the last years, 

not much is known about the Martian moons Phobos and Deimos. A relatively recent area of 

focus for space agencies is the origin and composition of these small, irregularly shaped bod-

ies. Knowledge of this could provide insights into the early history and evolution of the Martian 

system and moreover the planetary formation in our larger solar system. Martian moons ex-

ploration, MMX, is the new sample return mission planned by the Japan Aerospace Exploration 

Agency (JAXA) targeting the two Martian moons with the scheduled launch in 2024 and return 

to the Earth in 2029 [1].  

 

Figure 1: Mars, Phobos and Deimos [2] 

As an additional component of the MMX mission, a small-sized rover (see Figure 2 and Figure 

3) is being developed in collaboration with the German Aerospace Center (DLR) and the 

French space agency (CNES). This “MMX Rover” will be deployed on Phobos, the larger of 

the two moons of Mars, shown in Figure 1, where its goal is to conduct a more detailed inves-

tigation on the regolith properties. Phobos is almost 158 times smaller than the Moon, meas-

uring only 22 kilometers in diameter and has a gravity of 0.0057
m

s2, representing less than one 



 

2 
 

thousandth of Earth’s gravity. On Phobos, a day lasts around seven Earth hours and temper-

atures range from -120° Celsius to +30° Celsius. The MMX Rover’s mission will endure on this 

celestial body for 100 days. 

 

Figure 2: MMX rover [3] 

 

Figure 3: MMX rover simulation in drive configuration 

[4] 

Even in highly sophisticated systems such as this rover, unforeseen faults can occur that 

threaten the success of the mission if they turn into a partial or complete failure of the system. 

An example of this worst case scenario is the Mars rover “Spirit”, which got stuck in soft soil 

and whose mission was terminated after being unable to free itself [5].  

It is therefore necessary to employ fault detection, isolation, and recovery procedures to be 

able to avoid this scenario. Within the scope of this thesis the possible faults of motor and 

actuator seizures due to external load induction will be addressed with a fault detection and 

isolation (FDI) methodology. The wheels as well as the legs could get stuck during operation, 

which, if undetected, can lead to damage or breakage of the mechanical parts or a depletion 

of power resources. An immediate shutdown of the locomotion system to stop all further move-

ments is to be initiated in this scenario. After successful identification of the fault, appropriate 

recovery sequences can then be executed to resolve the issue.  A series of experiments sim-

ulating the expected stuck fault conditions as closely as possible will therefore be conducted 

within the scope of this thesis. From these tests, threshold values shall be determined for cer-

tain sensors that show the presence of a fault in the system and thus will raise an alarm. 

Furthermore, a method shall be developed, that is able to derive from the measured sensor 

data if there is a fault and where the fault is located. The aim of this thesis is thus to propose 

an effective method to detect and isolate stuck faults on the MMX locomotion subsystem with 

the goal to provide enough knowledge on the rover’s fault state to enable corrective actions 

for resolving the issue in the locomotion subsystem.  
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2 Theoretical Background - Fault Detection, Isolation and Recovery 

Technical systems such as exploration rovers consist of a multitude of different sensors, actu-

ators and mechanical as well as electrical components. A fault in a plant or its instrumentation 

can be defined as a deviation from the normal behavior caused by malfunctions of one or 

various elements of the system. An early detection of such faults is crucial for preventing per-

formance degradation and machinery damage, which can in extreme cases lead to a loss of 

the system and thus, in the worst case, mission failure. Prompt and accurate diagnosis of a 

defective component through an analysis of a fault’s characteristics enables optimal decision-

making regarding corrective measures. The subfield of control engineering that concerns itself 

with the task of perceiving and identifying faults in a system, as well as providing reconfigura-

tion methods with the goal to offer an optimal working technical system is commonly known as 

“Fault Detection, Isolation and Recovery”, or in short FDIR.  

According to Wander and Förstner [6], FDIR can be defined and implemented in many different 

ways. But the following three tasks present the main cornerstones of a modern FDIR system: 

Firstly, fault detection, in which the presence of a fault and its time of occurrence is determined. 

Next, isolation or identification respectively specify the type, location, and behavior of the fault, 

as well as its severity and possible effect on the system. Lastly the reconfiguration aims to 

compensate for the fault by, for instance, switching to redundant systems. In general, this ap-

proach is used to prevent faults from leading to catastrophic breakdowns of the plant, known 

as failures. The isolation and identification tasks together are referred to as fault diagnosis. 

Fault isolation follows the fault detection and describes the determination of the kind, location 

and time of detection of a fault. Fault identification by itself aims to determine supplementary 

information like the size and time-variant behavior of the fault. While detection is an absolute 

must in any practical system and isolation is almost equally important, fault identification may 

therefore not justify the extra effort it requires. Hence, most practical systems contain only the 

fault detection and isolation stages (and are referred to as FDI systems). [7], [8] 

In control engineering faults are categorized in multiple ways, mainly by the effect they have 

and their temporal behavior. Multiplicative and additive faults are two types of errors, differen-

tiated by their effect in systems. Multiplicative faults scale the values of affected variables, 

while additive faults introduce a constant shift to those values. Time behavior characteristics 

of faults are classified into abrupt faults that cause sudden, noticeable changes, incipient faults 

that develop gradually, and intermittent faults that occur sporadically.  

In this thesis specifically, only fault detection and isolation are investigated. The following def-

initions apply to the technical terms mentioned before within this thesis. 

• Fault: A fault is the deviation of movement of the locomotion subsystem from its ex-

pected behavior, due to an actuator jamming on external parts.  
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• Detection: Fault Detection describes the process of identifying faulty behavior of the 

system through sensor measurements. 

• Isolation: Fault Isolation is the task of differentiating between the different locations of 

the fault also through sensor data. 

 

Figure 4 shows the structural path of an exemplary fault detection and diagnosis (FDD) system 

from the fault to the fault diagnosis. First the fault impacts the process, from the measured 

signals the fault is detected, then the data known from the faulty measurements (symptoms) 

are handled by the fault isolation to classify the fault.  

 

Figure 4: Structure of FDI [9] 

 

2.1 Signal-, Model-, and Knowledge-based Fault Detection 

There are several different methods to approach FDI, with the common goal being to raise an 

alarm when sensor data is detected that shows deviations from the nominal state. All methods 

consist of the same three basic cornerstones: the measurement data, a redundancy of infor-

mation to these readings and a decision classifier. The difference between all approaches can 

be distinguished by the manner in which redundant information is provided. While signal-based 

fault detection works with the test readings alone, the knowledge-based technique relies on a 

great amount of historic data on which it was trained to recognize deviations. The analytical 

model-based fault detection requires a mathematical model of the system in question and 
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compares the expected outputs with the measurements to detect anomalies. The different pro-

cedures and their flow of data are shown in Figure 5. The top branch of the diagram presents 

the knowledge-based approach. The illustration shows that a significant amount of historic 

data is used for training and learning about the different faults to provide a solid knowledge 

base. Input data is then checked for consistency of fault patterns with the existing knowledge 

base. A classifier is then subsequently run through to decide if an alarm is triggered or not. In 

the middle of the figure the signal-based type of FDI is shown. Input data is processed by 

filtering or transformation to enable the enhanced observation of patterns and trends in the 

signal. Afterwards, the processed signal is checked for consistency with the known signal pat-

tern before the result of that comparison is again passed through a classifier, that provides a 

decision on the triggering of an alarm as output. Lastly the diagram shows the model-based 

FDI method on the lowest branch. For this method the system in question first needs to be 

identified and a model needs to be developed that describes this system accurately. For this 

system its own classifier is set. During online operation the input data is then checked for 

consistency with the provided values from the mathematical model. The difference between 

these two values is called the residual. For this residual a threshold is set through a residual 

classifier which again provides the decision if a fault alarm is triggered or not. 

 

Figure 5: Types of fault detection and isolation [10] 

Out of these three types of FDI, the method of highest simplicity is signal based, since it re-

quires no knowledge of the mathematical workings of the system and no huge amount of train-

ing data. The signals can be processed through different filters or transformations to better 

observe certain patterns and tendencies. In the signal-based approach certain limit thresholds 

are then set for the plant measurements after processing. These can be upper and/or lower 

limits, as well as trend checks. If a reading exceeds a threshold, an alarm is raised. These so-

called alarm systems are widely used in industrial applications, as no additional model or 
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knowledge of the plant is required. Significant shortcomings of this method, however, are the 

limited fault specificity and sensitivity. [11] 

Next, there is the model-based approach. The fundamental idea of the model-based fault de-

tection is an analytical redundancy, meaning the comparison of the plant outputs 𝑦𝑖(𝑡) with 

their analytically computed values 𝑦̂𝑖(𝑡) obtained through the mathematical model. Both sys-

tems would receive the same command as input. The difference between the two values, the 

residual 𝑒𝑖(𝑡), is an indication of the possible presence of a system fault. [11], [12] 

𝑒𝑖(𝑡) = 𝑦𝑖(𝑡) − 𝑦̂𝑖(𝑡) ( I ) 

As mentioned before, the model-based method requires an explicit mathematical model of the 

subsystem in question to be able to analytically investigate faults and develop suitable FDI 

algorithms. For systems where such a model is not available, due to a too high complexity or 

off-site intellectual properties that need to be protected, a last alternative approach can be 

taken: knowledge-based FDI. This method, also known as data-driven fault detection, relies 

on a great amount of historic data in nominal and faulty states of the system, that is then used 

for training and learning to detect faults and for fault isolation, recognize them by their patterns. 

According to Azam et al. [13], knowledge-driven schemes are chosen in scenarios, where all 

possible failure modes are known a priori and the system has a high number of sensors and 

therefore provides a high information density on the measurable state of the system. From the 

faults and the corresponding measured data, a decision matrix is created, depicting the char-

acteristics of each single fault. This matrix can further be used to fuse different scenarios and 

therefore provide more sophisticated FDI solutions. A downside to this approach is the sus-

ceptibility to unknown faults, since only known fault scenarios are tested and therefore recog-

nizable by the FDI system. Furthermore, large amounts of data are required to achieve satis-

factory accuracy of the fault detection system.  

2.2 Fault Isolation through Machine Learning 

After successfully detecting a fault, the next crucial step involves determining the location and 

type of the fault - the so-called fault isolation. While detecting a fault usually requires simpler 

methods, such as setting up thresholds on certain measurements, fault isolation on the other 

hand generally necessitates more complex approaches, for instance machine learning. 

Machine learning, a subfield of artificial intelligence, is dedicated to developing algorithms that 

can learn from data, recognize patterns, and make predictions or decisions without explicit 

programming instructions. These algorithms utilize statistical techniques to iteratively adjust 

their parameters and model representations based on observed data, enabling continuous 

improvement in their performance over time. 
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2.2.1 Characteristic Features 

Once the fault is detected, the data measurements leading up to the fault threshold being 

exceeded are analyzed to isolate the specific fault responsible for the system's changed be-

havior. These measurements are checked for characteristic features, which are patterns in the 

data indicating different fault scenarios. Typical characteristic features include statistical infor-

mation, such as the mean, average, standard deviation, minimum or maximum values rec-

orded over specific timelines. Tests and system analyses help define the important character-

istics of the measurement data for distinguishing faults. These "symptoms" are then stored in 

a database and compared with data from a new experiment. The goal is to predict the failure 

scenario by analyzing the symptoms and comparing them to previously known and labelled 

information about fault symptoms. This data-driven approach to isolating the different fault 

scenarios is also called knowledge-based isolation, since all conclusions drawn from the symp-

toms rely on the knowledge gathered beforehand. However, it is important to note that this 

technique can only identify "known" faults, which is one of its limitations. 

2.2.2 Logistic Regression 

In summary, applying the knowledge-based isolation method requires a significant number of 

recorded symptoms for known fault scenarios and one set of symptoms for the fault to be 

identified. The question remains, how an algorithm determines which fault is most likely to 

match the faulty measurements (symptoms). Data analysis that describes the relationship be-

tween a response (in this case the fault) and one or multiple predictor variables (in this case 

the symptoms) often relies on regression methods. Regression is a statistical method that ex-

plains or understands one variable based on one or more other variables. The variable that is 

being explained is called the dependent variable; the other variables used to explain or predict 

the response are called independent variables. Many times, independent variables are simply 

referred to as predictors. [14] 

For problems where the dependent variable is not continuous, but instead falls into a finite 

number of discrete values, in the case of fault identification for example, this would mean pre-

dicting whether a certain fault is happening (1) or not (0). A simple linear regression is inade-

quate, as it assumes a linear relationship between the predictors and the response. In these 

cases, a logistic regression is used. 

Logistic regression is a statistical algorithm that can be used for any classification problem 

where the target is a discrete (binary or ordinal) variable. Binary classification is aiming to 

predict one of two possible outcomes based on the input variables. It models the relationship 

between the input variables on the x-axis and the probability of the binary outcome on the y-

axis using the logistic function (also known as the sigmoid function, see Figure 6).  
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Figure 6: Logistic function [15] 

Typically, if the probability of the scenario happening is over 50%, option 1 (fault is present) is 

considered to be true, while in the other cases, option 0 (fault is not present) is adopted. In 

comparison to other classification models, the logistic regression model permits the use of 

continuous and categorical predictors and provides the ability to adjust the model for multiple 

predictors at the same time. [16] 

Logistic regression is a well-established statistical model widely used for binary classification 

problems. It assumes a linear relationship between independent variables and the log-odds of 

the dependent variable. When the relationships are indeed linear, logistic regression effectively 

captures and models the underlying associations between predictors and multiple classes. The 

linear assumption simplifies the model and allows for straightforward interpretation of the co-

efficients, facilitating an understanding of the impact of each independent variable on the prob-

ability of belonging to a specific class. 

Logistic regression provides probabilistic predictions by estimating the probability of an obser-

vation belonging to each class based on the linear combination of independent variables. This 

feature is particularly advantageous in multiclass classification as it enables both classification 

and assessment of the uncertainty associated with predictions. By setting a decision threshold, 

observations can be assigned to the most probable class, taking into account the predicted 

probabilities. 

On top of that logistic regression is computationally efficient and capable of handling large 

datasets with ease, making it a practical choice for multiclass classification problems involving 

linear relationships. Compared to more complex models, logistic regression does not require 

extensive computational resources and can be trained relatively quickly. 
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2.3 State of the Art FDI in Exploration Rovers 

Research on the state of the art for fault detection and isolation in exploration rovers shows, 

that fault detection and isolation methods for this kind of plant can be based on a combination 

of continuous and discrete state estimation. Continuous state estimation on the one hand deals 

with systems or processes where the state variables can take on any value within a given 

range. Examples of continuous state estimation techniques include Kalman filtering, extended 

Kalman filtering, and particle filtering. These methods are commonly used in applications such 

as tracking systems, navigation systems, and control systems where the state variables 

change continuously over time. Discrete state estimation on the other hand deals with system 

where the state can only take on a finite set of distinct values. The change from one state to 

another is typically modelled as a step function. Discrete state estimation techniques involve 

probabilistic methods to infer the most likely state given the available information.[17]–[19] 

Washington [17] presents an on-board method for continuous state estimation and fault diag-

nosis that uses Kalman filters and Markov-model representation in rovers. Dearden et al. [18] 

also describes particle filtering-based algorithms for state estimation that have been success-

fully demonstrated on diagnosis problems for rovers intended to be used on Martian missions.  

The literature research furthermore suggests that fault detection in planetary rovers specifically 

is a challenging problem due to the tight coupling between the rover's performance and its 

environment. Unlike spacecraft, rover performance depends significantly on environmental in-

teractions. The on-board sensors provide streams of continuous valued data that varies due 

to noise, but also due to the interaction between the rover and its environment. A rover, for 

example, may have a sensor that reports the current drawn by a wheel. In normal operation 

this quantity may vary considerably, increasing when the vehicle is climbing a hill, and de-

creasing on downward slopes. The diagnosis system needs to be able to distinguish a change 

in the current drawn due to the terrain being traversed from a change due to a fault in the 

wheel. [20]  

Traditional model-based diagnosis techniques are generally not suitable for these type of rov-

ers due to the tight coupling between the vehicle’s performance and its environment, whereas 

hybrid diagnosis using particle or Kalman filters is presented as an alternative for continuous 

state estimation as described above [18], [20]. “Traditional approaches operate on discrete 

models and use monitors to translate continuous sensor readings into discrete values. The 

monitors are typically only used once the sensor readings have settled on a consistent value, 

and hence these systems cannot generally diagnose transient events. For many applications, 

e.g. planetary rovers, the complex dynamics of the system make reasoning with a discrete 

model inadequate.[…] To overcome this we need to reason directly with the continuous values 

we receive from sensors: Our model needs to be a hybrid system.” [18] 
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Kalman filters are optimal estimation algorithms. They solve the presented problem optimally 

for given weighting matrices that describe the stochastic properties of the signal. A Kalman 

filter can combine the information of all the sensors and give the optimal estimate of the actual 

position hence it is also known as a sensor fusion algorithm. Kalman filters are used when the 

state shall be estimated from various sensor measurements which are subject to noise. How-

ever, Kalman filters still require a mathematical model of the underlying process on top of the 

sensor measurements.  

Following a different approach, Zanoli et al. [21] presents a data-driven, model-free technique 

based on Principal Components Analysis for fault detection and isolation in an unmanned sur-

face vehicle.  

The papers also discuss the importance of fault tolerance and the detection and diagnosis of 

faults in rovers [22]. Innovative fault detection techniques are proposed, and research chal-

lenges for the introduction of these methods in spacecraft FDIR systems are outlined [6]. The 

papers suggest that particle filtering-based algorithms for state estimation have been success-

fully demonstrated on diagnosis problems in planetary rovers, but there are challenges to make 

particle filters work in this domain, such as coping with high-dimensional continuous state 

spaces and severely constrained computational power [18]. 

In cases where no autonomous recovery is necessary, the isolation of the fault can be done 

on the ground instead of being implemented in the rover’s system, avoiding the need for addi-

tional components, such as processors, on the rover to increase its computational power. In 

situations where enough computational power is available and solar panels provide enough 

power to run the fault identification onboard the rover, this is of course preferable. However, 

when this is not the case, and no autonomous recovery is necessary, stopping and waiting for 

a ground loop is the more obtainable solution. Here, only a fault detection method is strictly 

unavoidable on the rover itself, while everything else can be analyzed after the detection of 

such a fault to conclude and command the optimal recovery actions. 

All of these approaches refer to technical systems that are similar in their requirements, envi-

ronmental conditions and objectives to the FDI system of the MMX rover. However, they also 

differ in some key respects, which is why different methodologies are pursued in this work. 

Firstly, the fault cases to be detected are known and small in numbers. In the context of this 

work, only the specific fault cases of a stuck wheel and a stuck leg must be detected and 

distinguished from each other as well as from the normal state. In the context of this limitation 

and in view of the limited time resources for development, as well as the limitations of compu-

tational power and space on the rover itself, the use of simple approaches is favored. In addi-

tion, due to the lack of a mathematical model of the MMX rover and difficulties in creating such, 

the use of complex approaches such as particle and Kalman filtering is excluded. 
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3 The MMX Rover and the Locomotion Subsystem 

The Locomotion Subsystem (LSS) of the MMX rover represents one of the most integral cor-

nerstones for the success of its extra-terrestrial mission, as it is the primary system that ena-

bles movements and interaction with the surface of Phobos [23]. The LSS is responsible for 

the initial uprighting of the rover after landing, the self-positioning relative to the moon’s sur-

face, aligning the rover for sun-pointing, as well as driving and interacting with the ground. It is 

therefore essential that it is designed to be robust and fail-safe to ensure a successful explo-

ration mission. The Locomotion system's mechanical design is guided by specific mission re-

quirements. These objectives include surviving the impact of landing, supporting uprighting to 

allow unfolding of the solar panels, driving straight, making curves, and executing point turns 

to relocate the rover towards scientifically interesting locations on Phobos. Additionally, the 

system must be able to position and orient instruments and solar panels by adjusting the rov-

er's position relative to the ground. All these functional requirements must be fulfilled while 

adhering to strict mass and volume limitations.  

3.1 Mechanics of the Locomotion System 

The rover's leg modules, shown in Figure 7, are comprised of two separate drivetrains, one for 

the shoulder and the other for the wheel rotation, respectively. In Figure 7, the shoulder module 

is highlighted. This is the location where all actuators and sensors are positioned on the inside 

of the rover chassis side panel. This placement serves to safeguard the electrical equipment 

from the extreme thermal conditions experienced during Phobos' seven earth-hour-long day, 

where temperatures range from -120° Celsius to +30° Celsius. 

 

Figure 7: One locomotion unit of the MMX rover [24] 
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The wheel drivetrain is depicted in Figure 8. It mainly consists of a motor unit, which drives an 

internal running shaft through a bevel gear, which then in turn rotates the wheel through a 

crown gear. The overall ratio of translation from the motor-rotation to the wheel-rotation is 

2227:1, providing “a uniform, yet extremely low traveling velocity […] while at the same time 

maintaining an adequate motor rotational speed” [25].  

It should be noted that the bearings are unlubricated to avoid thermal issues, which in turn 

leads to increased friction during operation. This friction is also increased by the sealings on 

the wheel shaft, which intend to refrain small particles from the outside to cause damage to 

the mechanisms inside the wheel joint. 

 

Figure 8: Wheel drivetrain of the LSS [26] 

Figure 9 shows the similar mechanical setup of the shoulder drivetrain, which is built like a 

shell around the inner drivetrain for the wheel. A second motor unit with a pinion gear output 

shaft (shown in blue) directly drives the crown gear (depicted in green) which is attached to 

the output shaft (illustrated in red). The overall translation ratio of the shoulder drivetrain is the 

same as for the wheel, which is mentioned above. Included in the shoulder unit is also the 

torque sensor that measures the moments exerted onto the output shaft through external 

loads. To protect the inner workings of the shoulder drive mechanism from dust, debris, and 

harsh temperatures, sealings are put into place, which introduce friction to the system. Two 

different position sensors are installed in the shoulder joint, more information on these can be 

found in the next subchapter. 
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Figure 9: Shoulder drivetrain of the LSS [26] 

One side panel of the rover with both legs mounted and locked in the hold-down and release 

mechanism HDRM is shown in Figure 10. 

 

Figure 10: Legs in stowed configuration  
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3.2 Sensors  

The Locomotion Subsystem of the MMX rover includes a variety of different sensors to monitor 

and trace its behavior. These sensors include [27]: 

• one commutation sensor (Hall sensors) per motor 

• one absolute position sensor (potentiometer) per leg  

• one torque sensor per leg  

• current sensors  

• voltage sensors  

• four 3-axis-accelerometers  

• two single-axis-gyroscopes  

• numerous temperature sensors  

• a radiation sensor. 

For the purpose of fault detection and isolation in this system not all of these sensors will be 

used, as some of their measurements would not provide more knowledge of the system’s state 

for the specific fault cases of interest in this study. The focus of the fault analysis will be put on 

the motor position sensors (Hall Sensor and Potentiometer), as well as the torque and current 

sensors. As previously described in 3.1, all electronics, including all sensors, are located inside 

the shoulder module. Consequently, no absolute position sensor is installed for the wheel and 

all other measurements except for the shoulder torque, derive their data from the motors.  

In summary, there are four measured values for the shoulder movement (current, relative po-

sition, absolute position, and torque) and two for the wheel movement (current and relative 

position). In the following passage the used sensors are described briefly. 

Potentiometers 

For the measurement of the absolute position of the shoulder joint, a resistive potentiometer 

of a standard grabber type is installed on the output shaft of the shoulder drivetrain. For closer 

information on the used sensor see [28]. No absolute position of the wheel is measured. 

Hall Sensors 

In each motor a commutation sensor is placed to measure the relative position change since 

the start of measurement. This serves as a redundant position sensor for the shoulder module 

and provides the possibility to track the wheel rotation and therefore also the travelled distance. 

The used hall effect sensors from Infineon [29] are positioned on the backside of the motor 

units. 

Torque Sensor 

Since there is a comparably high friction in the Harmonic Drive gears, caused by the space 

lubrication, the possibility of a current measurement to obtain torque information is not possi-

ble. It is therefore necessary to implement a torque sensor into the shoulder module whose 
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main job is the detection of when the locomotion system gets stuck during operation, for in-

stance between two boulders. The torque sensor is therefore one of the most important sen-

sors in the task of isolating the faults within the LSS caused by external factors. The torque 

sensor integrated into the shoulder module of the locomotion unit is set to very low measurable 

moments due to the low-gravity environment on Phobos and the therefore very low expected 

torques during normal operation. The torque sensor has a measuring range of ±2 Newton-

meters. If this is exceeded the sensor will start to suffer plastic deformation and permanent 

destruction. 

Motor Current Sensors 

On the Power Inverter and Control Board of the Locomotion System a single shunt current 

measurement for each power inverter is provided to supervise the motor currents and detect 

overcurrent conditions. The analogue signals of the motor current measurement are converted 

to digital form by the analogue-to-digital converters (ADCs) present on the board. 

3.3 Fault Scenarios 

As shown in the previous subchapters, the locomotion system is a complex mechanism that 

consists of various components that work together to provide movement. On top of the me-

chanical components described in the last chapters, a significant amount of software and con-

trollers is involved in the execution of movements. Despite best design practices, faults can 

still occur in the LSS that can lead to malfunctions and even system failure. In general, there 

are four main fault types that can occur: sensor faults, software faults, mechanical faults and 

actuator faults. While each type of failure can have unique causes and consequences, for the 

purposes of this investigation, the focus lies specifically on the actuator faults that are caused 

by external loads or jamming. These pose a common risk of failure for locomotion systems on 

rovers that operate in remote environments, such as the Martian moon Phobos.  

In this investigation two specific faults are of interest. Firstly, the rover's legs becoming stuck: 

If rocks or other debris is located between the leg of the rover and its side panel, a rotation of 

the shoulder joint could lead to the leg becoming stuck on the obstacle. Secondly the wheels 

of the MMX rover could become stuck on debris or lodged between boulders while traversing 

the Phobos surface. If a fault in these situations is not detected in time, structural damage to 

the motors, the sensors or the mechanical parts of the rover could be the outcome. It is there-

fore of very high importance to detect these fault situations through thresholds on the sensor 

measurements in real time and initiate a complete stop of movement before they lead to a 

permanent impact on the rover’s ability to maneuver and therefore potentially endanger the 

success of its scientific mission. 
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Given the long communication time between Earth and Phobos, as well as the limited availa-

bility of cameras to provide a complete assessment of the situation, it is also crucial that these 

faults are identifiable through the sensor data collected by the rover itself alone. With this in 

mind, the two different fault scenarios described - a stuck wheel and a stuck leg – are tested 

under various parameter changes, including different rotational speeds and directions on a test 

bench provided for this study, with the goal to establish functional fault detection and isolation 

methods for this specific system. 
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4 Fault Detection and Isolation Methodology 

In this thesis the objective is to answer the question of how to detect an immobilization fault in 

the rover's locomotion unit and how to differentiate on which constructional element the fault 

occurs. This chapter explains the proposed FDI methodology to reach the goal of establishing 

a working fault detection and isolation system. 

Through the FDI methodology two main problems shall be solved. Firstly, to detect a fault in 

the subsystem and secondly to isolate the fault in the subsystem. It is therefore split into the 

two sections seen in Figure 11: fault detection and fault isolation. For the detection of a fault 

onboard the MMX rover, thresholds shall be established on live sensor measurements, which, 

if exceeded, trigger a fault alarm, leading to a complete stop of all movement of the locomotion 

subsystem. After the triggering of such a fault, the recorded measurement data of the seconds 

preceding the exceedance of the threshold are fed through a classifier, which determines from 

the signal patterns which, if any, fault scenario is currently present. This FDI system provides 

the LSS with the possibility to enable effective corrective actions to revert the fault scenario 

and avoid damage to the system itself. The next two subchapters give an insight into how the 

two main cornerstones of this FDI system, the thresholds, and the classifier, are established. 

 

Figure 11: FDI methodology 

 

4.1 Signal-based Approach for Fault Detection 

For fault detection, a signal-based method relying solely on the measurements is chosen. To 

ensure reliable fault detection in the locomotion subsystem, thresholds shall be established for 

specific sensors. The goal of these thresholds is to allow for normal behavioral variations while 

at the same time reliably indicating the presence of a fault. Therefore, they need to be higher 
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than baseline measurement values but low enough to trigger an alarm before causing struc-

tural damage to the rover or sensors.  

For this signal-based detection method, it is thus necessary to investigate the behavior of the 

subsystem in its baseline as well as in its different fault states. Only the comparison of the 

sensor measurements during these different states allows for an appropriate threshold to be 

determined for the different sensors. For this reason, experiments have to be carried out to 

enable a thorough understanding of the subsystem’s behavior. The maxima of the signals from 

a fault-free system can be analyzed and compared to those of a faulty system state. The com-

parison of these values facilitates the definition of an appropriate threshold for each variable, 

that shows changes in behavior in the comparison. The thresholds are then ideally set within 

the range of measured fault values but outside the range of the recorded baseline values. This 

ensures a minimal amount of false positive alarms while ruling out structural damage at the 

same time. Figure 12 shows the approach to establish thresholds, which differentiate between 

no fault and fault scenarios on live sensor measurements.  

 

Figure 12: Fault detection thresholds 

In the case of no fault being detected, the locomotion system remains running, in the event of 

a fault, the system is shut down to avoid damage and the task of isolating the possible fault 

ensues. 

4.2 Data-driven Approach for Fault Identification 

For the task of fault isolation, a data-driven approach is taken. The main goal of this step is, 

as mentioned before, to isolate which fault scenario is affecting the subsystem. For this pur-

pose, measurement samples on all known faults have to be gathered. The symptoms of each 

fault (a series of values from the measurement data) are then used to train a machine learning 

algorithm that is based on the principle of logistic regression. This implies that faults are ex-

perimentally identified through the subsystem's features and stored in what Isermann [30] calls 

an "explicit knowledge base". Therefore, known faults can be recognized by observing the 
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subsystem’s behavior patterns in the future. Once trained on the known fault scenarios, the 

algorithm now works as a classifier that utilizes the historic data from testbench experiments 

to determine the current fault scenario based on the subsystem's past behavior patterns.  

 

Figure 13: Fault isolation classifier 

Figure 13 illustrates the basic principle of the fault isolation approach proposed for the MMX 

rover in this study. All sensor measurements from baseline, as well as fault tests are collected 

and used to train a machine learning algorithm, which is based on logistic regression.  

Logistic regression is a suitable model for the given multiclass classification problem due to its 

ability to handle linear relationships, provide probabilistic predictions, and offer computational 

efficiency. By leveraging the linear associations between variables, logistic regression allows 

for accurate predictions for multiple classes while providing insights into the impact of inde-

pendent variables. The resulting classifier is then able to differentiate between the fault sce-

narios of a stuck leg, a stuck wheel or simply variations in normal operation. 
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5 Experimental Verification 

To successfully be able to implement these fault detection and isolation methods, and provide 

reliable safety measures for the system, a few considerations have to be taken into account. 

Firstly, it is evident that for a threshold to accurately differentiate between slight deviations in 

the normal behavior and an actual stuck fault, it is necessary to thoroughly understand the 

baseline characteristics of the locomotion subsystem and define the possible influence of op-

erating and environmental parameters on the sensor measurements. If the measurement val-

ues of the sensors show a different behavior for changed parameters, the fault detection 

threshold have to be adjusted accordingly, depending on the operating conditions and param-

eters. A series of these must therefore be investigated for their possible impact on the sensor 

readings before the thresholds can confidently be set. These baseline tests are conducted first 

to gain knowledge about the subsystem's behavior under normal operating conditions. During 

these tests no external force or obstacle is applied. 

Subsequently it is also necessary to gain knowledge of the impact an applied obstacle has on 

the sensor measurements. This is essential, as otherwise a clear distinction between normal 

operation and a stuck fault scenario cannot be reliably established. Additionally, there is a 

question about how the position of the blockade impacts the measurement values. This aspect 

is of particular interest, especially with regards to the task of fault isolation. 

In order to clarify the impact of these and other parameters on the locomotion subsystem, and 

thereby tailor and verify the FDI methodology, experiments are conducted on a specifically 

designed testbench. This chapter expounds upon the parameters subjected to investigation 

and outlines the execution of the experiments aimed at assessing their influence. 

5.1 The Testbench Setup 

A customized testbench created at the DLR OP (Oberpfaffenhofen) site is used for the con-

duction of these experiments. The setup consists of one side panel of the rover body chassis 

with one locomotion unit mounted on an interface frame in a horizontal setup (see schematic 

in Figure 14).  



 

21 
 

 

Figure 14: Setup of the testbench hardware –interface frame (1), chassis side panel (2), locomotion unit (3) [26] 

The unit’s motors are controlled, and the sensors read through the Electronics-box (E-box), 

which is in turn connected to a computer through a Spacewire-to-USB connection and also to 

the power supply. The PC provides the possibility to command the movements and retrieve 

the data from the sensors. The E-box is the interface between the software that controls the 

MMX rover and the physical interaction with the environment that takes place through the me-

chanical chassis components as well as the sensors. It also includes the motor controller, on 

which fault detection thresholds can be set on sensor measurements. The power supply pro-

vides the E-box with a constant voltage to power the motors.  

On the testbench the leg of the locomotion unit can be replaced at the shoulder joint by a low 

weight 3D-printed alternative. Figure 15  and Figure 16 show the setup of the testbench with, 

and without the leg of the rover attached.  
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Figure 15: Testbench setup with leg 

 

Figure 16: Testbench setup without leg 
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The torque sensor in use on this testbench is built for low torques in the range of ±2 Nm. The 

mechanical structure of the locomotion unit can withstand higher forces, but it, too is built for 

very low forces and torques during operation. It is therefore strictly necessary to protect the 

sensor, and also the structure of the unit, from too high torques and forces during the experi-

ments. Two safety measures are put into place to ensure an end of the test, if stresses become 

too high.  

The first safety measure is to ensure a motor shutdown if current thresholds are exceeded. 

Secondly, the obstacle is constructed in a fail-safe way. Figure 17 shows the setup of the 

obstacle, which is used to investigate the influence of the obstacle position on the sensor 

measurements by itself (on the right) and in use during the simulation of a stuck leg scenario 

(on the left). To ensure that it does not exert forces higher than allowed on the structure, a 

click-type torque wrench is used, which can be adjusted to maintain the releasing torque at 

2 Nm. The torque wrench is fixed in a metal structure, which can then be clamped to the table 

in the desired position.  

 

Figure 17: Obstacle 

 

5.2 Experiment Parameters and Conduction 

Several different parameters’ influences are investigated through experiments. These param-

eters include the operational settings of the speed of rotation and the direction of rotation of 

each of the motors, as well as the parallel operation of both motors simultaneously. External 

parameters that are expected to have an influence on sensor measurements are the Earth’s 

gravity and the existence and positioning of a potential obstacle, blocking movement of the 

locomotion unit. 

For every experiment parameter setting at least five sets of measurements are created, to 

ensure comparability and diminish statistical errors in the collected data. For the purpose of 
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training the machine learning algorithm to work as a most efficient classifier of the different 

fault scenarios, different parameters are also combined during experiments to provide a wider 

scope of the collected data. 

5.2.1 Direction of Rotation 

The first operational parameter that is expected to have a potential influence on the measure-

ments of the sensors is the direction of rotation of the two motors, namely clockwise (CW) and 

counterclockwise (CCW) direction. If the measurements of motor current and torque are de-

pendent on the rotational direction of operation, fault detection thresholds would also have to 

be set differently for the two different operating modes. Experiments are therefore carried out, 

in which only the parameter of direction is altered. The tests are repeated at various other 

parameter settings to make sure that the observations hold true in all scenarios. 

5.2.2 Speed of Rotation 

Secondly, the operating speed of the motors is a parameter that is expected to have an influ-

ence on the motor current measurements. Also, a possible impact on the torque measure-

ments has to be studied, to adjust thresholds for each sensor, if necessary. 

The brushless DC motor, used in both the shoulder and wheel joint, shows a linear depend-

ency of the current 𝐼 to the speed 𝜔. Since voltage 𝑈, torque 𝑀 and friction 𝐹 can be assumed 

as nearly constant, the relationship between ω and I can be seen as linear, as shown in ( II ).  

 

𝜔 = 𝐼 ∙ (
𝑈

𝑀
+ 𝐹)     ( II ) 

By moving through individual working points of the systems and simultaneously measuring the 

currents, the function describing the dependency can be obtained. Experiments are conducted 

at three different speed settings, shown in Table 1. During these tests not only the current but 

also the torque measurements are recorded and analyzed for possible dependencies. 

 

Table 1: Rotational speed settings 

low medium high 

0.01 
rad

s
 0.03 

rad

s
 0.05 

rad

s
 

 

5.2.3 Inter-motor Influences 

Additionally, the measurements of the sensors with both motors operating in parallel are ex-

amined to investigate their potential effects on each other. A simultaneous activation could 

lead to a drop in voltage and therefore decreased current measurements or an increase in 
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friction and therefore measured torque due to the mechanical coupling of both joints. Both 

motors need to operate in parallel for various movement modes of the MMX rover, such as 

alignment, inching, and uprighting, which require simultaneous activation of shoulder and 

wheel joints. To rule out an influence between the two drives, experiments are carried out, in 

which a parallel operation is commanded and compared to measurements at the same param-

eters with single operation of only one motor. 

5.2.4 Gravity 

The testbench is designed to represent the actual operating conditions during operation as 

closely as possible. However, the target location of deployment on Phobos represents a milli-

gravity environment (0.0057 
m

s2 [31]), which cannot be reproduced on Earth. To minimize the 

effects of the existing gravity, the testbench is set up in a horizontal orientation. To investigate 

the influence of the leg’s weight acting on the mechanics because of the horizontal setup under 

Earth gravity conditions, the leg on the testbench can be replaced by a low weight 3D-printed 

module. The reduction of weight is expected to lower friction in the system, which leads to a 

decreased current and torque measurement. To investigate the impact of this parameter on 

the measurements, a comparative analysis is performed. In one set of experiments, the leg is 

replaced with a 3D-printed placeholder that has only around one tenth of the original weight. 

This allows for a direct comparison between the measurements obtained with the original leg 

and the low-weight alternative. 

5.2.5 Location of Obstacle 

The most important parameter for the task of fault detection and isolation is the existence and 

location of an obstacle in the path of movement of the locomotion unit. The encounter of an 

obstacle represents the faults that are of interest in this thesis. The investigation of the influ-

ence on the measurements of not only the existence of an obstacle, which provides necessary 

insight into the differences to be expected between normal operation under varying operating 

conditions and a stuck fault scenario, but furthermore of the location of the obstacle, which is 

indispensable for effective stuck fault isolation, presents the cornerstone to aligning and vali-

dating the proposed fault detection and isolation methodology. 

Various experiments are carried out to simulate the different expected fault scenarios and be 

able to compare them to baseline tests, with no external blockade. A schematic representation 

of the difference in positions of obstacle encounter is shown in Figure 18. 
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Figure 18: Tested fault scenarios 

The stuck leg scenario is simulated at two different positions: a short distance of 9 cm where 

the leg shaft encountered an obstacle near the shoulder rotation axis, and a further distance 

of 16cm down the shaft. Additionally, experiments are also carried out where one of the wheel 

grousers is jammed by the obstacle, directly in line with the leg axis. These experiments allow 

a comparison of fault scenario measurements with the baseline operation data, in addition to 

an investigation into the different behavior of the system through a change in location of the 

fault. 
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6 Data Analysis and Discussion 

This chapter presents the outcomes of the experiments described in section 5, along with an 

analysis of the implications these findings hold for the suggested FDI methodology. Moreover, 

a discussion regarding the implementation and overall effectiveness of the fault detection and 

isolation system is presented.  

 

6.1 Irregularities in the Torque Sensor 

The torque sensor is located inside the shoulder module and is therefore also influenced by 

friction between gears and bearings. Therefore, no qualitative but only a quantitative statement 

can be made about the measured torque values. To still be able to interpret the values meas-

ured, defined torques are exerted onto the leg and the measured torque is recorded at the 

same time. The force is applied at a defined distance of 20 cm in a perpendicular direction to 

the leg with a spring scale. The torque is then increased in 0.5 𝑁𝑚 intervals up to 2 𝑁𝑚, first in 

counterclockwise, then in clockwise direction. The measurements recorded during that test, 

are shown in Figure 19.  

 

Figure 19: Torque sensor sensitivity 

The course of the graph shows a significant reduction of the measured torques compared to 

the exerted ones. It is also visible that the sensitivity of the sensor is lower in clockwise than 

in the opposite direction. The size of the steps also decreases at higher moments, showing 



 

28 
 

that the sensor is subject to saturation. With the aim of setting a threshold on this value for 

fault detection, it must be ensured that the thresholds do not fall outside this measuring range. 

6.2 Correlations and Dependencies in the Sensor Measurements 

Through experiments, the influence of several parameters is assessed. Possible dependen-

cies of the sensor measurements, on which thresholds shall be set to detect faults, on the 

parameters have to be studied and, if needed, taken into account for setting reliable thresholds. 

The baseline tests, where no obstacle is applied, aim to evaluate the impact of speed and 

direction of rotation on sensor measurements, particularly on the motor currents and torque. 

Additionally, the measurements with two motors operating in parallel are examined to investi-

gate their potential effects on each other. Furthermore, the influence of the weight of the leg 

structure on sensor measurements is explored.  

Impact of the commanded rotational speed and direction 

The first area of interest is the behavior of the current and torque measurements depending 

on the rotational speed and direction of rotation of the motor under examination. Several note-

worthy observations can be made from the collected measurements. Firstly, it can be noted 

that the measured motor current exhibits a linear relationship with the commanded rotational 

speed. This proportional correlation held true for both directions of rotation and can be ob-

served in Figure 20. 

 

Figure 20: Linear relation between current and speed 

This linear dependency of the current on the rotational speed is in accordance with the expec-

tations presented in chapter 5.2.2. A slight difference can be observed between the clockwise 

and counterclockwise measurements, but the magnitude of this difference is smaller than the 
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variance of the measured values. In summary it can therefore be concluded that while the 

current is dependent on the speed, a change of the direction of rotation does not significantly 

alter the motor current. 

Secondly, it can be noted from the variations of speed and rotation direction in the experiments, 

that the measured torque, equal to the current, slightly increases with a gain in rotation speed 

(see Figure 21). This is due to higher friction in the mechanical parts at higher levels of rota-

tional speed. Additionally, a change in direction alters the sign of the measurements, with gen-

erally lower amplitudes in counterclockwise test cases compared to their clockwise equiva-

lents. This relationship can also be seen in Figure 21. 

 

 

Figure 21: Average torque for different shoulder speeds 

 

Inter-Motor Influences 

Another parameter of interest is the potential mutual influence between the two motors in the 

rover locomotion unit. Both drives need to operate in parallel for various movement modes of 

the MMX rover, such as alignment, inching, and uprighting, which require simultaneous acti-

vation of shoulder and wheel joints. The next question to be answered is therefore whether the 

current or torque of one motor is influenced by the activation and operation of the other motor. 

The results of the experiment investigating the system’s behavior for a change in this param-

eter can be observed in Figure 22. 
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Figure 22: Average shoulder current for different wheel speeds 

Figure 22 shows the average current of the shoulder motor along with its standard deviation 

for the seven different operation modes of the wheel motor. No change in parameter on the 

shoulder motor is conducted over the course of these experiments. The shoulder motor current 

shows no drop or other non-statistical change across the various experiments, indicating that 

the activation or operation of the wheel motor does not influence the current measurements of 

the shoulder motor. Likewise, the same effect is observed in the opposite direction: the activa-

tion of the shoulder motor does not impact the wheel motor, as can be seen in Figure 23. 

 

Figure 23: Average wheel current for different shoulder speeds 
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In the same manner as the motor currents, the torque measured on the shoulder joint remains 

independent of the speed or activation of the wheel motor. In Figure 24 the average torque of 

the shoulder motor for different speed and direction parameters of both motors can be seen. 

All points of a single color represent constant parameters of the shoulder motor, while different 

colors represent different speed and directions on the shoulder drive. On the horizontal axis, 

the modes of the wheel motor can be seen. While there is no trend visible in the horizontal 

direction for any color (therefore no dependency of the torque on the other motor), the stacking 

of the colors represents the dependency of the torque on the speed and direction of the same 

motor as mentioned before.  

 

Figure 24: Average torque of the shoulder motor 

 

Influence of gravity and the weight of the leg structure on the shoulder motor 

Lastly, the influence of the weight of the leg structure in Earth gravity on the measurements of 

motor currents and torque is examined. The result of the comparative analysis is shown in 

Table 2. “No leg” represents the experiment set with the low weight 3D-printed module, while 

“with leg” refers to the set of experiments with the original leg of the locomotion unit attached. 

The direct comparison between the two sets of tests shows that both the current and the torque 

sensor show lower measurement values with the weight of the leg removed, while the standard 

deviation (SD) remains virtually unchanged. The current decreases by around 2%, the torque 

by almost 8% in its mean value. 

Table 2: Influence of the leg structure on the measurements 

 
Mean  

Current 

Mean  

Torque 

SD  

Current 

SD  

Torque 

Difference in 

Mean Cur-

rent in % 

Difference in 

Mean Torque 

in % 

No leg 0.179 A 139.9 mNm 0.0116 A 33.78 mNm 
- 2.2 - 7.7 

With leg 0.183 A 151.6 mNm 0.0171 A 38.32 mNm 
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These decreases are shown in more detail in Figure 25 and Figure 26 

 

Figure 25: Shoulder torque with (down) and without (up) leg structure 

 

Figure 26: Shoulder motor current with (down) and without (up) leg structure 

This finding suggests that the weight of the leg structure in Earth gravity introduces anticipated 

deviations and distortions in the measured data, compared to the expected conditions on Pho-

bos. Since the values are higher when using the attached leg structure, the thresholds to detect 
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faults in these sensors need to be reduced by the mentioned above percentage to pertain the 

same effect. Despite the influence of gravity on this testbench, the experimental setup involving 

the horizontal configuration still provides the most accurate reflection of the unit’s behavior 

under the low-gravity condition of Phobos. 

Oscillation of the torque during wheel movements 

The presence of oscillations in the torque measurements when only the wheel motor is acti-

vated is observed during the experiments. An exemplary timeline of torque and current meas-

urements where this can be seen is given in Figure 27. The frequency of these oscillations 

corresponds to the rotation frequency of the wheel drive train before the last gear stage. The 

small peaks visible along the curve correspond to the number of teeth on the gearwheel driving 

the crown gear. This indicates that the oscillation is caused by an imbalance in the wheel 

resulting in a change in torque, dependent on the position of the wheel. Small torque peaks 

are also visible, which represent the additional torque during the meshing of the gear teeth. 

 

Figure 27: Torque oscillation 

 

Influence of the obstacle on the sensor measurements 

The boxplots shown below in Figure 28 depict all maximum values recorded during clockwise 

baseline testing (144 tests) and fault testing (255 tests). The left figure shows the boxplot of all 

torque maxima that are reached during clockwise baseline testing. It can be noted that the 

maximum value is at 𝑇𝑚𝑎𝑥 = 230.6 mNm. In the same boxplot for clockwise fault scenarios, 

shown on the left, the maximum torque exceeds 450 mNm. As expected, an external applica-

tion of an obstacle does therefore lead to a significant increase in torque. 
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Figure 28: Torque maxima reached during baseline (left) and fault testing (right), clockwise direction 

The same effect is visible in the counterclockwise torque measurements (see Figure 29). How-

ever, in this case, the minima have to be evaluated, since the torque is measured below zero 

during counterclockwise motion. It is shown that the minimum value reached is at 𝑇𝑚𝑖𝑛 =

−230.8 mNm. In the same boxplot for the counterclockwise fault scenarios the minimum torque 

falls below −600 mNm.  

 

 

Figure 29: Torque minima for baseline (left) and fault (right) testing, counterclockwise 

 

Figure 30 shows the maximal measurements values of the shoulder motor current during base-

line tests and fault tests. Here it can be seen that there are outliers in the maximal currents 

due to oscillations, caused by high noise on the current sensors. Even though the outliers are 

at around the same level, it is shown in the boxplots, that on average, the maximal current is 

higher during fault testing, than during experiments with no obstacle placement. 
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Figure 30: Shoulder motor current maxima during baseline (left) and fault (right) testing 

Figure 31 shows the maxima of the wheel current sensor during fault-free and fault scenario 

testing. Even though the average maximum current is lower in the experiments with an obsta-

cle, the boxplots do show a higher maximum current reached during these scenarios compared 

to baseline tests. 

 

Figure 31: Wheel motor current maxima during baseline (left) and fault (right) testing 

 

6.3 Consequences for the Detection of a Fault 

The detection of a fault by a signal-based method through thresholds on the motor current and 

torque sensor measurements is reliant on a thorough understanding of the sensors’ behavior 

during changes of parameters. The conclusions drawn from the experiments investigating the 

influence of certain important parameters consequently have an impact on the design of the 

thresholds to detect faulty situations. These conclusions and their implications and conse-

quences for the FDI methodology are described more closely hereinafter. 
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From the experiments that investigate the influence of the parameter of speed it is concluded 

that an increase of speed increases the motor current as well as the torque sensor measure-

ment values. A threshold on these sensors as per the fault detection methodology would there-

fore need to be speed dependent or otherwise set higher than the values measured at the 

highest speed to avoid false alarms. The study of the parameter of rotation direction shows 

that while the current measurements suggest no significant dependency, the torque sensor 

switches to negative values for counterclockwise motion and furthermore decreases in value 

compared to clockwise rotations. This hence requires the torque sensor to have two thresholds 

installed, one for each direction of rotation respectively. The parallel operation of both motors 

shows no change in the measurement values, this parameter does therefore not need to be 

considered for the detection of a fault by thresholds. In comparison, the parameter of gravity 

does cause a reduction of sensor measurement values. In order to still pertain the same effect, 

the thresholds need to therefore be reduced by the observed percentage. The oscillations in 

the wheel torque sensors do not have an influence on the necessary height of the thresholds, 

since they only occur at non-operation of the shoulder module and are too small in amplitude 

to trigger a false alarm.  

To successfully implement a fault detection system by setting thresholds, the last important 

parameter to determine the height of these is the presence of a fault and the influence this has 

on the sensors. If the thresholds are set too low, false positive alarms will unnecessarily halt 

mission progress. If on the other hand the thresholds are set too high, alarms could be raised 

too late, potentially after sustaining structural damage or reaching an irrecoverable situation. 

To find adequate values for the thresholds both data from the baseline tests, as well as all fault 

scenarios need to be considered. Ideally, the thresholds shall be set higher than the maximum 

values recorded during all parameters variated in baseline testing, with an additional margin 

to avoid false alarms, yet lower than the lowest maximum values reached during the fault test-

ing to ensure fault detection in time to rule out structural damage. However, considering the 

maximum values recorded during testing, summarized in Table 3, it is not possible to set the 

thresholds by that logic alone, since minimal fault peak measurements are lower than maxi-

mum baseline peak measurements. The highest torque peak recorded during the baseline 

tests Tbase exceeds the lowest maximum torque peak measured during the fault scenario tests 

Tfault. The same effect can be seen with the currents of the shoulder motor Is and the wheel 

motor Iw. 

Table 3: Maximum values of baseline and fault tests 

𝐦𝐚𝐱(𝐦𝐚𝐱 𝑻𝒃𝒂𝒔𝒆) 𝐦𝐢𝐧(𝐦𝐚𝐱 𝑻𝒇𝒂𝒖𝒍𝒕) 𝐦𝐚𝐱(𝐦𝐚𝐱 𝑰𝒔,𝒃𝒂𝒔𝒆) 𝐦𝐢𝐧(𝐦𝐚𝐱 𝑰𝒔,𝒇𝒂𝒖𝒍𝒕) 𝐦𝐚𝐱(𝐦𝐚𝐱 𝑰𝒘,𝒃𝒂𝒔𝒆) 𝐦𝐢𝐧(𝐦𝐚𝐱 𝑰𝒘,𝒇𝒂𝒖𝒍𝒕) 

230.6 mNm 110 mNm 473.1 mA 233.1mA 397.1 mA 175.9mA 

To minimize the number of false positive alarms during operation, the thresholds shall still be 

set higher than the maximum values reached during nominal operation. The nature of a fault 
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caused by actuator blockage is progressive over time, so a higher threshold results in a de-

layed detection, rather than a failure to recognize the fault in general. The only limitation to this 

approach is the potential structural damage occurring after a certain amount of force is exerted 

on the system. Since no such damage occurred during testing, it is safe to assume that the 

maxima reached during fault testing are within an acceptable range of current and torque.  

The threshold value for the torque in clockwise direction is therefore set to 𝑦𝑇,𝑐𝑤 = 240 mNm, 

higher than the highest baseline torque value at 230.6 mNm. Following the same logic, the 

threshold value for the torque in counterclockwise direction is set lower than the lowest base-

line test minimum to 𝑦𝑇,𝑐𝑐𝑤 = −240 mNm to indicate non-nominal behavior.  

Additionally, a threshold for the motor currents has to be set. To avoid setting a threshold that 

is too low and triggers unnecessary false positive alarms, while also preventing structural dam-

age, the threshold value for the shoulder current is set above the Q3 line in the baseline values, 

but below the maximum measurements from the fault tests. The recommended threshold for 

the shoulder current is 𝑦𝑗𝑛𝑡 = 360 mA.  

To further minimize false positive alarms, the threshold shall be implemented in a way that 

triggers an alarm only, when the threshold is exceeded by three or more consecutive values. 

This approach ensures that single peaks resulting from noise are not considered as faults by 

the system. An example of a single peak in oscillation, causing a breach of the shoulder motor 

current threshold during a test without fault, is shown in Figure 32. 

 

Figure 32: Current oscillations exceeding the threshold 

The same principle for setting the threshold is applied to the wheel motor currents. The Q3 

value of the baseline maximal wheel currents is 373 mA, while the maximum reached during 

fault testing is 516 mA. The recommended threshold is therefore set to 𝑦𝑤ℎ𝑙 = 380 mA. Similar 

to the shoulder current threshold, this limit shall only be triggered by three or more consecutive 

exceedances to avoid noise peaks triggering false positive alarms. 

The defined thresholds in comparison to measurement values are illustrated in Figure 33, Fig-

ure 34 and Figure 35 for the baseline, stuck leg and stuck wheel scenarios respectively. It can 
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be observed that the torque proves to be the most reliable indicator for detecting fault scenarios 

as it responds the fastest to external loads.  

Figure 33 shows the three sensor measurements in three different colors, with their respective 

thresholds in dotted lines in the corresponding color. In this experiment no obstacle is placed 

in the path of the leg or wheel and no threshold is exceeded accordingly. 

 

 

Figure 33: Baseline with thresholds 

In Figure 34, the shoulder is moved in a counterclockwise motion and the obstacle is placed 

in the way of the leg, leading to the exceeding of the minimal torque threshold in that graph. 

The shoulder current also shows a linear rising, although much more subtle. 

 

Figure 34: Thresholds during stuck leg 

Figure 35 depicts the measurements from a stuck wheel experiment. Again, the torque sensor 

is first in detecting the fault, although both current sensors show an increase that would inevi-

tably lead to an exceeded threshold on both sensors in case the torque sensor does not react. 
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Figure 35: Thresholds during stuck wheel 

These figures show the effectiveness of the set thresholds in detecting a stuck fault, along with 

their ability to tolerate oscillations and small deviations in the sensor measurements due to 

changing operating conditions. 

6.4 Results on the Differentiation between the Fault Scenarios 

Figure 36 shows a graphical representation of the distribution of tests conducted for the differ-

ent scenarios and parameters to enhance understanding of the collected measurements. In 

total, equal amounts of every speed and direction setting are tested. The direction label “None” 

represents a test, where the motor is not operated at all, the same applies for the speed label 

“0”. In total, more than 800 tests are conducted for the baseline, stuck leg, and stuck wheel 

scenarios at different parameters. 

 

   

Figure 36: Test distribution 

 

The data collected during testing serves as the foundation for identifying a fault’s characteris-

tics and distinguishing between different fault scenarios with the help of machine learning. All 

test data, including baseline, stuck leg and stuck wheel tests are consolidated into a single 

master file. This file contains metadata (test type, test parameters) and descriptive statistics of 
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the test measurements. Subsequently, the master file undergoes processing. During this pro-

cess any categorical data, such as the direction, is converted into a numerical value to facilitate 

further processing by the machine learning algorithm. The algorithm used is based on the 

statistical method of logistic regression, as explained in chapter 2.2.2, meaning it uses the 

features, such as minimum, maximum or mean values from the input data to determine which 

of the discrete outcomes: baseline, stuck leg or stuck wheel apply to the specific dataset. 

As mentioned before, the algorithm is trained using various characteristics of the test data, 

including mean, variance, standard deviation, minimum, maximum, median, skewness, and 

kurtosis. The latter two are explained in Table 4. 

Table 4: Characteristic features of the data 

Characteristic Explanation 

Skewness 

Skewness is a measure that assesses the asymmetry or lack of sym-

metry in a dataset's distribution. It provides information about the ex-

tent, to which the data deviates from a symmetrical bell-shaped curve, 

indicating the presence and direction of skewness. 

Kurtosis 

Kurtosis is a statistical measure that describes the shape of a distri-

bution and provides insights into the tails of the distribution. It quanti-

fies the level of peaked-ness or flatness in comparison to a normal 

distribution. 

 

To help the algorithm converge, a scaler is applied to the numerical features. This ensures that 

every numerical value in the final master file is comprised in a range between -1 and 1. The 

data is then randomly divided into training and testing sets in an 80:20 ratio. The logistic re-

gression algorithm is then trained on the training set and evaluated using cross-validation on 

the testing set. The optimal parameters for the algorithm are explored and refined through a 

grid search where every combination of a finite set of logistic regression hyperparameter alter-

natives are trained. 

The initial analysis shows an 86% accuracy in predicting specific fault scenarios, irrespective 

of motor speed, direction, or mode combination. The algorithm's performance in identifying the 

fault is evaluated through the use of a confusion matrix, shown in Figure 37, providing a com-

prehensive overview of the testing results. The matrix displays the number of correct identifi-

cations on the diagonal axis, while all other values represent false predictions. The values in 

the top row, outside the diagonal, indicate the number of false positive predictions, which were 

found to be low (three out of 166 or 1.8%), demonstrating the algorithm's ability to correctly 

identify normal system behavior in the absence of faults. 
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Figure 37: Confusion matrix 

It is worth noting that the highest number of false identifications occur within the same type of 

fault scenario, with the only distinguishing factor being the distance of the force from the shoul-

der along the leg (highlighted in the figure above). To address this, a rerun of the algorithm 

focuses only on classifying the differences between baseline, stuck wheel and stuck leg sce-

narios without excluding information about motor speed and direction from the training sam-

ples. Figure 38 presents the resulting new confusion matrix. An improvement can be seen in 

the classification of fault scenarios, while the false positive rate remains relatively stable com-

pared to the first run.  
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Figure 38: Improved confusion matrix with two fault scenarios 

Table 5 shows the output of the algorithm after the second run. The four columns give a more 

thorough understanding of how well the model fits the data. Precision gives the percentage of 

correct positive predictions relative to total positive predictions (this includes true positives TP 

and false positives FP) as shown in ( III ).  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 ( III ) 

It shows the ability of the model to differentiate one scenario from all the others. It does not 

however give an idea of whether all samples corresponding to that class have been identified 

or not. In contrast to this there is the recall parameter. Recall, also known as the true positive 

rate, shows the percentage of correct positive predictions compared to the number of actual 

positives: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 ( IV ) 

To merge information from both of these parameters, the F1-score is introduced. The F1-score 

is the harmonic mean of precision and recall and gives a more thorough understanding of the 

goodness of fit of the algorithm. 

𝐹1-𝑠𝑐𝑜𝑟𝑒 = 2 ∙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 ( V ) 

Support, as the last column in the table, simply describes the number of samples for each 

class. Lastly, at the bottom of the table the accuracy of the algorithm is shown. It is the number 

of correct predictions compared to all predictions made in this run.  
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The overall accuracy of the algorithm improves from 86% in the initial training to 95% in the 

second run (compare accuracy in Table 5). This improvement can be attributed to the now 

additional information on the modes of the motors, which, as shown in section 6.2, have an 

impact on the measurements and the logistic regression parameters.  

Table 5: Classification report 

 Precision Recall F1-score  Support 

Baseline 1.00 0.96 0.98 54 

Stuck leg 0.94 0.97 0.95 86 

Stuck wheel 0.88 0.88 0.88 26 

Accuracy   0.95 166 

The accuracy could be improved further by increasing the number of historic datasets used to 

train the classifier. Especially a higher number of stuck wheel data sets would enhance the 

classification, since for this class the support value is relatively low. Whether an improvement 

is necessary and warrants the extra resources this necessitates is dependent on the require-

ments defined for the FDI system. Since no particular requirements were specified, the demon-

strated classifier, which shows a promising 95% accuracy, presents the best solution for the 

given problem of fault isolation within the scope of this thesis. 

 

6.5 Weaknesses and Problems in the Investigation 

This subchapter aims to discuss the weaknesses and problems encountered during the inves-

tigation, highlighting important factors that may have influenced the results and conclusions. 

The identified issues include the non-discrete design of the end stop, limitations in conducting 

stuck wheel tests, missing values for different rotation directions, and the omission of current 

changes due to an up- or downhill path. Understanding these weaknesses is crucial for inter-

preting the findings accurately and recognizing areas for further improvement in future studies. 

Firstly, a significant weakness of the investigation is the design of the end stop.  

With the used fail-safe version of an obstacle, compared to an unyielding version, a few major 

differences have to be considered. Firstly, the wrench does not pose an immovable obstacle, 

the torque limit inside the wrench is set by a counteracting spring force, which allows rotational 

movement before the internal mechanism jumps to the next position, when the force on the 

driving head exceeds the spring force. Furthermore, because of the spring and friction included 

in the reaction of the obstacle, the progression of the torque over the distance is not constant 

and not identical on every run. This lack of consistency and accuracy in the obtained values 
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can introduce uncertainty and potential errors in the torque measurements, consequently com-

promising the reliability and validity of the torque-related data. Thus, caution must be exercised 

when interpreting the findings. 

Secondly, stuck wheel tests were conducted at the furthest point of the wheel from the shoul-

der, resulting in limited changes in the wheel motor current. The primary reason behind this 

limitation is that the torque triggers before the wheel motor current is significantly affected. This 

poses a challenge in differentiating between a stuck wheel and a stuck leg fault, especially 

when the leg is stuck close to the wheel. To address this issue, it is recommended to repeat 

the tests at different wheel positions, particularly those exerting a lower torque on the shoulder. 

By doing so, more discernible changes in the wheel motor current can be observed, before the 

shoulder torque sensor registers high loads, leading to better differentiation between a stuck 

wheel and a stuck leg. 

Another limitation of the investigation is the absence of tests conducted for different rotation 

directions of the wheel and motor during stuck wheel testing. Due to constraints in the experi-

mental setup, it was not possible to carry out these tests. This omission may restrict the gen-

eralizability of the findings. To enhance the comprehensiveness of the dataset and facilitate a 

thorough analysis of the system's performance under varying conditions, future studies should 

consider including stuck wheel tests for different rotation directions of both motors. 

Lastly, the experiments in this study did not account for current and torque changes that may 

occur when traversing uphill and downhill paths. These maneuvers can exert additional strain 

on the system, leading to variations in torque and current values, and ultimately affecting the 

overall performance. 
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7 Conclusion 

In conclusion, this scientific work focused on developing a method to detect and isolate stuck 

faults in the MMX leg module. Through comprehensive data analysis and statistical tech-

niques, correlations, dependencies, and influences within the sensor measurements were in-

vestigated under various operating conditions. 

The analysis first focused on data statistics, revealing the distribution of tests conducted for 

different scenarios and parameters. Exploring correlations and dependencies among sensor 

measurements provided insights into the behavior of motor currents and torque in relation to 

rotational speed and direction. The findings showed a linear relationship between motor cur-

rent and commanded rotational speed, while the torque measurements exhibited a slight de-

pendence on speed and a change in amplitude and sign with a change in rotation direction. 

Furthermore, the study examined the influence of the two motors on each other, finding that 

the activation or operation of one motor did not significantly affect the current or torque meas-

urements of the other motor. Moreover, the weight of the leg structure was found to have an 

impact on motor currents and torque, necessitating considerations for the influence of gravity 

during analysis and the adjustment of thresholds accordingly. 

During the analysis, an interesting observation was made regarding the presence of torque 

oscillation during wheel movements, indicating an imbalance in the wheel and small torque 

peaks during gear meshing.  

Regarding fault detection, the study explored different approaches to establish appropriate 

threshold values for identifying faults in the subsystem. An initially considered simplified model 

based on the current-speed relationship proved inadequate as it did not capture the torque, 

the primary indicator of faults. Instead, a signal-based approach was adopted, considering 

baseline tests and fault scenarios to determine threshold values that effectively detect faults 

without generating excessive false alarms. 

To differentiate between fault scenarios, a machine learning algorithm was utilized, achieving 

a 95% accuracy in predicting specific fault scenarios with the given information on motor speed 

and direction. The algorithm demonstrated a low rate of false positives and no false negatives, 

highlighting its effectiveness in identifying normal leg behavior in the absence of faults.  

In summary, this study offered valuable insights into fault detection and isolation in the MMX 

leg module. The analysis of correlations, dependencies, and influences within sensor meas-

urements, coupled with the implementation of a machine learning algorithm, provides a frame-

work for identifying and classifying faults, contributing to the reliability and performance of the 

Locomotion subsystem in the MMX Rover. 

However, it is important to acknowledge the weaknesses and areas for improvement in future 

investigations. Limitations, such as the non-discrete design of the end stop, constraints in con-

ducting stuck wheel tests, missing values for different rotation directions, and the omission of 
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current changes due to uneven paths highlight the need for further development. Future stud-

ies should aim to utilize an obstacle with more realistic characteristics, explore alternative stuck 

wheel testing positions, include stuck wheel tests for different rotation directions, and consider 

the impact of up- and downhill paths on the measurements to enhance the accuracy and com-

prehensiveness of the investigation. 
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