

3rd URBAN AIR MOBILITY SYMPOSIUM

5 July 2023

188 100000 000

IN ISSUE IN

IN DESCRIPTION

DLR Cochstedt, Germany

101 HE 11

THE DESIGN NOR DESIGNATION OF STREET, STREET,

Agenda

Time	Agenda Item
09:30 – 10:30	Welcome and Opening Speeches
10:30 - 10:45	Coffee Break
10:45 - 12:00	HorizonUAM Project Highlights
12:00 - 12:15	Shuttle to Demonstration Site
12:15 - 13:00	Flight Demonstration
13:00 - 13:15	Shuttle to Hangar
13:15 - 15:00	Lunch Break and Poster Session
15:00 - 15:45	Panel Discussion
15:45 – 16:00	Summary and Farewell

Prof. Dr. Dirk Kügler

Director

III III-

Institute of Flight Guidance

German Aerospace Center e.V. (DLR)

3rd URBAN AIR MOBILITY SYMPOSIUM

5 July 2023 Cochstedt, Germany

horizonuam.dlr.de

Andrew Hately

Senior Researcher

EUROCONTROL Innovation Hub

3rd URBAN AIR MOBILITY SYMPOSIUM

5 July 2023 Cochstedt, Germany

horizonuam.dlr.de

....

III ME

Kurt Swieringa

ATM-X Deputy Project Manager for Technology

NASA Langley Research Center

3rd URBAN AIR MOBILITY SYMPOSIUM

5 July 2023 Cochstedt, Germany

horizonuam.dlr.de

III IIE-

PROJECT OVERVIEW

Dr. Bianca I. Schuchardt

Defining Urban Air Mobility

Mark my word: A combination airplane and motorcar is coming. You may smile, but it will come.

Henry Ford, 1940

UAM is a new safe, secure and more sustainable <u>air transportation system</u> for <u>passengers and cargo</u> in urban environments, enabled by new technologies and integrated into multimodal transportation systems. The transportation is performed by <u>electric aircraft</u> taking off and landing vertically, remotely piloted or with a pilot on board.

Commercial operations in EU cities are expected to start around 2025 with delivery of goods by drones or transport of passengers by piloted aircraft.

EASA, 2021

Hype Cycle for Emerging Technologies

gartner.com/SmarterWithGartner

Source: Gartner @ 2019 Gartner, Inc. and/or its affiliates. All rights reserved.

HorizonUAM, 3rd UAM Symposium, 5 July 2023

Urban Air Mobility Research at the German Aerospace Center (DLR)

Objective: Assessment of opportunities and challenges of air taxis and urban air mobility (UAM) concepts

Main contentForecast of UAM market shareModel-based UAM system simulation	Flight Guidance Flight Systems System Architectures in Aeronautics		
Air taxi vehicle system developmentFlight guidance concepts for vertidromes	Communications and Navigation	Air Transport	
 Airport integration of UAM traffic 	Aerospace Medicine	DLR	
 Public acceptance 		Atmospheric Physics	
 Scaled flight demonstrations in model city 	Maintenance, Repair and Overhaul	Combustion Technology	
Duration: 07/2020 – 08/2023 (38 months)	National Experimental Test Center for	Unmanned Aircraft Systems	
Scope: 52.1 person-years (9.1 M€)			

Participants: 10 DLR institutes, cooperation partners NASA and Bauhaus Luftfahrt

OVERALL SYSTEM SIMULATION

Henry Pak

Urban Air Mobility from a system perspective

Complex system of systems

- System behavior results from the interaction of system components.
- Changing one component of the system may affect other components and the behavior of the system as a whole.
- Objectives and key questions
 - Understanding of complex interactions between UAM system components and impact on system behavior
 - Investigating of the relationship between the UAM system and demand
 - Impact on users, operators, and the environment

System-of-Systems simulation: Optimizing the UAM system

- System-of-Systems simulation integrates models from different domains.
- Agent-based simulation to capture complex interactions
 - Status and behavior of air taxis, vertidromes, airspace management and passengers are modeled individually.
- Simulation of 24-hour operations with high temporal resolution
- Evaluation of system behavior based on e.g. fulfilled transport requests, deadhead ratio, load factor.
- Applications:
 - Sensitivity analyses
 - Scenario analyses for different technology and demand scenarios

Domain models within System-of-Systems

Departure Time [h]

10

Model-based forecasting approach to estimate global demand and fleet size

- Schematic urban transport model
 - Applied to 990 urban areas > 500,000 inhabitants
 - Input parameters: population, city area, gross domestic product (GDP)
- Modelling approach to estimate UAM demand
 - Cities are represented as circles
 - Total transport demand is specified by using a trip rate and a distribution of trips by distance
 - Two options: air taxi and car
- Scenario variables:
 - Air taxi price and speed
 - Vertiport density

Sensitivity Analyses

Scenarios of Market Development

Scenario 1: Up to 2 vertiports per 100^{*1} sq. km and ticket price of $3.00 \in$ per km Scenario 2: Up to 1 vertiport per 100^{*2} sq. km and ticket price of $3.75 \in$ per km

*1 Equivalent to a density of 0.02 vertiports per sq. km

*2 Equivalent to a density of 0.01 vertiports per sq. km

Towards economic viability of UAM: Estimation of operating cost and ticket fares

11%

- Model of Direct Operation Cost (DOC)
 - Landing, terminal, air traffic service charges
 - Maintenance and overhaul
 - Capital cost and depreciation
 - Energy
 - Crew
 - Flight Cycles (FC)
- Parameters for DOC estimation based on
 - Literature
 - Existing prices of general aviation
 - Conclusions by analogy
- Determination of ticket fares by prescribing
 - Share of Indirect Operating Cost (IOC)
 - Profit margin
- Three representative applications
 - Intra city
 - Airport shuttle
 - Regional

15

HorizonUAM, 3rd UAM Symposium, 5 July 2023

Overview of cost and revenue estimation

Use Case	Intra City	Airport Shuttle	Regional	
Vehicle name	Ehang 216	Archer Midnight	Lilium Jet	
Vehicle seats (pax+pilot)[-]	2 (2+0)	6 (5+1)	8 (7+1)	
Flight Distance [km]	12.13	15.11	186.35	
DOC per FC [€]	62.07	231.30	700.83	
Fare optimistic [€/km]	4.1	6.1	1.0	
Fare conservative [€/km]	5.7	8.5	1.4	

DOC distribution for each use case

Conclusions

- Low ticket prices and short access and egress to vertidromes are key to driving demand for UAM.
- Infrastructure, ATM, maintenance, and aircraft price account for a large proportion of operating costs and should be further investigated for their potential to reduce costs.
- Agent-based system-of-systems simulation has proven valuable in optimizing UAM systems.
- There could be market potential for UAM in more than 200 cities worldwide by 2050.

2091922059

VEHICLE

Frank Meller

HorizonUAM, 3rd UAM Symposium, 5

- Conceptual definition of vehicles for passenger transport in urban airspace
- Selection of certifiable system & powertrain architectures
- Development of safe, comfortable and acceptable cabin concepts
- First steps into maintenance & its planning of air taxis

System-of-Systems (SoS) Simulation of Urban Air Mobility

System-of-Systems Framework

Agent-based simulation developed for on-demand fleet impact assessment

Vehicle Design Workflow

Collaborative vehicle design workflow established & demonstrated

Vehicle Design Space / Family Concepts

- Diverse Missions / Top Level Aircraft Requirements
- Entry-Into-Service Scenarios
- Technology Portfolios

> Vehicle design concepts driven by fleet operations in an SoS context

Vehicle Concepts

Quadrotor (Battery-electric)

Intra-city / Airport shuttle: 50 km; 120 km/h; 2 Stops

- Entry-Into-Service: 2030/2035
- MTOM: 1,543 kg
- Payload: 440 kg / 4 PAX

Preliminary Vehicle Design & Propulsion Analysis

4 Main Rotors / 2 Pusher Prop.

- flight-mechanical modeling
- aero-mech. rotor analysis &
 - optimization using blade elements
- investigation of initial design limits

Tiltrotor (Battery-electric)

Sub-urban / Megacity: 100 km; 200 km/h; 1 Stop

- Entry-Into-Service: 2030/2035
- MTOM: 2,065 kg
- Payload: 360 kg / 4 PAX

Conceptual Vehicle Design

Onboard Systems

Model Based Systems Engineering:

 Conceptual Design Tool developed for sizing, modeling and simulation of multirotor eVTOL propulsion system, energy system & thermal management system

Key Results:

- Conceptual design of a safe, battery-electric propulsion system architecture
- EASA safety & reliability goals met & safety measures implemented
- Design requirements derived for air taxi multirotor concept, e.g.:
 - Dual redundant electric motors per rotor with passivation capabilities
 - Additional pusher propeller to counteract any main rotor loss
 - Each drive train must be able to provide 200 % of normal power in case of system malfunction
 - Five battery packs, at least three FCCs,...
 - Cooling system required for the electric motor, motor controller and battery packs
- Maintenance Key Findings:
 - Component Degradation
 - Electric Motor: Ageing and degradation of vehicles analyzed
 - Batteries: Li-Ion battery expected lifetime between 1000 8000 missions (2-6 years)
 - Maintenance Scheduling
 - Integration into aircraft assignment for on-demand operation

Cabin Design

User-centric Cabin Concept

- Based on feedback from user acceptance tests supported by Institute of Air- and Space Psychology
- Cabin design and evaluation approach in cooperation with various DLR experts
- Early involvement of user = enabler to raise the acceptance level

Air Taxi Cabin Simulator

- Cabin mock-up with virtual / mixed reality capability allows realistic passengers in-flight experience
- Used for acceptance studies

Key Results

- Combination of airport shuttle and intra-city use case
- Comfort, safety and privacy prioritized during focus group studies: 16 participants, 4 sessions plus online survey with 202 user

TURSTED GATE

SAFETY AND SECURITY

Christoph Torens

24

Assess and Support the Safety and Security of UAM

Save autonomy

- Huge demand for machine learning (ML) technology
- Data driven approaches require new verification concepts
- Standardization and certification gaps for ML
- Reliable multi-sensor navigation
 - High accuracy & high integrity demands
 - GNSS multipath / interference in urban areas
 - Standardization and certification gaps for multisensor navigation

Robust and efficient communication

- Design and development of drone-to-drone communication system
- Enable multi-datalink approach
- Enable collision avoidance in urban environments
- U-space interface
 - Completely new layer of services required for safe integration
- Cyberphysical safety and security
 - High threat potential for strongly connected and automated flights

Safe Autonomy Safe Machine Learning (ML) for UAM

- Development of example ML use case: human detection
 - Securing of (emergency) landing sites
 - Reduce risk during flight
 - Delivery of relief supplies
- Research on safety and certification aspects of ML
 - Define limitations on operating conditions
 - Supervision of operational design domain (ODD)
 - Impact on ML performance
- Assess autonomy status
 - Integrate system and ODD status
 - Assess operational safety

Safe Autonomy Certification Aspects of Machine Learning

- Development of Safe Operation Monitor
 - Improve reliability by monitoring system and operation
 - Focus on ODD aspects and new standards and guidance material from EASA
- The Safe Operation Monitor improves the
 - Robustness of the ML component
 - Safety of the overall system

Prediction performance of object detection algorithm

Robust and Efficient Communications Development of DroneCAST

- Development of DroneCAST (Drone Communications and Surveillance Technology)
 - A drone-to-drone communications system for collision avoidance in urban airspace
 - Used as a last course of action, similar to ADS-B in civil airspace
 - Part of multi-datalink approach that considers dense urban and worst case critical scenarios with further applications
- Milestone: A D2D channel model for urban environments
 - Based on measurements in an urban environment at DLR campus Oberpfaffenhofen
 - Increases robustness of datalink by considering the underlying signal propagation effects
 - Helps to validate several research questions and different communication concepts
 - Communication channel for different urban scenarios can be simulated

Reliable Multi-sensor Navigation for UAM

Design of a reliable multi-sensor navigation system

Airborne equipment (multi-sensor onboard unit)

Broadcast of

GNSS Integrity

Monitoring

Ground Stations Processing

- Ground infrastructure (U-GBAS augmentation, visual cues, meteo-stations)
- Innovative multi-sensor solution leading to integrity-monitoring architecture
- Research on innovative integrity concepts for different sensors

VERTIDROME

Karolin Schweiger

MODELCITY

UAM NETWORK MANAGEMENT

VERTIPORT INTEGRATION AT AIRPORTS

VERTIPORT SIMULATION

MODELCITY

UAM NETWORK MANAGEMENT

VERTIPORT INTEGRATION AT AIRPORTS

HorizonUAM, 3rd UAM Symposium, 5 July 2023

VERTIPORT FOUNDATION

ON

UAM NETWORK MANAGEMENT

AIRSPACE ROUTE STRUCTURE OPTIMIZATION OF UAM NETWORK RESSOURCES

MODELCITY

VERTIPORT INTEGRATION AT AIRPORTS

UAM NETWORK MANAGEMENT

MODELCITY

VERTIPORT INTEGRATION AT AIRPORTS

VERTIPORT LOCATION ATCO SUPPORT SYSTEM

MODELCITY

UAM NETWORK MANAGEMENT

VERTIPORT INTEGRATION AT AIRPORTS

CONCEPTUAL DEVELOPMENT

A Vertiport Design Perspective

		Vertiport-in-the-Lab Sim	ulation	Fast-	Time
ircraft			Settings	piniui	alior
rorati O Value (m)	0.15		Number of Rana		31
mat OCW (#)	2.06		francis New	the state	
rcraft Takingwood (m/s	Q [2:07]		Further specifications	Int_OUT.n	
			OF 💷 OF		
withow			Weather Impact		
Infort Layout LIEE	77-Layout (EABA)	-	Further specification	n Mit Oranin	
			Of Day		
Issos Profile FAA		1	Driveduw		
		and the	or 🇊 oi		
uton Heo	ettarenot •	10	Patence		
	- W M Orim		Patience Urban Area	(min)	5
the Game ty LIEDT-Layout)	Galet		Patence Suburban A	na (mm) -	28
	S (1983)				
	Cale4				
	@ Gan6				
	Gats7	Alash Milli	College Parts Pre P		
	O atriê		Concerner Parts		
			Cinque Lote prote		
			Bhow Plots: Stats.	at all same	
				-	
					1000

Security, Noise and Weather are significantly under-represented in UAM research.

The **Level of Service** framework is suitable to rate vertiport airside operations unifying multidisciplinary stakeholders.

Hamburg & Munich Case Study: Exceeding Wind Operational conditions especially during midday and early afternoon hours. >50% of the cancellations in the first quarter of the year (2019/2012).

A UAM Networkmanagement Perspective I

SBA shows a **longer flight time** compared to **TBA** (16.54 min vs. 10.86 min) and a **higher throughput** compared to **TBA** (15 aircraft/min vs. 10 aircraft/min).

When **compared to ground traffic**, **SBA** shows **time savings** of up to **34.23%**, whereas **TBA** shows a range of up to **39.56%** with a median of **31.72%**.

Average flight delay: 2.17 min

A UAM Networkmanagement Perspective II

Hamburg Case Study: A network of 20 vertiports requires 422 parking positions, a maximum cumulated charging power of 11.05 MW and 275 vehicles to service 2800 missions per day.

A reduction of **battery charging time** can reduce the fleet size by 18%, causing a spatial footprint reduction of 24% regarding parking stands.

Fleet analysis shows that **average load factors** of 45% are feasible at fleet sizes with varying occupancy rates of up to 80%.

A Vertiport Integration Perspective

-@

Fast-Time Simulation

VPE: the lowest average delay and energy consumption.

Integration into conventional runway systems is only recommended for low-traffic hours.

Real-time HITL Simulation

Hamburg Case Study: 44 conventional A/C, 15 AirTaxis/hour and 10 ATCOs.

Situation awareness and **workload** within reasonable boundaries in all scenarios. **Exclusive air taxi working position** in case of more traffic is suggested.

A MODELCITY PERSPECTIVE → NEXT PRESENTATION

DLR

PUBLIC ACCEPTANCE

Dr. Albert End

HorizonUAM, 3rd UAM Symposium, 5 July 2023

%

A Large-Scale Telephone Survey in the German **Population**

- N = 1001 computer-assisted telephone interviews in 2022 (\emptyset 21 min.)
- Acceptance of civilian drones in general and air taxis in particular

Attitude towards air taxis

8

38

19

35

Willingness to use an air taxi

40%

46%

46%

DroNoise – A Smartphone App for Assessing Drone Noise

- Development of a smartphone app to measure drone noise and assess subjective annoyance (Eißfeldt, 2020, Sustainability)
- Tested during live drone flight demonstrations in Cochstedt 2023
- \rightarrow Basis for creating noise pollution maps
- → Opportunity for adapting flight routes/profiles such that drone noise could be distributed as equally as possible among residents
- \rightarrow Considering the public's health and acceptance

Virtual Reality Study on the Well-being of Air Taxi Passengers

 N = 30 participants experienced a virtual airport shuttle flight in the city of Hamburg in a mixed reality air taxi simulator

- Well-being was significantly reduced at the start of re-routing (p = .001)
- Well-being tended to be higher when an air steward was on board during flights with re-routing (p = .086)

Virtual Reality Study on the Well-being of Passers-by

 N = 47 participants experienced civil drones flying above Braunschweig as well as an air taxi landing from the perspective of passers-by

8 items, for example:

I felt comfortable in the scenario.I felt safe in the scenario.I felt observed in the scenario.I felt nervous in the scenario.

(7-point scale)

- Well-being was better when fewer drones were visible and when they were flying at higher altitudes (sign. effects in 8/8 and 3/8 items, p < .05)
- Well-being was (slightly) reduced when drones or an air taxi were visible as compared to conventional traffic only (sign. effects in 6/8, 8/8, 8/8 items, p < .05)

- Attitude towards air taxis was found to vary from positive to negative in a relatively evenly distributed way within the German population. Willingness to use an air taxi was revealed to be most pronounced for use cases including rural areas.
- Smartphone app *DroNoise* was developed to provide an opportunity for considering drone noise and corresponding annoyance when designing urban air mobility.
- Mixed reality air taxi simulator study indicated that the presence of an air steward on board may improve passenger's well-being especially in non-nominal flight situations.
- Virtual reality study showed that the well-being of passers-by will probably be influenced by the presence of drones and air taxis in urban airspace.

. 8.

MENTA

DEMONSTRATION

Model City Concept

111.*

Dr. Bianca I. Schuchardt

Horizon HAM, 3rd UAM Symposium, 5 July 2023

the

From Simulation to Scaled Urban Scenario Testing

HorizonUAM, 3rd UAM Symposium, 5 July 2023

Modular model city concept at scale 1:4

Urban Air Mobility Flight Demonstration

- Air taxi flight from vertidrome "Hamburg Airport" to "Hamburg Binnenalster"
- Scaled demonstration: multicopters representing passenger carrying air taxis
- Focus of demonstration:
 - Airspace integration through U-space
 - Vertidrome management
 - Artificial intelligence (AI) for automatic detection of persons
 - Urban communication and navigation

Scaled Hamburg Scenario

Vertidrome Airport

Η

20

BEC H

Inner City

Vertidrome Main Station

DLR

Ground Control

Vertidrome Binnenalster

52

Conclusion

- HorizonUAM has revealed the complexity of Urban Air Mobility and the interdependency of the system's elements.
- Key results:
 - System-of-system simulation established for UAM scenario testing and sensitivity analyses
 - High market potential shown for more than 200 cities worldwide
 - Viable **vehicle** concepts for intra-city and sub-urban use cases designed
 - DroneCAST (Drone Communications and Surveillance Technology) developed
 - Safe Operation Monitor methodology for improving the reliability and trustworthiness of artificial intelligence functions evaluated
 - Method for the Vertidrome Airside Level of Service evaluation established
 - Tools developed for vertidrome network and fleet management optimization and feasibility of airport integration assessed with air traffic controllers
 - Public acceptance: Passengers' and pedestrians' perspective on UAM evaluated, and attitude of the German population assessed
 - Modular model city erected as scaled environment for demonstration of airspace integration, vertidrome management, artificial intelligence functions, and urban communication and navigation

THANK YOU **FOR YOUR ATTENTION**

Imprint

HorizonUAM Project Highlights 3rd UAM Symposium Topic: 5 July 2023 Date: Authors: B.I. Schuchardt, A. End, H. Pak, F. Meller, S. Schweiger, C. Torens DLR Institute of Flight Guidance (Coordinator) Institutes: DLR Institute of Combustion Technology **DLR Institute of Flight Systems** DLR Institute of Air Transport **DLR Institute of Communications and Navigation DLR Institute of Aerospace Medicine DLR Institute of System Architectures in Aeronautics** DLR Institute of Atmospheric Physics DLR Institute of Maintenance, Repair and Overhaul National Experimental Test Center for Unmanned Aircraft Systems Credits: All pictures "DLR (CC BY-NC-ND 3.0)", unless otherwise stated