

EGU23-2676, updated on 11 Jul 2023 https://doi.org/10.5194/egusphere-egu23-2676 EGU General Assembly 2023 © Author(s) 2023. This work is distributed under the Creative Commons Attribution 4.0 License.

MaQuls - Mars Quantum Gravity Mission

Lisa Woerner¹, Bart Root², Philippe Bouyer³, Claus Braxmaier^{1,4}, Dominic Dirkx², Joao Encarnacao², Ernst Hauber⁵, Hauke Hussmann⁵, Ozgur Karatekin⁶, Alexander Koch⁷, Lee Kumanchik¹, Federica Migliaccio⁸, Mirko Reguzzoni⁸, Birgit Ritter⁶, Manuel Schilling⁷, Christian Schubert⁷, Cedric Thieulot⁹, Wolf von Klitzing¹⁰, and Olivier Witasse¹¹

With MaQuIs we propose a mission to investigate the gravitational field of Mars. Observing the gravitational field over time yields information about the planets tectonic lithoshphere, mass distribution, and composition. Consequently, this mission allows to study static and dynamic processes on and under the surface of Mars, including phenomena such as melting cycles and tectonic activity.

MaQuIs will deploy quantum mechanical means to measure Mars gravitational field with the highest precision yet. In addition, the nature of the proposed instrumentation achieves high sensitivities without needing more complex satellite constellations. As such, MaQuIs follows successful missions for the Earth and Moon, extending the technology to Mars.

In this presentation we will outline the expected scientific merit and explain the underlying technology and planned configuration of the mission.

¹German Aerospace Center, Institute for Quantum Technologies, Ulm, Germany

²Delft University of Technology, Department of Space Engineering, Delft, the Netherlands

³Univ. of Amsterdam, Eindhoven Univ. of Technology, the Netherlands

⁴Ulm University, Institute of Microelectronics, 89081 Ulm, Germany

⁵German Aerospace Center, Institute of Planetary Research, Berlin, Germany

⁶Royal Observatory of Belgium, Brussels, Belgium

⁷German Aerospace Center, Institute for Satellite Geodesy and Inertial Sensing, Hannover, Germany

⁸Politecnico di Milano, Department of Civil and Environmental Engineering, Milan, Italy

⁹Mantle dynamics group, Utrecht University, The Netherlands

¹⁰Institute for Electronic Structure and Laser, Foundation for Research and Technology Hellas, Heraklion, Greece

¹¹European Space Agency, ESTEC, Noordwijk, The Netherlands