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Abstract
The continuing drive towards digitization in manufacturing leads to an increasing number of digital twins for monitoring 
and controlling all kinds of processes. While these capture crucial data of all individual steps and allow for analysis and 
optimization, more often than not the underlying models are confined to individual systems or organizations. This hinders 
data exchange, especially across institutional borders and thus represents an important barrier for economic success. Similar 
challenges in the scientific community led to the emergence of the FAIR principles (Findable, Accessible, Interoperable, and 
Reusable) as guidelines towards a sustainable data landscape. Despite the growing presence within academia, their transfer to 
industry has not yet received similar attention. We argue that the existing efforts and experiences in science can be exploited 
to address current data management challenges in industry as well. An improved data exchange within organizations and 
beyond can not just lower costs, but also opens up new opportunities ranging from discovering new suppliers or partners to 
improving existing value chains.
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1 Introduction

Digital twins are an essential building block in the digitiza‑
tion of all kind of manufacturing processes. They are “a 
complete virtual description of a physical product that is 
accurate to both micro and macro level” [1]. This connec‑
tion between the physical and virtual worlds is bidirectional: 
Changes to the physical object get represented in its digital 
counterpart and the digital twin can act as a surrogate to 
control the physical object. While the precise definition of 
digital twins varies between authors, their importance for 
manufacturing processes is well documented [1, 2].

In the following, we will consider applications of digital 
twins in the (aero)space domain, like [3–5]. In particular, 
we will focus on general data management aspects that are 
independent of concrete implementations or use cases. For 

the most part, we will also omit the aspects of digital twins 
that allow to directly control the physical world in form of, 
e.g., machines or any other actuators.

The basis of all digital twins is data. But this data does 
not originate from a single, homogeneous source. Instead, a 
multitude of sources contribute bits and pieces to the final 
digital twin. On a macro level, all partners along the value 
chain may add to the description of a product. Here, we 
see information like specifications of different components 
of the final product or the chain of suppliers involved in 
creating it. On the other hand, there is the micro level that 
includes each and every machine that is involved in the 
manufacturing process. This may add data about the envi‑
ronment and parameters during production or the properties 
of the final product with respect to set tolerance limits. This 
includes test results of the final product and data about the 
test environment.

The exact scope and amount of data collected will vary 
between use cases. Nevertheless, there is one important 
aspect to all of them: The growing number of data sources 
leads to quite some challenges due to heterogeneity on all 
levels. These become even more pressing when integrating 
digital twins that were designed for different purposes and 
were not intended to be combined.
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Science suffers from similar challenges: Every moment, 
a plethora of projects generates a sheer endless amount of 
data. An ideal, albeit currently rather unrealistic, approach 
would be to evaluate all existing datasets before setting up 
new, costly projects for data collection. However, in practice, 
the data volume alone makes it impossible to conduct an 
exhaustive search. Another major obstacle to data reuse is 
the heterogeneity both on data and on metadata level. Count‑
less coding schemes are in use and most domains are quite 
far from reaching consensus on how to structure or describe 
their data. This impedes not only human use, but extends to 
any automated approach to exploit this wealth of data.

As a response, the FAIR principles (Findable, Accessi‑
ble, Interoperable, and Reusable) have emerged in science 
as guidelines towards a sustainable data landscape [6]. At 
the core of their current implementation efforts is the use of 
Semantic Web technologies on all levels of data manage‑
ment. Open, controlled vocabularies provide the concepts 
needed to describe both data and metadata1. Those con‑
cepts can be augmented with additional descriptions and 
other information and they can be connected to one another, 
forming the Linked Data Graph [13]. As a result, (meta)data 
is not isolated anymore, but is now contextualized. Both 
human and machine users will have an easier time to under‑
stand (meta)data and to relate given data annotations with 
the task at hand.

While these criteria are more and more embraced within 
the scientific community, also in the context of digital twins 
[14], their transfer to industry has not yet received similar 
attention. Exceptions start to emerge, e.g., in a blog post 
about FAIR principles for a digital twin that is “a virtual rep‑
resentation of the data of something in the real world” [15] 
or with the recent creation of a Semantic Industry (SemInd) 
W3C Community Group [16].

At this point, we also want to correct a common miscon‑
ception: FAIR is not equivalent to open! While it is true that 
in science there is also a strong drive towards Open Sci‑
ence, the concepts involved are independent of each other. 
Implementing the FAIR principles in closed environments 
like companies will already yield considerable benefits for 
these organizations. Similarly, the restricted data exchange 
with external partners will be eased substantially without 
compromising intellectual property any more than by tra‑
ditional means.

The remainder of this paper is organized as follows: First, 
in Sect. 2, we will expand on the FAIR principles and out‑
line their potential benefits in an industry context. Later in 
Sect. 3, we discuss the way forward, which steps need to be 
taken, and which challenges remain. Finally, we give a brief 
conclusion (Sect. 4) and outlook (Sect. 5).

2  FAIR in an industrial context

In the following, we will explain each of the FAIR principles 
based on their definition in [6] and describe their potential 
impact in the (aero)space manufacturing domain. We will 
focus on digital twins in particular, but the core ideas are 
transferable to all industrial datasets in a similar fashion.

2.1  Findable

The first principle is findability—it is the basis for the other 
three. Data can neither be accessed, nor connected (inter‑
operability), nor reused, if it is not found in the first place. 
When designing, for example, a spacecraft, engineers want 
to find components by manufacturers that fit specific needs, 
e.g., a battery with a particular capacity, maximum mass, 
and maximum size. Due to the rise of Model‑based Systems 
Engineering (MBSE) [17], more and more machine‑actiona‑
ble models of spacecrafts themselves exist, usually including 
requirements for the different components being used.

So, there is a machine‑actionable model of the “search 
request”. However, the descriptions of manufacturable com‑
ponents are still only available in form of PDF data sheets. 
While these are accessible to human engineers, they are 
almost entirely opaque to automated systems. It requires 
substantial efforts to extract the contained information and 
create a machine‑actionable description (see, e.g., [18]).

On the other hand, manufacturers might also want to find 
customers—and/or data about the needs of these potential 
customers. What are their requirements, especially those that 
are currently not met by the manufacturer or their products? 
Other aspects, besides finding products, manufacturers, and 
customers, are the quality and reliability of data. How can 
someone be sure that the product information they did find 
is the most recent? And actually from the manufacturer and 
not from someone else? Some product or product lines also 
change over time, so is this thing with slightly different 
parameters still the same product or a different one?

All of these questions concern different aspects of find‑
ability in this context.

2.2  Accessible

As mentioned above, it would be desirable to get machine‑
actionable data directly from manufacturers, not just PDF 

1 The Semantic Web and by extension knowledge graphs are an idea 
to make knowledge accessible to automated use by machines [7, 
8]. Current implementations reuse Web technologies such as URLs 
for referencing [9] and HTTP for communication [10]. In addition, 
RDF and its serializations are used to store information [11] while 
SPARQL is used to query it [12]. This provides a set of references 
(URLs) to well‑defined concepts that can be used to semantically 
annotate (meta)data, replacing free‑text annotations in many places 
and scenarios.
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data sheets that need to be processed before being usable. 
This concerns also the accessibility of data—it should be 
present in a usable format, preferably one that also the tools 
consuming the data can directly understand without further 
conversions needed. Closed, proprietary file and exchange 
formats are a main barrier here. Almost always, they result 
in a closed ecosystem and confine their users to a rather 
restricted set of tools to use, a so called “vendor lock‑in”. 
While this favors a few software (and sometimes hardware) 
vendors, it slows innovation and advancement in the industry 
as a whole.

Another aspect is authorization, since maybe not all data 
should be available for everyone. As mentioned above: FAIR 
does not imply Open Data or free access to data. Datasets 
can be described in a FAIR way while access might still be 
restricted. The restriction can either only affect the access 
to the data itself or already apply to accessing the meta‑
data: If a person is not authorized they might not even learn 
about the existence of the dataset as already this information 
might provide some insight and may violate the intellectual 
property of its owner. In all such cases, FAIR requires the 
description of any restrictions to be available in a machine‑
actionable format. Further, the data access protocol has to 
be able to support authentication and authorization. Both 
demands combined allow to both document and enforce 
access restrictions for sensitive data.

A last aspect of accessibility concerns times when data 
is not available anymore. This may, e.g., be due to the cost 
of storing it or due to a newer version superseding a dataset. 
This happens, for example, with newer versions of techni‑
cal data sheets or if products are no longer produced and 
therefore the respective data sheets become invalid. In any 
case, the metadata for all datasets should be maintained—
including a statement that this dataset is no longer available 
and possibly a reason for its disappearance. Users looking 
for a dataset are immediately notified of the situation and do 
not invest time in trying to find something that is no longer 
there.

2.3  Interoperable

One aspect of Findability was to identify a fitting product, 
based on requirements. For this, one does not only have to 
actually find data about products, but this also has to be 
compared to requirements—so, interoperability, both among 
product descriptions and with the initial requirements, is 
needed. In practise, this affects multiple levels. First, all 
the data formats must be understandable and compatible 
(preferably, they are all the same); then, the product param‑
eters must also be comparable semantically. For semantic 
comparability, it must be clear if, for example, “weight” 
and “mass” refer to the same physical property; and if they 
always include or exclude the weight of an insulation layer, 

or packaging, or anything else. It must also be clear, in 
which unit the value of a property is given. In the example 
of weight and mass: Is it kilogram, gram, pounds, ounces,... 
something else? To enable interoperability, the units must 
first be known and then can be converted or unified. A 
few examples of where mistakes in the understanding of 
units can lead to when building spacecraft, can be found in 
NASA’s Space Math series [19].

Even if we look just at MBSE tools and their underly‑
ing data models—which we classified as already machine‑
actionable—these models are usually not interoperable, even 
if they are based on the same standards and developed by 
agencies like DLR [20] and ESA [21]. Therefore, informa‑
tion exchange is again often carried out via other means like 
documents that are intended for human use.

2.4  Reusable

In the space domain, engineers do not only want to reuse the 
data and the virtual twin by reusing a previous model, but 
it is also relevant to reuse or “use again” particular physical 
components—so, this also affects the physical twin. During 
a mission, data about the alteration, aging, errors, break‑
down, etc. of components is recorded. This data may inform 
decisions in future projects on which components to use for 
particular requirements. However, this requires data in a 
shape that can actually be reused — including proper docu‑
mentation of all relevant conditions at the time of record‑
ing. So, besides the other criteria discussed so far (findable, 
accessible, interoperable), the reusability of a component is 
also based on the reusability of the underlying data.

The reusability of data also leads to other benefits: Mod‑
els could be reused to save time. If missions are overall 
similar, the basic components of a satellite stay the same; 
sometimes there is also the “2.0” version of a mission. Due 
to the long mission and therefore data life cycles, modeling 
techniques and/or tools being used have changed in the 
meantime. Without detailed descriptions of data character‑
istics, history, and other relevant attributes, previous models 
are rendered no longer usable. Even a migration to the cur‑
rent environment might not be possible anymore (or would 
require prohibitive resources), as the necessary knowledge of 
a model’s inner workings has been lost over time. If proprie‑
tary tools were used, migration often requires the support of 
the initial tool vendor, which might no longer be available.

Another aspect of reusability of information is the whole 
area of “lessons learned”. This knowledge is usually already 
recorded—but often just in a human understandable form, 
i.e. as reports. The information concerned here is also usu‑
ally not very structured, but contains decisions, pros and 
cons regarding a particular solution, and the link between 
an actually operational system and its (early) design with its 
requirements. Such approaches hide valuable knowledge in 
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documents often disconnected from the corresponding data. 
This makes it rather cumbersome for humans and machines 
alike to benefit from past experience and apply the gained 
insight in upcoming projects. However, in a well structured 
and machine‑actionable representation, these hard‑won les‑
sons can more easily be reused and can thus prevent any 
stakeholder from repeating unnecessary mistakes or provide 
them with well‑tried best‑practices.

Finally, the FAIR principles include as one of the reus‑
ability principles: “R1.1. (meta)data are released with a 
clear and accessible data usage license” [6]. This demand 
is related to the previous discussion about enforcing restric‑
tions on data access. It requires companies to state in a clear 
and machine‑actionable way who can use their data under 
which circumstances. As stated previously already: The ful‑
fillment of FAIR principles does not imply Open Data or no 
restrictions to data access. The restrictions must just be made 
clear in a machine‑actionable way.

3  A path forward

While we previously outlined the potential benefits of applying 
the FAIR principles, we will now shift towards approaches for 
their implementation. We will discuss current developments in 
the scientific community and how they might be translated into 
an industrial context. But not all challenges already have solu‑
tions. So, we will also highlight remaining challenges applying 
to both industrial and scientific environments.

3.1  Shared semantics

Shared vocabularies are the basis for any FAIR description. 
They provide the unique identifiers to use for concepts, 
objects,... everything! This ensures that it is clear for eve‑
ryone if two things are the same (but have, e.g., different 
labels) or are actually different. Replace string descriptions 
by concepts, i.e. use said unique identifiers to link to the 
concept of, e.g., the physical property of mass. This embeds 
your data in a system of other physical properties, including 
units of measurement and their conversion. If you used just 
the term “mass”, it would be unclear what was meant (the 
physical property, a big amount of something, a fair, a reli‑
gious mass,...) and it would be highly language dependent. 
This leads also to the area of disambiguation: Use different 
identifiers for different meanings. In the “mass” example, all 
the different concepts should have different unique identi‑
fiers. On the other hand, use identical identifiers for identical 
concepts, even if they have different names. “Weight” in 
many contexts can be defined as a synonym for “mass” and 
would therefore be an alternative label for the same concept 
with the same identifier. Furthermore, hierarchies can be 
built on top of these concepts, e.g., to indicate hypernyms or 

hyponyms2. This way, systems may, e.g., know that a solar 
panel is a kind of power supply and thus inherits a certain 
set of attributes from the more general concept.

Similarly, all kinds of other connections can be made 
between any two concepts to encode basically every required 
information. In particular, this allows for so called deep 
semantics, an approach where concepts are further described 
as atomic as possible. The result contains multiple layers of 
different granularity. On the very top, there is, e.g., a single 
concept for “the reaction wheel #2 in the satellite xy, built by 
manufacturer z”. In many situations this high‑level concept 
suffices to describe the properties of that very reaction wheel, 
but sometimes the individual components are required, too. 
While as a human it is pretty easy to see which manufacturer 
and which satellite are involved, automated systems have a 
much harder time and need this information to be represented 
explicitly. So following the previous example, we need two 
more concepts: one for the the particular satellite and one for 
the respective manufacturer. All three concepts are then linked 
to encode all information in a machine‑actionable way. The 
addition of these more fine‑grained concepts then allows to 
query, e.g., for other reaction wheels of the same manufacturer 
or the other building blocks within the same satellite. Similarly, 
high‑level concepts can be related to each another more easily, 
thus increasing the interoperability among systems. Matching 
concepts no longer requires complex natural language process‑
ing to determine the meaning of possibly long labels, but can 
instead rely on the structured, detailed information explicitly 
provided alongside the corresponding concepts. An example 
of deep semantics and the decomposition of complex concepts 
in the field of observable properties is provided in the output 
of RDA’s I‑ADOPT working group [22].

There are different knowledge graphs3 that already exist 
and can be reused, extended, and built upon. The probably 
most commonly known is Wikidata4 [23], though it is very 
generic and more domain‑specific graphs are needed along‑
side: Buchgeher et al. compiled a review of knowledge graphs 
in production contexts [24]. NFDI4Ing5 is the National 
Research Data Infrastructure for Engineering Sciences in 
Germany, focusing on research data, but also cataloging6 
knowledge graphs that might be relevant for (engineering) 

2 Hypernyms are more general concepts (higher up in the hierarchy), 
whereas hyponyms are more specialized (lower in the hierarchy).
3 Knowledge graphs are large networks linking concepts to one 
another and provide additional information. They can be publicly 
available like Wikidata [23] and may be limited a specific organiza‑
tion like the ones underlying most modern search engines.
4 https:// www. wikid ata. org.
5 https:// nfdi4 ing. de/.
6 https:// termi nology. nfdi4 ing. de.

https://www.wikidata.org
https://nfdi4ing.de/
https://terminology.nfdi4ing.de
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industry. The initiative MaterialDigital7 is targeting mate‑
rial data, though projects to develop knowledge graphs there 
are mostly still at the beginning. The Industrial Ontologies 
Foundry (IOF)8 creates ontologies with a focus on the manu‑
facturing and engineering industry. OSMoSE9 is an initiative 
by ESA to create an ontology for MBSE in the space domain, 
though here it seems still unclear how the results will be pub‑
lished. Several ontologies for units also already exist; Keil 
et al. [25] compared them regarding scope and provided con‑
cepts. These are mere examples for a broad range of ongoing 
initiatives. We advice to use existing knowledge graphs when 
available over building new ones to save valuable time and 
effort and to ensure interoperability with other systems that 
build upon the same knowledge graphs.

Even though a lot of approaches and best practices for 
shared semantics already exist, some challenges remain. 
One major question concerns the maintenance of vocabu‑
laries: Who should be able to add new concepts or new links 
between concepts? If this is done by domain experts, then 
how can the technical quality of the vocabulary be ensured? 
If this is done by data architects, then how can the correct‑
ness from domain perspective be ensured? Are mixed groups 
needed?

3.2  Metadata

Use semantic (and machine‑actionable) metadata. Metadata 
describes data(sets) or objects and provides summary infor‑
mation. While commonly this is geared primarily at human 
users, machine‑actionable metadata also allows machines 
to “understand” what they are dealing with. This allows 
for further automating workflows like more efficient search 
engines: Instead of transferring entire, potentially huge, 
datasets, looking into it, and then deciding if it is useful for 
a particular request, only the metadata may be acquired and 
the decision is initially based on this. For this purpose, meta‑
data must be extensive and meaningful enough to provide all 
the information about datasets or models that may be needed 
at some point: In particular, necessary attributes will already 
differ between different stakeholders in the same context. 
It might be even more difficult when the consumer of the 
provided metadata is not part of the same organisation or 
ecosystem, like search engines, and thus exact information 
about which attributes are needed remain somewhat unclear. 
Furthermore, the scope may include future use cases—new 
applications might arise that have their own requirements 
regarding attributes. Here, the challenge is to find the right 

balance between the conciseness of a summary and the 
demands of current and future applications.

Another major aspect is access—who should be able to 
see and access which (kinds of) data? While generic infor‑
mation like the definition of physical quantities can be 
shared freely, other aspects like detailed description of sup‑
ply chains may have to be kept strictly confidential. Meta‑
data alone can already reveal that the company providing a 
particular dataset (even if the access to the dataset itself is 
restricted) is working on a particular topic. So, it might be 
desirable to keep the metadata‑set small or provide only a 
subset outside of your organization—which might affect its 
findability in a negative way. One approach trying to address 
these issues is Gaia‑X10. Here, so called data spaces are sup‑
posed to control access to semantically enriched informa‑
tion. Time will tell if Gaia‑X is actually able to solve this 
challenge, at least on a European level.

3.3  Provenance

Document provenance. Provenance data helps contextualiz‑
ing data and answer questions about its origins. It helps, e.g., 
to create an overview of the history of a specific component, 
including the environment conditions it endured. This can 
help to assure, e.g., the compliance with physical storage 
requirements (temperature range, humidity range, etc.) and 
is sometimes needed for certification [26].

It can also help with accountability—who provided which 
data, who changed it, when, and why? To achieve this, prov‑
enance data must be added over the whole life cycle of a 
component, which leads to the main challenge of this area: 
The provenance data must be provided by different parties 
or rather extracted from their different systems. So, this data 
must also be FAIR and especially interoperable, to be com‑
bined into one description of the history of a component.

Looking beyond the scope of a single object, one may 
also consider entire collections of entities like all products of 
a specific type. Keeping detailed provenance records allows 
to conduct comparative analysis [27] like trying to identify 
the common source of reoccurring issues or quantifying the 
impact of certain factors. Relying on provenance instead of 
individual (maybe largely manual) analysis can increase the 
validity and hence also confidence in the discovered results.

3.4  Open formats

To increase interoperability, use open and machine‑action‑
able formats. Here, “open” refers to the format of data stor‑
age, not the data itself. Using proprietary formats of any 
source will lead to a vendor lock‑in at some point. Open and 
machine‑actionable formats in particular ensure that other 7 https:// mater ialdi gital. de/.

8 https:// www. indus trial ontol ogies. org/.
9 https:// mb4se. esa. int/ OSMOSE_ Main. html. 10 https:// gaia‑x. eu/.

https://materialdigital.de/
https://www.industrialontologies.org/
https://mb4se.esa.int/OSMOSE_Main.html
https://gaia-x.eu/
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vendors can also develop software and tools to exploit exist‑
ing data. While this may not yield an immediate benefit right 
now, it substantially eases the inclusion of or transition to 
new systems once this becomes necessary.

A repeated concern is that the transition to semantically 
annotated data requires replacing entire software stacks. A 
counter example is JSON‑LD11. Based on the structure of 
common JSON12, it adds the means to annotate all entries in 
a JSON file. However, existing implementations generally 
require no change at first: JSON‑LD is fully backwards com‑
patible. They just ignore the additional entries13—no exist‑
ing entry is changed. On the other hand, newer systems may 
make use of the added information and are able to translate 
existing entries into the corresponding semantic concepts. 
This approach allows to keep the existing infrastructure and 
only migrate to new systems where needed and appropriate. 
Furthermore, JSON‑LD in addition to being machine‑action‑
able retains the advantages of JSON itself: It is compact and 
easy to parse since there are only few syntax elements in the 
standard itself. Further, it is human‑readable, which eases 
troubleshooting during development and deployment.

3.5  Knowledge‑aware systems

Semantic, interconnected descriptions enable for a broad 
range of applications that require access to advanced 
domain knowledge — previously a field exclusive to human 
experts. A prime example is search. Major search engines 
rely on large graphs containing semantically connected 
information to interpret and thus better respond to user que‑
ries14. Similarly, specialized systems like Google’s Dataset 
Search15 build on semantic annotations—in this case using 
the schema.org vocabulary16 [28]—to provide access 
to a wealth of information. We also witness an increasing 
number of information providers who annotate their data 
accordingly to increase their visibility and allow for more 
targeted search services [29]. In a parallel to traditional 
Search Engine Optimization (SEO), we expect that this will 
become the norm and ignoring this trend will lose substan‑
tial business opportunities.

Beyond mere search, machine‑actionable descrip‑
tions also allow to further automate tasks heavily relying 
on expert knowledge. An example is matching complex 

requirements with an existing supply: In the project Factory 
of the Future17, we described the capabilities of individual 
robots to make allocations for a sequence of tasks to be per‑
formed [30]. In another, still ongoing project, we want to 
suggest suitable ways of manufacturing for requested parts. 
Here, the focus is on the three‑dimensional shape of those 
parts and allowed tolerances in the final product [31].

Another increasingly important field is question‑answer‑
ing. Unlike conventional search engines, queries do not yield 
a list of possible sources to get an answer. Instead, based 
on a knowledge base, the answer is returned immediately, 
relieving users of the need to work their way through the 
given possible sources [32].

4  Conclusion

In this paper we pointed out how the application of the 
FAIR principles, originating in research data management, 
can also benefit industrial contexts and in particular digital 
twins. We put our focus on examples in the space domain, 
though many can be generalized towards other production 
domains. In the last section we pointed out how current 
approaches to implement the FAIR principles in research 
might be translated in an industrial context and where open 
challenges remain—both for industry in particular and for 
achieving FAIR data ecosystems in general.

Precise and contextualized attributes as advocated by the 
FAIR principles enable the automation of tasks that formerly 
required substantial manual effort and were exclusive to 
human experts. Adding similar capabilities to digital twins 
allows to escape the information silos that are oftentimes 
created. Digital twins are no longer exclusive to a specific 
organization or production process, but can more easily be 
combined, compared, or partly automated.

5  Outlook

It will of course be interesting to see actual applications 
of the presented “path forward” in companies, especially 
to better understand remaining challenges. Some insights 
can already be gained by the usage of knowledge graphs for 
digital twins used internally within companies, like IBM 
[33] and Bosch [34] presented. Both papers mention a chal‑
lenge we highlighted earlier in this paper: It is very difficult 
for domain experts to do the semantic modelling, so there is 
a big need for tool support in this area.

Further, the information exchange between different 
organisations remains challenging. While the existing pub‑
lications concern only a single organisation, we envision 

11 https:// json‑ ld. org/.
12 https:// www. json. org/.
13 Of course, existing systems can check for unknown entries and 
handle this as an error, but the JSON(‑LD) standard itself offers back‑
ward compatibility.
14 https:// blog. google/ produ cts/ search/ about‑ knowl edge‑ graph‑ and‑ 
knowl edge‑ panels/.
15 https:// datas etsea rch. resea rch. google. com/.
16 https:// schema. org/. 17 https:// facto ry‑ of‑ the‑ future. dlr. de/.

https://json-ld.org/
https://www.json.org/
https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/
https://blog.google/products/search/about-knowledge-graph-and-knowledge-panels/
https://datasetsearch.research.google.com/
https://schema.org/
https://factory-of-the-future.dlr.de/
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the exchange of information between different stakeholders 
gaining importance in an increasingly digitized world. Here, 
aspects like authentication, authorization, and accessibility 
come more into focus.
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