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Abstract—This paper presents a reactive locomotion method
for bipedal robots enhancing robustness and external distur-
bance rejection performance by seamlessly rendering several
walking strategies of the ankle, hip, and footstep adjustment.
The Nonlinear Model Predictive Control (NMPC) is formulated
to take into account nonlinear Divergent Component of Motion
(DCM) error dynamics that predicts the future states of the robot
in response to the walking strategies. This formulated NMPC
enables the seamless application of these strategies improving
push disturbance rejection performance. The proposed controller
is validated in simulation and through an experiment on a bipedal
robot platform, Gazelle, which confirms its effectiveness in real-
time.

Index Terms—Legged Robots, Humanoid and Bipedal Loco-
motion, Optimization and Optimal Control

I. INTRODUCTION

B IPEDAL robots, also known as humanoids, gain attention
for their potential to navigate various environments that

conventional wheeled robots cannot [1]. To reach this poten-
tial, a key milestone is to achieve versatile and stable walking
abilities comparable to human performance. One effective
method for bipedal robots to walk is pattern-based walking,
in which a pre-computed walking pattern is generated using a
simplified model [2], [3] of the robot, and the robot follows
the Center of Mass (COM) and foot trajectory. However, this
method is prone to disturbances and modeling errors. To mimic
human walking performance, the robot should possess human-
level stability and the ability to react robustly to disturbances.

Humans use various strategies such as ankle, hip, and
stepping strategies to overcome unexpected disturbances [4]–
[6], and utilize all walking strategies simultaneously and adapt
their choice of strategy based on the situation and condition.
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The ankle strategy generates ankle torque against external
pushes, the hip strategy creates counter momentum concerning
the body angular acceleration, and the stepping strategy adjusts
the swing foots landing position and the overall footstep
periods. In the case of robots, the ankle and hip strategies
change the point of the stance foot where the ground reaction
force is focused, and the stepping strategy adjusts the reference
footstep position and footstep time of the swinging leg. To
emulate human-like fine locomotion ability, it is necessary
for robots to be able to seamlessly incorporate all walking
strategies in their movements. However, it is challenging to
compute overall control inputs corresponding to each strategy
at once while considering the constraints, such as the physical
limitation of the robots and robot model dynamics.

In this study, Model Predictive Control (MPC) is utilized,
one of the optimization-based control frameworks that predict
the robots future state with the dynamics and obtains the
control inputs that minimize the user-defined costs during
a fixed time horizon. Authors in [7]–[13] applied the MPC
to bipedal robot walking and showed impressive results in
walking and disturbance rejection performance. Moreover,
with the MPC method, there are examples that present the
method to use either one or two strategies on the bipedal robot
selectively [14], [15]. Recently, studies have been presented
that implement all strategies mentioned above sequentially
[8]–[10], [16]. Authors in [9] have demonstrated the suc-
cessful implementation of all strategies on a real bipedal
robot, achieving impressive performance. However, linear ap-
proximations and sequential usage of the ankle strategy in
a specific order are utilized to formulate the problem into
a Quadratic Programming (QP) problem. In this sequential
usage, the ankle strategy is always applied first, followed by
other strategies in response to the disturbance, resulting in the
less flexible use of each strategy. Moreover, authors in [12],
[13] have presented a Nonlinear MPC (NMPC) framework
that considered ankle, hip, footstep position change, and COM
height variation strategies. They use a various-height inverted
pendulum model and successfully verify their algorithm for
disturbance rejection in the simulation environment, but they
do not consider the footstep time change strategy. Recently,
authors in [17], [18] have presented research on detecting
walkable areas using vision sensors on a humanoid robot and
generating walking patterns for traversing those areas. When
modifying the patterns for the walkable areas, the strategies
mentioned above are sequentially applied, and their methods
are validated through hardware experiments.

Although the use of MPC for walking strategies has shown
promising results in controlling bipedal robots, incorporating
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Fig. 1. (a): Illustration of LIPFM and DCM dynamics. θ̈pitch ∈ R means
the robot body angular acceleration in the pitch direction, (b): Corresponding
sagittal view of the robot.

multiple strategies in a seamless manner while considering the
robot’s physical limitations and dynamics remains a challenge.
Therefore this paper proposes a method in which the bipedal
robot can overcome the disturbance with a seamless reaction
by considering ankle, hip, and stepping strategies simultane-
ously. The control inputs, representing the reaction strategies,
are calculated through the optimal control problem based on
pattern-based walking. Taking into account the Linear Inverted
Pendulum with Flywheel Model (LIPFM) dynamics and the
relationship between the error of Divergent Component of
Motion (DCM) [14]–[16], [19]–[21] and the strategies, the
NMPC method is employed. To implement the proposed
NMPC method on actual bipedal robot hardware, the problem
must be solved in real-time. Accordingly, this paper strives to
make the following specific contributions:

• formulation of an NMPC problem to bring seamless
ankle, hip, and stepping reaction strategies into bipedal
locomotion which effectively overcomes disturbances;

• implementation of the proposed NMPC method on 13
Degrees-of-Freedom (DOF) bipedal robot in real-time
which has rarely been found with a real hardware setup.

The remainder of this paper is organized as follows: Sec. II
introduces the backgrounds of this study. Sec. III states the
problem this study intends to solve and addresses the NMPC
framework proposed in this study. Sec. IV verifies the pro-
posed controller through simulation, and experimental results
obtained using actual bipedal robot hardware is presented in
Sec. V. Finally, Section VI draws a conclusion.

II. BACKGROUND

This section provides an overview of the simplified model
of the robot and the DCM [14]–[16], [19]–[21].

A. Robot Model Dynamics

The schematic diagram of LIPFM is shown in Fig. 1 (a).
pZMP ∈ R2 means the position of the ZMP in x, y directions,
and pCMP ∈ R2 represents the Centroidal Momentum Pivot
(CMP) [15], [22] in x, y directions. xc ∈ R2 indicates the
position of COM in x, y directions, and θ̈ ∈ R2 denotes
the angular acceleration of the robot body in pitch and roll
directions. J ∈ R2×2 denotes the rotational inertia of the robot
body, which has pitch and roll value as its diagonal element.

Assuming that the vertical height of COM is constant, the
governing equation of the LIPFM is as follows:

ẍc = ω2(xc − pCMP), pCMP = pZMP + Jθ̈/mg, (1)

where ω is the natural frequency of the robot defined by√
g/zc, m is the total mass of the robot, and g is the

acceleration of gravity.

B. DCM Error Equation

1) Divergent Component of Motion: It is derived from the
COM position and velocity with a simplified model such as
LIPFM. It states where the robot’s foot should land at the end
of the step for the robot to come to a complete stop. The DCM
ξ can be expressed as follows:

ξ = xc + ẋc/ω, (2)

where ξ ∈ R2 denotes the DCM in x, y directions, and
ẋc ∈ R2 denotes the COM velocity in x, y directions. With
the pre-planned footsteps, the COM reference trajectory of the
robot can be generated by various pattern-based walking algo-
rithms. Because this trajectory includes position and velocity
information of the COM, the DCM reference trajectory can
also be calculated from the gait pattern using (2).

According to its definition, if the robot steps on to the DCM,
the robot will come to a stop. Therefore, for walking with the
desired speed, the support foot position of the robot should
locate with offset vector b ∈ R2 in x, y directions (see Fig.
1 (b)), which we call DCM offset hereafter, with respect to
the distance between the DCM and the position of the foot at
the end of step [16].

It is known that when hmax ∈ R2 are the maximum foot
strides of the gait pattern in x, y direction, and the minimum
footstep time is Tmin, the maximum value of the DCM
offset in x, y direction for stable locomotion are express as
bmax = hmax/(eωTmin − 1) [23]. Similar to DCM and COM,
the reference value of DCM offset bref is included in the
gait pattern and obtained from various pattern-based walking
algorithms. When stepping strategies are employed, the DCM
offset value will be changed at each step from the reference
value according to the choice of footstep position change
(δu ∈ R2), and the variable (δb ∈ R2) will represent this
change.

2) Relationship between the DCM Error and Walking
Strategies: A carefully generated pre-defined gait pattern
including the COM and DCM reference trajectory can be
used for stable locomotion with the assumption that the robot
follows the LIPFM dynamics. However, in response to external
pushes and the modeling gap between LIPFM dynamics and
a real robot, the actual DCM may deviate from the DCM
reference trajectory, thereby creating errors between the actual
DCM and DCM reference. In this study, we use various
walking strategies to handle this DCM error. The relationship
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between the DCM error and various walking strategies is given
by the following equation proposed in [9]:

δu+δb+ξrefeω(kT ref−t)(1−eωδT )+(eω(kT ref+δT−t)−1)
Jθ̈

mg

= (ξerr − (pc,ZMP +
Jθ̈

mg
))eω(kT ref+δT−t) +pc,ZMP +

Jθ̈

mg
,

(3)

where t is the time that resets to zero at the start of every
footstep, and k is the current footstep number. ξerr ∈ R2 and
ξref ∈ R2 represent the DCM error and the reference DCM
value in x, y directions, respectively, while pc,ZMP ∈ R2 is
the control ZMP [24] in x, y directions, which is the variable
that the robot can change within a limited range (usually
the size of the foot) using the ankle torque. The relationship
between pc,ZMP and pZMP is expressed as pZMP = u+pc,ZMP,
where u represents the position of the support foot. kT ref is
the reference footstep time at kth footstep, and δT means
the footstep time change. Notice that (3) has a nonlinear
relationship among the DCM error (ξerr), ankle strategy
(pc,ZMP), stepping strategies (δu, δT ), and hip strategy (θ̈).

III. METHOD

This section describes the NMPC problem that the proposed
controller aims to solve.

A. Problem Statement

Fig. 2 shows the sequence of how the bipedal robot over-
comes disturbances by utilizing (3) while following a pre-
defined gait pattern. kuref ∈ R2 is the reference footstep
position at the kth footstep in the x, y direction. When there is
no disturbance, the CMP is located at its reference value pref

CMP
from the pre-defined pattern, and the DCM diverges from the
CMP as time goes on.

Next, Fig. 2 illustrates the cases when a disturbance occurs
while the robot follows a pre-defined pattern. The DCM
affected by the disturbance is expressed as ξ := ξref + ξerr.
The reference DCM (ξref ) is computed from a pre-defined
pattern, which is driven by the preview control [25]. Fig.
2 (a) shows the case when the robot does not employ any
walking strategies. The DCM offset at the end of the footstep
(bkT ref ∈ R2) is significantly changed from its reference value
(brefkT ref ∈ R2). If bkT ref exceeds the limit calculated above,
the robot will eventually fall.

To avoid falling while maintaining the pre-defined gait
pattern, the walking strategies should be effectively applied to
reduce the DCM error ξerr. These strategies are exemplified
in Fig. 2 (b). When a DCM error occurs, the ankle strategy
adjusts the control ZMP (pc,ZMP) in (3), and the hip strategy
generates body angular accelerations (θ̈). The resultant CMP,
represented as pCMP, is calculated as the sum of the reference
footstep position, control ZMP, and body angular acceleration.
The DCM error at the end of the footstep can be reduced by
adjusting the footstep position and timing. The footstep posi-
tion change is a sub-strategy of the stepping strategy, which
generates δu in (3). Changing the footstep time, represented
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Fig. 2. Graphical diagrams of (a) original walking pattern when the distur-
bance occurs, and (b) the proposed control method overcoming the disturbance
with ankle, hip, and stepping strategies.

as δT in (3), is another way to lower the DCM error. The
DCM error can also be reduced by generating a DCM offset
change (δb in (3)). Therefore, the proposed NMPC controller
is designed to suppress the occurrence of the DCM offset as
much as possible.

Within the LIPFM dynamics assumption, the relationship
between each strategy’s free variables and the DCM error can
be expressed as (3). However, more than one combination of
these variables can exist, and their relationship forms with
high nonlinearity. For this reason, the previous studies solve
the problem sequentially for the ankle strategy first and then
other strategies [9]. Additionally, linearization approximations,
such as the footstep time change, are often used in the stepping
strategy. In contrast, this study defines the problem as an
NMPC problem and solves it using a nonlinear optimization
solver. As a result, without the sequential approach and
the linearization approximations, ankle (pc,ZMP), hip (θ̈), and
stepping (δu, δT ) strategies are seamlessly amalgamated and
their weightings are intuitively adjustable by setting user-tuned
weighting factors in the cost functions of the optimal control
problem.

B. Optimal Control Problem

1) Optimization Variables: When the horizon of the NMPC
problem is H , the optimization variables used in this study
consist of states ξerri for the time step i = 0, 1, · · · , H , and
the control inputs vi which are given by

vi = [pT
c,ZMP,i δu

T
i δbTi δTi θ̈

T
i ]

T , (i = 0, · · · , H − 1).

Note that in this study, the time step i denotes the variable in
the NMPC problem.

2) Cost Function: With the optimization variables defined
in the previous subsection, the cost function of the proposed
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NMPC problem is defined as follows to reduce DCM error
and control inputs:

J =

H∑
i=1

(ξerri )TQ(ξerri ) +

H−1∑
i=0

(vi)
TR(vi), (4)

where Q and R denote the weight matrices of the states and
control inputs, respectively, and those are defined as

Q = diag(ωξerrx
, ωξerry

)

R = diag(ωpc,ZMP,x , ωpc,ZMP,y , ωδux
, ωδuy

,

ωδbx , ωδby , ωδT , ωθ̈pitch
, ωθ̈roll

),

where diag() represents the diagonal matrix, and ωj denotes
the weighting factor of the optimization variable j.

3) Equality Constraints: Two equality constraints are con-
sidered in the proposed NMPC problem. First is the DCM
error dynamics equality constraint, derived from the LIPFM
dynamics. Using (1) and (2), the dynamic relationship between
the DCM and the CMP of the robot can be expressed as
ξ̇i = ω(ξi − pCMP,i). Furthermore, assuming that the DCM
pattern does not violate the LIPFM dynamics, the reference
part can be removed as follows:

ξ̇erri = ω(ξerri − (pc,ZMP,i + Jθ̈i/mg)). (5)

Now by discretizing (5), the relationship of DCM error be-
tween the time step i and i+ 1 can be derived as follows:

ξerri+1 − (1 + ω∆tMPC)ξerri + ω∆tMPCpc,ZMP,i

+ ω∆tMPC Jθ̈i
mg

= 0, (6)

where ∆tMPC denotes the sampling time of the proposed
NMPC problem. Moreover, unless otherwise specified, the
remaining constraints of the proposed NMPC problem are
defined for i = 0, · · · , H − 1.

Next, (3) is modified and added as another equality con-
straint to consider the relationship between the DCM error
and variables changed by the walking strategies. With control
inputs vi, (3) can be expressed as follows:

δui+δbi+ξrefi eω(kT ref−ti)(1− eωδTi)−pc,ZMP,i−
2Jθ̈i
mg

− (ξerri − (pc,ZMP,i +
2Jθ̈i
mg

))eω(kT ref+δTi−ti) = 0. (7)

Notice that the relationship between the DCM error and the
control inputs in (7) is highly nonlinear. To construct and solve
the optimization problem with above nonlinear constraints,
NMPC method should be utilized.

4) Inequality Constraints: Inequality constraints are set to
consider the physical limitations of the robot. Because the
control ZMP cannot be outside of the robot’s foot, the control
ZMP should satisfy the following inequality:

|pc,ZMP,x,i| ≤ lF,x/2, |pc,ZMP,y,i| ≤ lF,y/2, (8)

where lF,x and lF,y denote the foot size in x and y directions,
respectively (generally foot length and width).

The swing foot should land within the range of the leg’s
workspace, and body angular acceleration should be bounded,
which is prescribed as

−δumax ≤ δui ≤ δumax, − θ̈max ≤ θ̈i ≤ θ̈max. (9)

Next, the change of the footstep time δTi are set with the
minimum and maximum values as follows:

δTmin ≤ δTi ≤ δTmax, (10)

which is determined by users with respect to the nominal
footstep time kT ref from the pre-defined pattern.

Finally, footstep position change is regulated by maximum
foot speed as below:

−u̇max∆t ≤ δu0 − δuprev ≤ u̇max∆t, (11)

−iu̇max∆tMPC ≤ δui − δuprev ≤ iu̇max∆tMPC , (12)

where u̇max ∈ R2 denotes maximum foot speed in x, y-
directions, ∆t denotes the controller sampling time, and
δuprev denotes the footstep position change determined at the
previous control loop.

With the optimization variables (ξerri , vi), cost function (4),
equality constraints (6), (7), and inequality constraints (8)-(12),
the proposed NMPC problem is formulated. The formulated
NMPC problem is solved using the Sequential Quadratic
Programming (SQP) method with the implementation of the
QP solver [26] to solve a sub-QP problem. The sub-QP
problem is formulated using quadratic approximation of the
cost function and linear approximation of the constraints. The
quadratic approximation of the cost function can be obtained
using the gradient and Hessian of the cost function, and linear
approximation of the constraints requires the gradients of
constraints. The gradient and Hessian of the cost function, and
gradients of constraints are computed with CasADi [27]. The
description of the SQP method used in this study is omitted
for the sake of brevity (please refer to [28] for further details.)

The control inputs obtained from the NMPC problem are
applied to the robot as follows. Body angular acceleration is
directly applied to adjust the orientation of the robot’s body,
and the control ZMP is converted into ankle torque. Step
position change and step time change are utilized to modify the
desired destination of the swing foot. As a result, overall joint
angles are calculated with inverse kinematics by considering
the updated swing foot’s destination and the modified body
orientation.

IV. NUMERICAL ANALYSIS AND VERIFICATION

This section presents the results of evaluating the proposed
controller, which can seamlessly incorporate various walking
strategies. To compare its performance against an existing
controller, a framework from [9] is used as a baseline. The
LIPFM model is employed for the robot model, and all
simulations are conducted using the MATLAB environment1.
The parameters and weighting factors used in the proposed
controller are shown in Table I, while a horizon length of
H = 15 and a sampling time of ∆tMPC = 0.025 s are set.

1The simulation code is released at https://github.com/DrcdKAIST/Gazelle
NMPC controller/
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TABLE I
WEIGHTING FACTORS AND PARAMETERS USED IN SIMULATIONS AND EXPERIMENTS

Weighting factor ωξerrx
ωξerry

ωpc,ZMP,x ωpc,ZMP,y ωδux ωδuy ωδbx ωδby ωδT ωθ̈pitch
ωθ̈roll

Flat foot 1 1 10 50 1 102 103 103 102 10−2 10−1

Point foot 10 10 - - 1 10 105 105 102 10−1 10−1

Fig. 5 Ankle strategy 10 1 1 50 10 102 102 103 10 10 10−1

Fig. 5 Hip strategy 10 1 50 50 10 102 102 103 10 10−3 10−1

Fig. 5 Stepping strategy (footstep position change) 10 1 5× 102 50 10−1 102 102 103 10 10 10−1

Fig. 5 Stepping strategy (footstep time change) 10 1 2× 102 50 10 102 102 103 1 10 10−1

Experiment 1 1 1 1 10 10 103 103 102 - -

Parameter lF,x lF,y δumax
x δumax

y θ̈max
pitch θ̈max

roll δTmax δTmin u̇max
x u̇max

y

Simulation 0.18 m 0.13 m 0.3 m 0.2 m 1000 deg/s2 1000 deg/s2 0.0 s -0.2 s 0.7 m/s 0.6 m/s

Experiment 0.16 m 0.10 m 0.3 m 0.2 m - - 0.05 s -0.05 s 0.7 m/s 0.6 m/s

Push

(a) Forward push (23.5 Ns, duration: 0.05 s)

Push

(b) Side push (16 Ns, duration: 0.05 s)

Fig. 3. The result of the forward- and side-push recovery simulations, where the robot initially walks forward with 0.15 m footstep stride and 0.7 s footstep
time, and the disturbance is applied at the beginning of 2nd step, 2.1 s. Left-side plots show the DCM error, ξerr , and the following control inputs: control
ZMP, pc,ZMP, footstep position change, δu, DCM offset change, δb, footstep time change, δT , and body angular acceleration, θ̈. Right-side plots present the
robot’s reaction to the disturbance.
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Fig. 4. The plots of the maximum magnitude of disturbance (y-axis) the
robot can overcome, depending on the timing of the disturbance (x-axis) for
forward push on the left and side push on the right, respectively.

A. Push Recovery Simulations

Fig. 3 demonstrates how the bipedal robot model overcomes
disturbances while walking with the proposed controller. The
left-side plots show the DCM error and the control inputs
gernerated to compensate for the error, and the right-side plot
shows the robot’s reaction to the disturbance. The seamless
response of the proposed method can be seen in the control
inputs of all strategies appearing simultaneously. Furthermore,
unlike the baseline controller, other strategies such as hip and
stepping strategies are activated even if the robot does not fully
utilize the ankle torque. One can also observe that control
inputs of the hip and stepping strategies (θ̈, δu, δT ) appear
when the ankle strategy’s control input (pc,ZMP) does not reach
its limitation.

In these simulations, the robot model initially walks with
a stride of 0.15 m and a period of 0.7 s. A disturbance is
applied at the beginning of the 2nd footstep. In Fig. 3, the
model’s left foot is depicted in yellow, and the right foot is
colored gray. The colored zones indicate the support phase of
the corresponding foot, and the width of each area represents
the footstep time of the support foot in the left graphs of Fig.
3. The figure shows the robot model overcoming both forward
and side pushes while walking. In the forward push case, the
disturbance is 23.5 Ns with a magnitude of 470 N and a
duration of 0.05 s, and in the side push case, the robot model

Fig. 5. The forward-push recovery simulation results with different reaction
strategies (ankle, hip, and footstep position/time) flexibly chosen by changing
the combination of the weighing factors of the proposed method.

overcomes 16 Ns of disturbance with a magnitude of 320 N
and a duration of 0.05 s. Both cases demonstrate that the robot
model successfully overcomes the disturbance.

In Fig. 4, we further investigate the maximum disturbance
magnitudes tolerated by controllers when the magnitude and
timing of the external push are changed over the entire walking
period. The robot model initially walks with a stride of 0.15
m and a footstep time of 0.7 s. The external pushes are
then applied at every time interval of 0.1 s by increasing
the magnitude by 10 N . One can observe that the proposed
seamless approach enables the robot model to mitigate larger
disturbances effectively at all points.

Fig. 5 shows the flexibility of the proposed method through
a number of forward-push recovery simulations with combi-
nations of the weighing factors while maintaining a consistent
disturbance magnitude, duration, and timing. The robot model
initially walks in place with a footstep time of 0.7 s, and

14.5 Ns

Left Foot

Right Foot

Fig. 6. The result of the push recovery simulation with the point foot robot model, where the robot walks with 0.1 m stride length, and 0.6 s footstep time.
The disturbance of 14.5 Ns with 0.05 s duration is applied at 0.4 s of the 2nd footstep, i.e., t= 2.199 s. The upper-right figure shows the robot’s reaction
as time goes on, and its top view is shown in the lower-right corner. DCM error and corresponding control inputs are displayed in the left graphs.
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Fig. 7. Snapshots of the reaction against the sudden disturbance while walking in place at 8.54s, measured as 16.8Ns with the maximum impact force of
348.1N and impact time duration of 0.174s.

Fig. 8. Results of the actual bipedal robot experiment: (top) the push force
which is measured with a force sensor; (middle)the DCM error and control
inputs such as control ZMP, footstep position change, and footstep time
change; (bottom) the histogram of NMPC solve time during the experiment.

the disturbance is 10 Ns with a magnitude of 200 N and a
duration of 0.05 s. The parameters and weighting factors used
in this simulation are shown in Table I, except for the max-
imum x direction foot speed (u̇x), which is increased to 2.0
m/s to improve the representation of footstep position change.
Fig. 5 demonstrates that the utilization of the strategies can be
flexibly selected by selecting the appropriate combination of
weighting factors.

To emphasize the effectiveness of the stepping strategy with
the footstep time change, forward push recovery simulation is
conducted under the same conditions as Fig. 3 (a), except the
upper (δTmax) and lower boundaries (δTmin) of the footstep
time change are set to zero. Under these conditions, the robot
model cannot recover from the 23.5 Ns disturbance and can
overcome a maximum of 20.5 Ns with a magnitude of 410
N and duration of 0.05 s, resulting in a 13.6 % decrease.
Therefore, the push recovery performance can be improved by
applying the stepping strategy with the footstep time change.

B. Push Recovery with a Point-Foot Bipedal Robot Model
The proposed controller seamlessly incorporates all walking

strategies, making it applicable to a wide range of bipedal

robots, regardless of their shape. For instance, the point
foot robot, which has no ankle, can still demonstrate the
effectiveness of the proposed method. Since the point foot
robot only makes contact with the ground using a “point”, the
ankle strategy is not available. However, even in this under-
actuated situation, the proposed controller can maintain the
balance and successfully perform push recovery, showing its
robustness and wider applicability.

Fig. 6 shows the response of a point foot robot model that
overcomes a forward push while walking with the proposed
controller. In the simulation, the robot model is pushed at 0.4 s
of the second footstep, while the robot model is walking with
a stride length of 0.1 m and a footstep time of 0.7 s. The 14.5
Ns of the disturbance is applied to the robot model, with 290
N of magnitude and 0.05 s of duration. The weighting factors
and the parameters of the controller are shown in Table I, while
the foot size is set to zero because the robot model has the
point foot.

The left side plots of Fig. 6 present the DCM errors caused
by the disturbance and the control inputs created to compen-
sate for it. The figure illustrates that all control inputs, except
for the control ZMP (pc,ZMP), are simultaneously utilized to
balance the robot model. The control ZMP is always zero,
indicating that the robot model does not use the ankle strategy
at all.

V. EXPERIMENT

In this section, we describe the application of the proposed
NMPC method to a real bipedal robot, Gazelle [29]. The
controller is implemented on the PC with a processor up to
3.50 GHz speed for adequate computational power. As a QP
solver, qpSWIFT [26] is utilized to solve the NMPC problem,
and the maximum SQP iteration number is limited to 3 for
achieving real-time conditions. We set the horizon length to
H = 10, and the sampling time for the NMPC controller
is ∆tMPC = 0.025 s, while the overall robot operates at
a sampling time of ∆t = 0.002 s. The values for weighting
factors and parameters used in the NMPC are listed in Table I.
The control ZMP is converted into foot force using the ZMP
distributor [30]. Moreover, the velocity of the ankle joint is
calculated that minimizes the difference between the converted
foot force and the measured value using the ankle torque
sensor.
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Figs. 7 and 8 show the robot’s response to a disturbance and
its experimental results. The robot is walking in place with a
footstep time of 0.7 s when it is pushed with a rod. A force
sensor is attached to the end of the rod to measure the push
force. The top graph of Fig. 8 depicts the push force applied
to the robot. The maximum impact force is 348.1 N , and the
total duration of the disturbance is 0.174 s.

The robot employs strategies to counteract the external push,
such as ankle and footstep position and footstep time changes.
Since the ankle and hip strategies have the same principle of
regulating the reference point of COM divergence, the hip
strategy is not implemented for faster implementation. This is
done by setting both the upper and lower bounds of θ̈roll and
θ̈pitch to zero.

The last graph of Fig. 8 presents the solve time while the
robot responds to the disturbance. Since the framework solves
the NMPC problem, it is necessary to ensure that the overall
controller runs under real-time conditions. The average solve
time of the proposed controller is 1.248 × 10−4 s, which is
less than the sampling time of 0.002 s, and no cases violate
the real-time condition.

Additionally, side-push recovery and walking on debris
experiments are also performed to demonstrate the capability
and practicality of the proposed method in more complex
locomotion tasks (please see the supplementary video).

VI. CONCLUSION

This study proposed an NMPC algorithm to overcome
the DCM error between the pre-defined gait pattern using
various strategies that include ankle, hip, and stepping (foot-
step position and footstep time changes) strategies. Through
the seamless consideration of these strategies, the proposed
framework’s push recovery performance was improved com-
pared to the previous sequential approach in a simulation
environment. Additionally, for the flexible application of the
proposed controller, the point foot bipedal robot, which cannot
utilize the ankle strategy, was balanced and overcame the
disturbance while walking. The proposed method and its real-
time performance were also verified with an experiment with
an actual bipedal robot.
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