
Solar Energy 259 (2023) 257–276

A
0
(

Contents lists available at ScienceDirect

Solar Energy

journal homepage: www.elsevier.com/locate/solener

Soiling determination for parabolic trough collectors based on operational
data analysis and machine learning
Alex Brenner a,b,∗, James Kahn c,d, Tobias Hirsch a, Marc Röger e, Robert Pitz-Paal f,b

a German Aerospace Center (DLR), Institute of Solar Research, Wankelstrasse 5, 70563 Stuttgart, Germany
b RWTH Aachen University, Chair of Solar Technology, Germany
c Helmholtz AI, Germany
d Karlsruhe Institute of Technology (KIT), Steinbuch Centre for Computing, Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
e German Aerospace Center (DLR), Institute of Solar Research, Paseo de Almería 73, E-04001 Almería, Spain
f German Aerospace Center (DLR), Institute of Solar Research, Linder Höhe, 51147 Cologne, Germany

A R T I C L E I N F O

Keywords:
Parabolic trough
Soiling
Machine learning
Artificial neural network
Concentrated solar power

A B S T R A C T

Advanced cleaning strategies for parabolic trough collectors at concentrated solar power plants maximize the
yield and minimize the costs for cleaning activities. However, they require information about the current soiling
level of each collector. In this work, a novel, data-driven method for soiling estimation with machine learning
for parabolic trough collectors is developed using gloss values as a surrogate for soiling values. Operational
data and meteorological data from the solar field Andasol-3 with changing time horizons are used together with
various Machine Learning techniques to estimate the soiling of every collector in the field. The best results were
achieved with a Decision Tree model, with a coefficient of determination of 𝑅2 = 0.77 from the maximum value
of 1 and a mean squared error of 𝑀𝑆𝐸 = 6.14 for the determination of specific soiling values. A second metric
to evaluate the quality of soiling predictions from the models classifies whether soiling is above or below a
cleaning threshold was also investigated. Model results are compared to soiling measurements that indicate the
need for cleanings. Cleaning recommendations are derived and compared with the current fixed-time cleaning
schedule of Andasol-3. All models show an improvement over the cleaning schedule currently in use. The use
of a Decision Tree model increases the detected necessary cleanings by 12.2%, while the number of unnecessary
cleanings are reduced by 14.3%. This has the potential to reduce operational costs and increase the solar field
yield. The dataset used in this work is made publicly available https://doi.org/10.5281/zenodo.7061913, along
with the code to reproduce all results, which can be found at https://doi.org/10.5281/zenodo.7554806.
1. Introduction

An established source of renewable energy with the capability to
deliver dispatchable electricity is concentrated solar power (CSP). CSP
plants use direct solar irradiation, transforming it into thermal energy.
The thermal energy can then be used as process heat or to run a power
cycle and produce electricity directly. Most CSP sites are located in
the sun belt region with high direct normal irradiance (DNI). However,
these regions often have arid climates and a high dust load potential.
High dust loads may lead to dust deposition on the CSP plant mirrors,
an effect known as soiling. Soiling is a major source of performance loss
in CSP solar fields, with 3%–4% reduction of solar power production,
causing annual revenue losses of 3 to 5 billion € [1]. In comparison
to photovoltaic (PV) systems, the losses due to soiling in CSP systems
can be 8 to 14 times higher [2]. In general, CSP systems are directly
exposed to the harsh environmental conditions and therefore soiling is
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always present. Since cleaning is costly, has a high water consumption,
and speeds up the degradation of the mirrors, it should be reduced to
a minimum. Yet, an efficient cleaning strategy can only be executed if
the soiling level of each mirror is accurately known.

Currently, handheld devices are used to record soiling levels in
the collector field. These devices deliver accurate readings, but only
spot measurements and the procedure is very time consuming. In
this work, a data-driven model for the estimation of soiling of each
collector in the parabolic trough solar field is presented. The model only
requires operational data that is already recorded in the power plant
or data which is readily available from local meteorological stations
and services. Our approach uses the spatially distributed measurement
instrumentation already installed in the parabolic trough field (see [3]).
We create soiling specific model inputs, so-called features, from the
measurement data and evaluate their usefulness for the task. With these
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specific features we compare different models and datasets in order to
check whether a small dataset and a simple model delivers sufficient
accuracy, or if a larger dataset and a more complex model are required.

The novelty of this approach is the use of already available data
collected at the power plant and the ability to continuously deliver
soiling information for each collector in the field. Therefore, imple-
menting such a soiling determination system is expected to have low
operation and maintenance costs, since it only requires software and
no additional hardware or personnel costs are expected. Operational
and meteorological data are continuously measured at the power plant
and therefore available for soiling determination. Soiling can thus be
determined steadily for every collector in the solar field. This spatially
resolved soiling information is especially interesting for individual
cleaning operations or performance estimations. Determination of soil-
ing from operational and meteorological data also has the potential of
replacing soiling field measurements and as a consequence, the costs
for monitoring the solar field soiling level can be reduced. For this use-
case the model needs to be further adjusted to enable online use. Due
to limited data availability, this has not yet been implemented in the
model presented in this work.

The original contributions of this work are:

• First usage of operational and meteorological data to create a
data-driven soiling model for parabolic trough fields.

• Comparison of various machine learning models and dataset sizes
for the task of soiling determination.

• Evaluation of model performance for the application of soiling
prediction and provision of cleaning recommendations.

• Investigation of the most important model inputs for soiling
prediction via permutation feature importance.

• The code to reproduce this work’s results is made publicly avail-
able at https://doi.org/10.5281/zenodo.7554806, along with the
dataset used https://doi.org/10.5281/zenodo.7061913.

Section 2 first introduces all datasets and models used in the work.
Section 3 describes the metrics used for the evaluation of the model
results. In Section 4 the model results are first evaluated with a direct
comparison to reference gloss measurements and then as a classification
problem. Section 5 contains the conclusion and an outlook on future
research.

1.1. Related work

In PV research, Pulipaka et al. [4] modeled the soiling loss with a
neural network and linear regression. Model inputs were the percentage
of different particle sizes and the incident horizontal irradiance. In
contrast to our work, it was an experimental setup with artificial
soiling used as training data. In most applications the exact particle
size distribution is not known and may also change due to different
weather conditions. Javed et al. [5] use natural soiling data together
with environmental data from a PV field in Doha, Qatar to estimate
the change in cleanliness. They achieved the best results with a simple
Neural Network and compared it to a Linear Regression approach.
Nevertheless, just using environmental data limited the best 𝑅2 value
to 0.537 for the Neural Network approach. Another experimental setup
was used by Laarabi et al. [6] in order to gather soiling and environ-
mental data for the model training. They use only the PV glass cover
for this setup and collected data from more than eight months, with
daily measurements. Their Neural Network model predicts the soiling
rate with an 𝑅2 value of 0.928. Still, the used dataset was small with
regular measurements every day at noon from April 20 to December 31,
2016. The model is expected to have low generalization capabilities,
due to the dataset not covering an entire year. Adapting the model
to new sites would require an additional experimental setup at the
new location to perform further data collection. Chiteka et al. [7] also
compared a Neural Network and a Linear Regression approach with
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environmental data, achieving comparable results. Simal Pérez et al.
[8] added the short circuit current and solar altitude to the environmen-
tal dataset, showing an improvement in predictive performance. Since
the focus of the latter three publications is on non-tracking PV systems
with fixed tilt angles, it is difficult to apply the models to parabolic
troughs. Besides the PV models using machine learning techniques,
a simple physical soiling model was developed by Coello and Boyle
[9]. They applied their model on seven different locations and used
particulate matter (PM) values as a measure of dust concentration in
the air (PM10, PM2.5), tilt, tracking, and rain data to determine the
efficiency decrease due to soiling. The physical model is applicable on
different locations without collecting large datasets and is implemented
in pvlib python [10]. In summary, there are several approaches to
determine soiling for PV modules, but they are not directly applicable
to parabolic trough fields as they either do not deliver spatially resolved
soiling estimates, are mostly not applicable to tracked systems, or do
not use the operational data of the solar field.

Publications about soiling determination for CSP systems mainly
focus on the development of physical models in order to be site in-
dependent [11,12]. Both of these models use meteorological data as
inputs and are not specialized for the use case of parabolic trough fields.
Sbarbaro et al. [13] used simulation data from a parabolic trough model
in order to estimate the soiling level from collector temperature data.
However, a validation with real measurement data was not performed.
Conceição et al. [14] used meteorological data as model input and data
from the Tracking Cleanliness Sensor (TraCS) System [15] as target
values. One drawback is that this approach does not take into account
the spatial influence of soiling within a solar field. El Gallassi et al.
[16] also used the TraCS system to record soiling target values. Based
on this, they frame the problem as a multi-class classification problem,
where each class corresponds to a different soiling level. Due to limited
data, they are unable provide test examples for all classes, meaning the
generalization capability of their produced model is unverified.

These soiling models from CSP applications are not directly us-
able in the application of parabolic trough fields since they do not
deliver spatially resolved soiling information, are not validated for real
data from the solar field, or require additional measurement instru-
mentation. None of them use the spatially distributed measurement
instrumentation, which is already available in parabolic trough fields.
Beside the shown modeling approaches there are also advanced mea-
suring approaches, which deliver spatially distributed measurements.
Wolfertstetter et al. [17] showed a promising application of an air-
borne system for soiling measurements. This system might be a good
supplement to a model based implementation, which can continuously
determine the soiling level with low implementation and operational
costs, but with higher uncertainties compared to a pure measurement
approach.

The publications highlighted above already show promising results
using models to estimate the soiling level either for PV or CSP. The
spatially distributed measurement instrumentation in parabolic trough
plants can be especially useful for delivering raw data for a data-driven
model to estimate soiling individually for each collector in the solar
field.

2. Datasets and models

2.1. Available raw data

The data used in this work is taken from the Andasol-3 power
plant in Spain and cover the years 2015 to 2017. It is measured
at the parabolic trough collectors, at the meteorological stations in
the solar field, at additional meteorological stations near the power
plant, or is publicly available from weather services. Parabolic trough
fields are usually equipped with numerous measurement instruments
at each collector. A detailed review of the typical instrumentation is

given by Brenner et al. [3]. For the purpose of developing soiling
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Table 1
Example of dataset with different records in rows, labels which should be predicted in the first column, and features in the
other columns.

Record Labels Features

date:collector gloss week of year sin week of year cos ... pm10 avg

2017.03.01:LG28 83.55 0.89 0.46 ... 2.87e−8
2015.09.28:RF11 91.25 −0.99 0.12 ... 9.64e−9
... ... ... ... ... ...
s
r

t

determination models we make use of the instrumentation at the col-
lector level, the meteorological instrumentation, and additional gloss
measurements. The raw data from the power plant has a temporal
resolution of one to ten seconds. In this work, gloss measurements
collected with the Zehntner ZGM 1110 are used to generate an approx-
imation of the soiling level in the solar field. The gloss measurements
in Andasol-3 are usually carried out in the evenings, roughly every two
days at 40 predefined locations for each subfield. Two measurements
are taken at every location at roughly the same time. At the collector,
gloss measurements are taken at the central mirror facet at the second
south or north solar collector element (SCE) as seen from the central
drive pylon. The southern or northern solar collector element is selected
depending on which is closer to the road in the solar field. In total
18,540 gloss measurements from 2015 to 2017 are available. The gloss
meter1 has a value range between 0 (completely soiled) and 100 (clean
mirror), and is calibrated with a clean mirror sample. Small deviations
in the calibration procedure can lead to gloss values slightly above 100
gloss units. A histogram of the gloss measurements is shown in Fig. B.20
in the appendix. Reflectance measurements would be preferable since
glossmeter measurements are not recommended for evaluating specular
reflectance [19]. However, the frequent use of gloss measurements as
an indicator of soiling at the Andasol-3 power plant shows that they
are used in industry and are therefore available in sufficient numbers to
develop a soiling model. Furthermore, Brooks and Schwar [20] showed
that gloss measurements have an approximately linear relationship
with the percentage area covered by dust. Fig. 1 shows a top view of
a parabolic trough field. The position of each collector in the field is
given by the 𝑥-axis, i.e. from west to east, and 𝑦-axis, i.e. from south
to north. Corresponding wind components are indicated by 𝑢 and 𝑣.
Wind component 𝑢 is positive for wind from west to east, and therefore
perpendicular to the collector axis, and wind component 𝑣 is positive
for wind from south to north and aligned with the collector axis.
The measurement instrumentation is positioned at the center of each
collector. The meteorological stations are positioned at each corner of
the solar field and in the middle of the solar field.

2.2. Features and datasets

Datasets are tabular numerical data with features as columns and
coherent records as rows (see Table 1). The feature collector position
𝑥 is for example an integer value created from the raw collector name
string. The created features, with their usage in the different datasets,
are summarized in the appendix in Table B.7 and their distribution
is shown in the histograms in Figs. B.18 and B.19. The number of
records is limited by the amount of available gloss measurements. These
measurements serve as labels for model training and evaluation. Since
gloss measurements are available at most once per day, the features
created from solar field data and meteorological time-series are reduced
to one value per gloss measurement for each feature. This is done with
averaged, maximum, minimum, or temporal values according to the
feature definition.

The created features can be categorized into three groups. The first
only takes into account the measurement data from the same day on

1 Zehntner ZGM 1110, using 20° measurement angle between incident light
nd perpendicular with repeatability of 0.1 gloss units and reproducibility of
.5 gloss units [18].
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which the gloss values are evaluated. We assume that a certain soiling
level is also recognizable in the operational data for this day. This
means that we can create features of this group only on days where
gloss measurements are available. Features from this category are the:
time of year, daily average irradiance on collector aperture, daily
cumulative irradiance, focus factor2 of the collector, dumping value3 of
the collector, and collector temperature. Changing environmental con-
ditions during the year due to the changing seasons strongly influence
soiling. The time of year feature encapsulates this seasonal influence.
It is represented by the week of the year and in order to only include
the seasonal aspect is split into two features (sine and cosine). This
changes the continuous numeric feature to a cyclic one. The approach
for encoding time is explained by London [22] and Vaswani et al. [23]
use a similar method that is intended to help the model understand the
relative position of an element in a sequence.

The second feature group contains positional information about
the collector. The position of the collector in the field is given by
an 𝑥- and 𝑦-position and the position within the loop according to
Fig. 1. The position of the collector in the field should help estimate
inhomogeneous soiling from the cooling tower, as stated by Cohen et al.
[24], or shielding effects from other collectors.

The third feature group includes features derived from the time span
between the last cleaning of the collector until the gloss measurement
is taken. The first feature of this group is the days since the last cleaning
of the collector. We consider this important as soiling accumulates over
time. It is calculated from a command which initiates the positioning
of the collectors for the cleaning procedure. Wind influence is equally
considered to be of importance because at a certain wind speed dust
can be lifted up from the ground and settle on the mirrors. The feature
is included as averaged and thresholded wind values. For the averages,
the wind speed vector is expressed using two wind components 𝑢 and
𝑣. For the thresholds, the magnitude of wind speed without the split
in two components is used. The threshold is defined by the minimal
wind speed at which the first dust particles are lifted from the ground.
This velocity is called minimal saltation fluid threshold 𝑢∗𝑓𝑡. In order to
use the wind measurement from the meteorological station, which is
measured at 10m above the ground, the logarithmic law of the wall is
used to extrapolate the wind speed at ground level (see Eq. (1)), where
𝜅 ≈ 0.40 is the von Kármán’s constant, and 𝑧0 = 3.33 × 10−4 m is the
urface roughness. In our case 𝑢∗𝑓𝑡 = 0.23 m∕s, determined from [25],
esults in a mean horizontal fluid velocity of 𝑈𝑥(𝑧) = 5.9 m∕s at a

measurement height of 𝑧 = 10 m.

𝑈𝑥(𝑧) =
𝑢∗𝑓𝑡
𝜅

∗ ln( 𝑧
𝑧0

) (1)

With this definition, the total hours above this threshold since last
cleaning, the hours since the last time this threshold was reached, and
the average collector angle during the time above the threshold are
used as features. Dew formation is another meteorological influence
which may lead to higher soiling or have a cleaning effect, as discussed
by Conceição et al. [14],Caron and Littmann [26] and Mehos et al.

2 Result of the acceptance angle curve using the deviation of the collector
racking angle and the sun angle [21].

3 Percentage value of power curtailment for a certain collector, given by
olar field control system.
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Fig. 1. Layout of parabolic trough field (not to scale, for illustration only) including field position (𝑥, 𝑦), collector position in loop (1, 2, 3, 4), wind components (𝑢, 𝑣), and
positions of measurement and meteorological instrumentation.
[27]. The accurate measurement of dew formation would require an
additional dew sensor or at least a mirror temperature sensor. Both
of them are not available, therefore a simple approximation of dew
formation is given by the difference between dew point temperature4

and ambient air temperature. Included features comprise dew forma-
tion average values and threshold values. To estimate times with dew
formation, a threshold defined as 𝑇𝑎𝑚𝑏 − 𝑇𝑑𝑒𝑤 = 5K is set. If the
difference between dew point temperature and ambient air temperature
is below this threshold, dew formation is expected. Similar to the wind
speed threshold, the hours under the dew point threshold since last
cleaning, hours since the threshold was last reached, and the average
collector angle during this period are included as features. Natural
cleaning effects by precipitation are included with an average value,
maximum value, and threshold values. A threshold for a natural clean-
ing effect of a rainfall event has already been discussed in literature
and ranges from 0.3mm [29] up to 10mm [30], or is assumed to be
not applicable [31]. We included a theoretical cleaning threshold of
5mm, and additionally included features for dry periods, since they
showed good correlation with soiling ratio for PV soiling [29]. The
thresholding approach for precipitation features is comparable to that
used for wind speed. Feature are hours above precipitation threshold
since last cleaning, hours since the threshold is reached the last time,
and average collector angle during this period. Features for the dry
period are hours of the longest dry period with 0mm precipitation since
last cleaning, hours since the last time with a dry period, and average
collector angle during the dry period. The last feature considered was
an average PM10 value5 from a reanalysis dataset with 0.75◦ × 0.75◦

horizontal resolution. PM10 values show high correlations to soiling
rates, and therefore appear to be the most relevant PM value [32]. A
selection of the data used in the datasets is shown in Figs. A.11, A.12,

4 Calculated from relative humidity and air temperature according to the
formulas given in [28].

5 Generated using Copernicus Atmosphere Monitoring Service Information
[2021]
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A.13, A.14, A.15, A.16 and A.17. The data not shown here cannot be
presented in a meaningful way over a uniform time axis due to their
dependence on individual cleaning times of the collectors.

2.2.1. Dataset preparation
We divide the dataset into three distinct subsets: training (80%),

validation (10%), and test (10%). The largest subset is used to train
the model (training data). In this subset, the measured gloss values
are used to fit the model to the data. A smaller part of the dataset
is used for validating the trained model (validation data). The model
uses the validation data without the measured gloss values and predicts
the gloss instead. This is then used to estimate the performance and
tune the hyper-parameters of the model. The last fraction of the dataset
is used for the final evaluation of the model performance on unseen
data (test data). In order to use each data record independently from
the other records, we randomly shuffled the entire dataset to avoid
data patterns which may disturb the model prediction. Therefore, the
information about the chronological sequence of the measurements is
removed. This is possible because the original time-series data was
first converted to tabular data, as described above. The datasets used
for all models except for Decision Trees were scaled using z-score
normalization for each feature independently, defined as

𝑧𝑖 =
𝑥𝑖 − 𝜇𝑖

𝜎𝑖
,

for feature 𝑖 with value 𝑥𝑖, mean 𝜇𝑖 and standard deviation 𝜎𝑖. The
StandardScaler class from Scikit-learn library, version 0.23.1, was
used for this purpose [33].

2.2.2. Train, validation and test distribution
In order to ensure the dataset subsets sufficiently represent the true

underlying data distribution, we use a Kolmogorov–Smirnov test [34]
to verify the equality of the feature distributions between the training
data and the validation and test data. The Kolmogorov–Smirnov test
calculates the distance between two distributions. If it is close to zero
it is likely that the two distributions are identical. The null hypothesis
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Fig. 2. Kolmogorov–Smirnov test comparing training dataset with validation and test dataset. Both subsets show small distance values or high p-values or both, which shows the
imilarity of the data distributions. All p-values are above the chosen significance threshold of 0.05 (marked with red dashed line). (For interpretation of the references to color
n this figure legend, the reader is referred to the web version of this article.)
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s that the two feature distributions, training data compared with
alidation and test data, have identical distributions. We also calculate
he corresponding 𝑝-value for each feature. A high 𝑝-value above the

significance level makes it likely that the two distributions are identical
and therefore the null hypothesis would be correct. The results are
collected in Fig. 2 and show small distance values and high p-values,
above the commonly used threshold of 0.05, for all features. As long
as the p-values are above the significance level, deviations between
validation and test are tolerable. The results from this statistical test
can be further visualized with a histogram plot of the features in the
appendix in Figs. B.18 and B.19, where comparable distributions for
all features can be seen. With this test we can assume that a model
trained with the training data subset delivers comparable predictions
with validation and test data.

2.3. Classical machine learning models

We investigate four common classical machine learning models
implemented in Scikit-learn library [33], version 0.23.1, which either
have a high interpretability or deliver an uncertainty estimation. These
models are briefly described in the following and serve as a baseline to
be compared with a neural network approach described in Section 2.4.
Configuration parameters of the presented models are given in the
appendix in Table B.8.

Linear Regression The simplest model we used is a Linear Regression
(LR) model, which can infer a linear relationship between the
desired output and the dependent variables. It is fitted with
ordinary least squares method.

Support Vector Regression Support Vector Regression (SVR) is an
extension of Support Vector Classification and widely used in
machine learning applications. By using the radial basis function
kernel for SVR the model is able to handle non-linearities.

Gaussian Process Regression Gaussian Process Regression (GP) mod-
els are based on a biased multi-variate normal distribution,
where the prediction is the expected value according to the
261
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maximum likelihood principle. They are beneficial since they
are one of the few regression algorithms with a probabilistic
prediction, therefore giving a confidence of the prediction. The
used kernel is (0.5 × rational quadratic kernel + white kernel).
This kernel combination is the result of a grid search including
multiple kernels implemented in [33].

ecision Trees with Adaptive Boosting Decision Trees (DT) are a
common interpretable model, which require little data pre-
processing. In our application, we use DTs with the ensem-
ble method Adaptive Boosting [35], which has been shown to
improve DT regression performance. As a result of a hyper-
parameter optimization run the minimum number of samples
per leaf of the DT base model is set to 5, the number of esti-
mators for the Adaptive Boosting is set to 500 and the learning
rate to 1 × 10−7.

.4. Neural networks

The Neural Network (NN) model has the capability of highly non-
inear modeling. We created the NN model with PyTorch [36] version
.7.1. Neural Networks are applied in various disciplines and have
lready shown good results in soiling determination for PV [5–7].

We chose a feed-forward architecture with an input layer of 10
o 29 inputs according to the dataset, with five hidden layers con-
aining 512, 256, 128, 64, and 32 neurons (see Fig. 3). The number
f hidden layers and the number of neurons in the first hidden layer
ere determined via an architecture optimization in a preliminary

tudy (see Appendix B). The number of neurons in the subsequent
ayers are steadily decreased to match the output layer. Since we
ave a regression problem, we have a single output neuron for the
oiling prediction. We include dropout with a constant probability of
.4 applied to all layers to prevent overfitting. To speed up model
onvergence, we initialized the output layer with the average gloss
alue of the training dataset. In order to optimize the hyper-parameters
f the Neural Network, a grid search with three activation functions
Rectified Linear Unit (ReLU), Sigmoid, Hyperbolic tangent (Tanh)) and
hree learning rates (3 × 10−4, 6 × 10−4, 9 × 10−4) was performed. Early
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Fig. 3. Schematic of Neural Network architecture with number of input features n according to dataset (n=10, n=11, n=14, n=29), five hidden layers, dropout applied to all
layers, and gloss prediction as model output.
P

stopping was applied if the validation loss of the current epoch was
higher than the last 1000 validation losses and at the same time the
number of the current epoch is 1000 higher than the epoch with the
best results so far.

3. Metrics

Metrics for model comparison are used to decide which of the pre-
sented models shows the best results with one of the created datasets.
According to the use case, we defined two different types of metrics.
The first type focuses on the regression problem, where the gloss
measurements serve as direct comparison to the model predictions. In
the best case the gloss measurements can be directly replaced by the
predictions from the model.

From an application point of view, the model predictions can pro-
vide information on the need for cleaning for individual collectors
in the field. This second type of metric is used for the classification
problem, where we simply want to decide whether the mirror soiling
is above or below a certain gloss threshold. In that case we have an
easier classification problem with the potential to further optimize the
cleaning schedule.

The models are the same for both evaluation metrics. The division
into two metrics should give different insights into the model prediction
quality.

3.1. Prediction of gloss values (regression problem)

We use four different metrics to decide which models are best
suited for the regression problem of replacing gloss measurements.
The coefficient of determination (𝑅2) is a commonly used metric to
quantify how well a model fits the underlying measured values. If the
model perfectly fits the measured values 𝑅2 equals 1. If there is no
relation between model and measurement 𝑅2 equals 0. Mean squared
error (MSE) is especially useful to give outliers a higher weight since
it takes the square of the difference between measured and predicted
value. Root mean squared error (RMSE) takes the square root of MSE
and therefore has the advantage of conserving the unit of the value.
Mean absolute error (MAE) takes the average of all differences between
measured and predicted value without squaring it. Outliers are not
262

penalized stronger than other values.
3.2. Prediction of cleaning necessity (classification problem)

In order to evaluate the quality of the classification task we define
a cleaning threshold that is set at 90 gloss units. This value is also
used for cleanliness thresholds in Wolfertstetter et al. [37] and Pettit
et al. [38]. Collectors with higher gloss values do not need to be
cleaned, collectors with gloss values below this limit need to be cleaned.
The model predictions and gloss measurements are compared with the
cleaning threshold in a confusion matrix including true positives (TP),
false positives (FP), false negatives (FN), and true negatives (TN), see
Table 2.

To compare these results with the current cleaning procedure at
Andasol-3 a similar confusion matrix is designed (Table 3). The current
cleaning procedure is based on a fixed-time schedule where a collector
is cleaned approximately every four days. The recommendation to clean
is taken by applying the cleaning threshold to the measured gloss
values, and compared with the current cleaning procedure.

Additional calculated metrics from the confusion matrix are accu-
racy, recall, precision, and F1-score, shown in Eqs. (2)–(5). Accuracy
describes the ability to predict correctly if the cleaning is useful or
not and therefore should be as high as possible. Recall describes the
ability to find useful cleanings and should be as high as possible.
Precision again should be maximized and can be described by the
ability not to clean too early. F1-score combines precision and recall
with the harmonic mean. This has the advantage of not being sensitive
to class imbalances, as accuracy is. Therefore, F1-score is assumed
to be the most important metric for this work since we have an
imbalanced dataset (see Fig. B.20 in the appendix). The other metrics
are nonetheless given for completeness.

Accuracy = TP + TN
TP + TN + FP + FN (2)

Recall = TP
TP + FN (3)

recision = TP
TP + FP (4)

F1-score = 2 × Precision × Recall
Precision + Recall (5)
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Table 2
Confusion matrix definition for evaluation of gloss predictions (here referred to as
prediction). The models recommend or do not recommend a collector cleaning. This
is compared to the actual necessity given by the measured gloss (here referred to as
measurement) above or below the cleaning threshold (here referred to as threshold).
True positives (TP) False positives (FP)
(prediction < threshold) &
(measurement < threshold)
→ cleaning recommended
→ cleaning necessary

(prediction < threshold) &
(measurement > threshold)
→ cleaning recommended
→ cleaning unnecessary

False negatives (FN) True negatives (TN)
(prediction > threshold) &
(measurement < threshold)
→ cleaning not recommended
→ cleaning necessary

(prediction > threshold) &
(measurement > threshold)
→ cleaning not recommended
→ cleaning unnecessary

Table 3
Confusion matrix definition for comparison of gloss measurements (here referred to as
measurement) and actual cleaning activities. Cleaning is required with gloss measured
below the cleaning threshold (here referred to as threshold). Actual cleaning procedure
is determined from collector positioning commands.
True positives (TP) False positives (FP)
(measurements < threshold) &
collector is cleaned
→ cleaning recommended
→ collector cleaned

(measurements > threshold) &
collector is cleaned
→ cleaning not recommended
→ collector cleaned

False negatives (FN) True negatives (TN)
(measurements < threshold) &
collector is not cleaned
→ cleaning recommended
→ collector not cleaned

(measurements > threshold) &
collector is not cleaned
→ cleaning not recommended
→ collector not cleaned

3.3. Permutation feature importance

To gain insight into how useful each model input is for model
predictions, we calculate a permutation feature importance [39]. It
is calculated by randomly shuffling a single feature between samples
and reevaluating the MSE of the model with the shuffled feature. This
is performed repeatedly for every feature individually. With this pro-
cedure the relationship between feature and target value is removed.
The increase in the model loss then corresponds to the importance of
the shuffled feature. One major drawback is that permutation feature
importance is insufficient for correlated features. This can result in the
calculation of a too low loss and erroneously lead to the assessment
of low importance for the correlated features. As a consequence, high
feature permutation losses stand for a high feature importance, but
low feature permutation losses cannot be interpreted as low feature
importance.

3.4. Model uncertainty

In order to ensure the significance of the results, we estimate the
model uncertainty by splitting the uncertainty calculation into two
parts, systematic uncertainty and statistical uncertainty. The systematic
uncertainty, when applied to the classification task, showed very small
values of less than 0.1%. We therefore assume they can be neglected
nd only statistical uncertainties are calculated for the classification
ask. For the regression task we only calculated the systematic uncer-
ainty. The statistical uncertainty is only applicable if we have results
rom a confusion matrix to calculate the uncertainties.

.4.1. Systematic uncertainty
A major source of systematic uncertainty comes from the particu-

ar random initialization of a model used. This is applicable for the
eural Network and Decision Tree models. In order to estimate the

nfluence of the random initialization, 30 runs for each model with
263

ifferent initializations were performed. Every regression metric for
Neural Network and Decision Tree is an average value supplemented
with the uncertainty 𝑢(𝑥) from Eq. (6).

For the Gaussian Processes, Support Vector Regression, and Linear
Regression model no systematic uncertainty is calculated.

𝑢(𝑥) =

√

√

√

√

1
𝑛(𝑛 − 1)

𝑛
∑

𝑖=1

(

𝑥𝑖 − �̄�
)2 (6)

3.4.2. Statistical uncertainty
The statistical uncertainty arises due to the fact that the datasets

contain only a limited number samples, which therefore cannot per-
fectly describe the underlying data distribution. We use the Clopper–
Pearson (CP) interval [40] with a coverage rate of 95% to calculate
the binomial confidence intervals. The CP interval is a conservative
method, since it is always above the nominal coverage.

4. Results and discussion

In the first part of this section, the results for the presented models
with different datasets are discussed and compared. The performance of
all models was investigated for two types of metrics. Regression metrics
were used to investigate the ability to replace gloss measurements, and
classification metrics evaluated the ability to accurately detect whether
a collector should be cleaned or not. In the second part of the results the
most accurate model from the regression task is used and compared to
subfield average gloss values. In the last part of the results the feature
importance is discussed throughout all used models.

4.1. Model preselection

In order to find the best suited model for each of the datasets,
all models are trained with every prepared dataset. The metrics from
Section 3 are used to compare the model performance on the test data.
The test dataset was only used for the purpose of model comparison
and was not involved in model training or model optimization. Besides
finding the best model for every dataset, we investigate if classical
machine learning models from Section 2.3 are sufficient to deliver
accurate results. The use of datasets with different numbers of included
features gives information whether a small measurement setup at a
power plant with a lower number of data sources is sufficient to
deliver enough information for the purpose of soiling determination.
Results from the regression metrics throughout different models and
datasets are shown in Fig. 4. For the Neural Network model, the best
results from the grid search are included. Values in parentheses are the
systematic uncertainty values for Neural Network and Decision Tree
models.

4.1.1. Prediction of gloss values (regression problem)
The Linear Regression model shows the highest 𝑅2 = 0.34 and low-

st 𝑀𝑆𝐸 = 17.46, 𝑅𝑀𝑆𝐸 = 4.18, and 𝑀𝐴𝐸 = 3.01 with dataset_3.
inear Regression shows the worst results in the regression task for all
ompared models.

The Support Vector Regression model shows the best results with
ataset_3 for the metrics 𝑅2 = 0.52, 𝑀𝑆𝐸 = 12.76, 𝑅𝑀𝑆𝐸 = 3.57
nd 𝑀𝐴𝐸 = 2.21. However, these high losses are considerably worse
ompared to the NN, DT, and GP.

In the Gaussian Process regression model, the best results are
chieved with dataset_3, with 𝑅2 = 0.73, 𝑀𝑆𝐸 = 7.08, 𝑅𝑀𝑆𝐸 =

2.66, and 𝑀𝐴𝐸 = 1.68. The results show an improvement if bigger
datasets are used.

The results of the grid search for the Neural Network model are
shown in Fig. B.21 in the appendix. The figure shows the averaged
calculated regression metrics for different random seeds together with
the systematic uncertainty (𝑢(𝑥)) for each metric. The maximum 𝑅2 =
0.74 and minimum 𝑀𝑆𝐸 = 6.93 and 𝑅𝑀𝑆𝐸 = 2.63 are achieved with
the smallest dataset, dataset_0, Tanh activation and a learning rate
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Fig. 4. Model and dataset comparison for regression problem with 𝑅2, 𝑀𝑆𝐸, 𝑅𝑀𝑆𝐸, and 𝑀𝐴𝐸 metrics. The Decision Tree (DT) and Neural Network (NN) show the best results,
followed by the Gaussian Processes (GP) model.
of 6 × 10−4. However, the results from dataset_3 are comparable
within the range of uncertainty. The minimum 𝑀𝐴𝐸 = 1.68 is achieved
with the largest dataset, dataset_3, Tanh activation and a learning
rate of 3 × 10−4. As an overall trend, it can be seen that Tanh activation
performs best for each dataset, consistently outperforming ReLU and
Sigmoid activation. In addition, the results for 𝑅2, 𝑀𝑆𝐸, and 𝑅𝑀𝑆𝐸
with Tanh activation are similar throughout different datasets, only
𝑀𝐴𝐸 is reduced with a bigger dataset, e.g. dataset_3. The regres-
sion results for the best configuration from the Neural Network model
grid search are shown in the first rows of Fig. 4. The model achieves the
second best results compared to the other models with a near consistent
performance for the different datasets.

The best regression results for all investigated models are achieved
with the Decision Tree model with a maximum 𝑅2 = 0.77, minimum
𝑀𝑆𝐸 = 6.14, 𝑅𝑀𝑆𝐸 = 2.48, and 𝑀𝐴𝐸 = 1.51 with the largest dataset,
dataset_3, see Fig. 4. A slight improvement in model performance
can be seen with the use of a bigger dataset, from dataset_0 to
dataset_3.

MSE of train, validation, and test dataset part are compared in
Table 4. All models are included with their configuration that achieves
the best results. MSE of validation is lower that the MSE of test data.
This indicates that all models are slightly overfitted.

To sum up, the best results are achieved with the Decision Tree
model with 𝑅2 = 0.77. This coefficient of determination can be inter-
preted as percentage value, where 77% of the data can be explained
with that model. Second and third best results are reached with Neural
Network and Gaussian Process. Support Vector Regression and Linear
Regression models show clearly worse results.

Scatter plots of the predicted and measured gloss values are shown
in Fig. 5. Predictions from Support Vector Regression and Linear Re-
gression models show high deviations from the measurements espe-
cially in the area with measured gloss values below 90. Decision Tree
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Table 4
MSE of train, validation, and test dataset part. All models show small difference of
MSE of validation and test data. This shows that the models are slightly overfitted.

Model Train Validation Test Model parameter

NN 4.59 6.43 6.93 dataset_0, Tanh, lr=6e−4
DT 1.66 5.72 6.14 dataset_3
GP 2.53 6.35 7.08 dataset_3
SVR 13.65 11.98 12.76 dataset_3
LR 18.87 16.85 17.46 dataset_3

and Neural Network models have a nearly constant performance for
different datasets, which can be interpreted as a high robustness against
a changing measurement data availability. These models seem to be
most suitable for the use in different power plants with a varying
measurement setup.

4.1.2. Prediction of cleaning necessity (classification problem)
Linear Regression achieves the highest true negatives and lowest

false positives with dataset_0. The highest Accuracy and Precision
with dataset_1. Highest true positives, Recall, and F1-score, and
lowest false negatives with dataset_3. The classification results for
Linear Regression are the worst within the comparison, but compared
to the current cleaning schedule the model still shows better results.

The best classification results for the Support Vector Regression
model are obtained with dataset_2 for true negatives and false
positives. All other classification metrics show their optimum with
dataset_3. Precision values stand out from the other metrics. Here
the Support Vector Regression model has the highest score. This can
mainly be explained by the low false positive rate and the calculation
of Precision, see Fig. 6 and Eq. (4). The high Precision value shows
a good ability not to clean too early. This might be beneficial when
cleaning is very costly and a high solar yield is not important.
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Fig. 5. Scatter plot of gloss measurements and predicted values for all models and datasets which showed the highest 𝑅2 value. Support Vector Regression and Linear Regression
model show high deviations for measured gloss values below 90 and are therefore not applicable to solve the regression problem. Colors of data points indicate the number of
data in this bin.
The classification results for Gaussian Processes show a heteroge-
neous picture regarding the different datasets. The highest true nega-
tive, highest precision and lowest false positives as well as the highest
Accuracy and Precision are obtained with dataset_1. Highest true
positives, highest recall and f1-score, and lowest false negatives are
achieved with dataset_2.

The results of the grid search for the Neural Network model for
classification are shown in Figs. B.22 and B.23 in the appendix. Accu-
racy, Recall, Precision and F1-score show small changes with varying
learning rates, datasets and activation functions. In most cases, Tanh
activation shows the best results throughout different datasets. Com-
parable results can be seen for true positives, false positives, false
negatives, and true negatives in Fig. B.22 in the appendix. The clas-
sification results for the best configuration from the Neural Network
model grid search compared to the other models is shown in Figs. 6 and
7. The Neural Network model achieves one of the best results compared
to the other models with a nearly consistent performance for different
datasets. The adaptability of the Neural Net to different datasets can be
seen as a indicator of the advantage of using it in other power plants,
with a possibly different measurement data availability.

The Decision Tree model show the highest true negative, true
positive, Accuracy, Recall, Precision, and F1-score, as well as the lowest
false positive and false negative rate for dataset_3 (see Fig. 6).
With the exception of precision these are the best values compared
to the other models. The Decision Tree is slightly more sensitive to
the usage of different datasets compared to the Neural Network. The
Decision Tree is therefore the most reliable model in predicting cor-
rectly whether the collector should be cleaned or whether the cleaning
is not yet necessary. This balance seems to be advantageous for most
parabolic trough power plants, which try to find a good compromise
between low cleaning effort and high solar yield.

In conclusion, from the classification metrics we can see that the
Decision Tree, Neural Network, and Gaussian Process model have sim-
ilar results. The three models show closer results than in the regression
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task. This makes sense as the classification task does not require a
precise gloss prediction but only a classification to be made by the
models. The classification task thus allows for a margin of error around
the threshold. Support Vector Regression and Linear Regression models
show worse results, but even these poor results of the models are
advantageous over the current cleaning schedule.

Since the Decision Tree shows the best results, its predictions are
compared with the current fixed-time cleaning schedule. The defini-
tions for the confusion matrix evaluation were given in Table 3. Similar
metrics are calculated and the results collected in Fig. 8. The poor
results from the current cleaning schedule indicate that the available
gloss measurements do not seem to be used frequently for the decision
about whether the collectors need to be cleaned or not. As stated
in Section 3.2, we can compare these results with the classification
results from the model predictions. Relevant differences can be seen
in the false positives rate. This can be interpreted as the model, when
compared to the current schedule, not proposing a cleaning procedure
too early. Therefore, unnecessary cleanings can be reduced by 14.3%.
The clearly higher true positives rate indicates a much better ability
to detect situations where a cleaning procedure is necessary. With
the use of the model predictions, necessary cleanings are detected
additionally in 12.2% of the investigated cases. The increase of Ac-
curacy can be interpreted as an overall increased cleaning prediction
quality. These results clearly show the advances of a condition based
cleaning strategy, compared to a fixed cleaning frequency. This is also
in accordance with other studies, where a condition based cleaning
strategy is compared to a fixed-time strategy [41–43].

4.2. Comparing subfield average gloss with model predictions

A common practice for monitoring the mirror cleanliness is a sam-
pling method which delivers an average cleanliness value for the
subfield or entire plant. An example for such a procedure with readings
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Fig. 6. Model and dataset comparison for confusion matrix results true positives (TP), false negatives (FN), false positives (FP) and true negatives (TN). Color scales vary between
metrics for clarity, in all cases lighter is better. The metrics for the current cleaning schedule (CS) are included for comparison. Neural Net, Decision Tree, and Gaussian Processes
show better results for cases where cleaning is necessary (TP, FN), Support Vector Regression and Linear Regression are beneficial for cases where cleaning is not necessary (FP,
TN).
taken at 84 locations is given in [27]. For the comparison, the model
which showed the best regression results is used (Decision Tree trained
with dataset_3). Data from the test subset are used for the compari-
son. We require a minimum of two gloss measurements within an entire
subfield to be used for predictions. A total of 188 different subfield
average values are included in the comparison subset. We observe at
most only ten gloss measurements for an entire subfield. With this low
number of samples a student t distribution with a 68.3% confidence
interval is used to estimate the uncertainty of the average values.

Results are shown in Fig. 9. We see that in most cases the model fits
the average gloss measurements. However, we see a high measurement
uncertainty for both the gloss measurements and gloss predictions. This
is mainly caused by the low number of samples per subfield and a high
variation within the subfield. The latter is especially the case for gloss
measurements.

One of the main reasons for the high uncertainties is caused by the
usage of the test dataset. It was randomly sampled from the dataset
and it is therefore very unlikely that an entire subfield measurement
campaign is contained in the test dataset. To gain more meaningful
information about the capabilities of the model to predict average val-
ues, a new dataset with coherent measurements is needed. Moreover, in
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the current model information of neighboring collectors is not used for
the individual soiling determination. Predicting average values would
benefit from a model, which processes data from the entire subfield
collectively.

4.3. Permutation feature importance

In order to get insights into the usefulness of every model input
for the model prediction, we calculated the permutation feature impor-
tance for every input and model. Fig. 10 shows the feature permutation
losses minus the 𝑀𝑆𝐸 of the original model on the 𝑥-axis for every
feature on the 𝑦-axis. The results show high losses, and therefore
high feature importance, for generally the same features across all
models. These are sine and cosine of week of year, irradiance features,
wind features, precipitation maximum, and hours since precipitation
cleaning threshold was reached. Linear Regression, Neural Net, and
Gaussian Processes reach higher importance for the features collector
temperature and wind 𝑢, 𝑣 average. Particle concentration feature
(PM10) was especially useful for Neural Net, Gaussian Processes, and
Support Vector Regression model.

In conclusion, permutation feature importance shows a high sea-
sonal influence for soiling for all models, and for the majority of the
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Fig. 7. Model and dataset comparison for confusion matrix results Accuracy, Recall, Precision and F1-score. Neural Net, Decision Tree, and Gaussian Processes show the overall
best results for correctly predicting if the collector should be cleaned or not. The metrics for the current cleaning schedule (CS) are included for comparison.
models a high influence from irradiance, wind, and PM10. The high
seasonal influence is also reported in [27], PM10 showed the highest
correlation with soiling of PV modules in [29]. However, the character-
istic of the used method makes it difficult to determine without doubt
which feature shows a low importance.

5. Conclusion and outlook

In this work, a method for soiling determination using the oper-
ational data from the solar field and additional meteorological data
was presented. The method delivers helpful information on the current
soiling status, which can be used for optimization of the cleaning
schedule of the parabolic trough field. Using one of the explored models
for soiling determination, therefore, helps to apply an economical,
optimized cleaning strategy in parabolic trough fields. One drawback of
these investigations is the use of gloss measurements and their applica-
tion as soiling indicator. Although it is used in some power plants as a
quick and simple measurement technique for spatially resolved soiling
evaluations, the use of reflectance measurements would be preferable.

A first evaluation criterion for the model results is the direct com-
parison with gloss measurements. In this regression problem, the best
results are again achieved with the Decision Tree model and the usage
of the largest dataset. 77% of the test data can be explained with the
267
predictions of this model. Slightly worse results are achieved with Neu-
ral Network and Gaussian Processes models. This result is in accordance
with Grinsztajn et al. [44], who discusses the superiority of tree-based
models over Neural Networks.

The key evaluation criterion for the model results is the prediction
of cleaning necessity and the comparison to the current fixed-time
cleaning schedule. All investigated models outperformed the current
fixed-time cleaning schedule. As a main result, we showed a potential
reduction of unnecessary cleanings by 14.3% and increased detected
necessary cleanings by 12.2% in investigated cases. This is achieved
by using the Decision Tree model with the largest training dataset.
The results from Neural Network and Gaussian Processes models show
similar performance. A detailed comparison of the economic benefits
of a cleaning schedule based on soiling thresholds and a fixed-time
cleaning schedule is shown by Wolfertstetter et al. [37]. They showed
a relative profit increase of the threshold-based cleaning schedule over
the fixed-time schedule of 0.36%.

The comparison of subfield average values to Decision Tree pre-
dictions shows in most cases a good fit between measurements and
predictions but with high uncertainties. Testing the model with an
specially created test dataset with coherent measurement within one
subfield would be needed to lower the uncertainties.
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Fig. 8. Comparison of current cleaning schedule with model recommendations from Decision Tree and dataset_3. The Decision Tree shows an improvement in almost all cases
compared to the fixed-time cleaning schedule. Unnecessary cleanings can be reduced by 14.3% (FP), necessary cleanings are detected additionally in 12.2% (TP).
Fig. 9. Comparison of average subfield values from gloss measurements (horizontal error bars) and Decision Tree model predictions (vertical error bars). The model fits well the
actual average subfield gloss especially at high gloss values.
All used models showed a high seasonal influence on the soiling
prediction. Other important inputs for the majority of the models
are irradiance, wind and particle concentration (PM10). Nevertheless,
using the permutation feature importance method makes it difficult to
concretely determine which features do not have a high importance.

The low variations in regression results between different datasets
of the Decision Tree and Neural Network model makes them most
suitable for the application in a different power plant with a varying
measurement setup. Following the success of transfer learning in other
domains [45], we believe that the fine-tuning of the trained models to
a new power plant requires much less data than the initial training and
therefore only a small amount of additional gloss measurements have
to be taken at the new power plant for our models to provide benefit.
Due to the limited amount of data we made the design choice of using
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only 10% of the data for validation and test dataset. For future investi-
gations using cross-validation would be a promising approach to better
estimate the training variance of the relatively small dataset we used.
By making the dataset publicly available, others can combine it with
their own data to create a more comprehensive training, validation,
and test set.

Further future developments with a different scope may focus on
the determination of whole subfield average soiling values. Convolu-
tion [46] or attention-based neural networks [23], for example, may
be an option for this purpose as they can consider information from
multiple collectors rather than predicting a soiling for each collector
independently.

Selecting meaningful time-series features was a manual task in this

work. This goes along with a simplification via the compressing of
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Fig. 10. Permutation feature importance for all models across different features. A high loss indicates a high feature importance. All models show a high seasonal influence for
soiling estimation. The majority of the models also show a high influence from irradiance, wind, and PM10 features. The colored bars on the left of the figure indicate to which
dataset the features belong to.
time-series data into a fixed number of values with the usage of mean,
minimum, maximum, and time duration values. Using transformer
neural networks [23], for example, can be a way to automate the
engineering of relevant features and avoid compressing the data more
than necessary. Their built-in attention mechanism may be a promising
way of extracting meaningful features, which help the model find the
best prediction.

The datasets are created with the assumption of no concept drift,
i.e. that the properties of the dataset do not change over time. Namely,
we assume that the factors determining soiling are consistent from year
to year. If this assumption holds, a model trained on historical data can
be expected to perform on future data. We leave the investigation of
concept drift as an avenue for future work.

In this work, we have shown that machine learning models, when
utilizing readily available operational and meteorological data, are ca-
pable of delivering valuable information about the soiling levels within
a solar field. This approach, when applied to parabolic trough solar
fields, has the potential to reduce operational and maintenance costs,
increase energy yields, and extend the lifespan of the field as a whole.
Determining soiling using this approach can also be used for future
anomaly detection methods. Soiling overlays all other performance
degrading effects and it occurs in every solar field. It is therefore
necessary to know the current soiling level to detect other anomalies.
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Fig. A.11. Timestamps of gloss measurements for each subfield (SW: southwest, SE:
southeast, NW: northwest, NE: northeast) from 2015 to 2018. In most cases, the data
used show a uniform distribution throughout the year, except for the period between
December and January, for which data are only available in 2015.

Fig. A.12. Annual pattern of gloss values used in the data sets from 2015 to 2017. The
dots show the measurements included in the data set. The lines are weekly average
values. Seasonal influences that reduce gloss values can be seen in the summer months
of July through September.

Appendix A. Representation of input data

See Figs. A.11–A.17.
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Fig. A.13. Annual pattern of days since the last cleaning of the collectors used in the
datasets from 2015 to 2017. The dots show the measurements included in the dataset.
The lines are weekly averages. Median values for each year range from 3 to 6 days.

Fig. A.14. Annual pattern of dumping values used in the datasets from 2015 to 2017.
he dots show the measurements included in the dataset. The lines are weekly average
alues. Due to high solar irradiation, the solar field has higher dumping values in the
ummer months.

Fig. A.15. Wind rose for the data used in this paper. The main wind direction is
southeast, according to the terrain characteristics.
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Fig. A.16. Difference between the dew point temperature and the ambient tempera-
ture. The dots show the measurements included in the data set. The lines are weekly
averages. The horizontal dashed red line shows the theoretical threshold used for dew
formation. Dew formation occurs mainly between October and April. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Fig. A.17. Annual pattern of PM10 values used in the datasets from 2015 to 2017.
The dots show the measurements included in the dataset. The lines are weekly average
values. The highest PM10 values can be seen in the summer months, which is consistent
with the lower gloss values in those months.

Table B.5
First part of architecture optimization with fixed number of neurons in first layer (1024)
and varying number of hidden layers. Lowest MSE is achieved with 5 hidden layers.

Number of hidden layers 1 2 3 4 5 6

MSE 8.73 6.66 6.05 6.16 6.04 6.1

Table B.6
Second part of architecture optimization with fixed number of layers (5) and varying
number of neurons in first hidden layer. Lowest MSE is achieved with 1024 neurons
in first hidden layer, but with highest relative runtime.

Number of neurons in first hidden layer 64 128 256 512 1024

MSE 12.93 9.93 8.40 6.75 6.04
relative runtime 0.51 0.57 0.65 0.70 1.00

Appendix B. Neural network architecture optimization

The number of hidden layers and the number of neurons in the first
hidden layer were determined with a two stage optimization procedure.
It was performed with dataset_0, a learning rate of 9 × 10−4, and

anh activation trained for maximum 3000 epochs with early stopping
nabled. In the first stage, the number of hidden layers was determined,
ith the number of neurons in the first hidden layer fixed to 1024. The

owest MSE was achieved with 5 hidden layers (see Table B.5). Fixing
he number of hidden layers to 5, the number of neurons in the first
idden layer was determined in the second stage of the optimization
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Fig. B.18. Histogram plots (part 1) of training (blue), validation (orange) and test (green) distribution for each feature show comparable distributions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. B.19. Histogram plots (part 2) of training (blue), validation (orange) and test (green) distribution for each feature show comparable distributions. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
procedure (see Table B.6). The lowest MSE was achieved with 1024
neurons, but with the highest relative runtime. The second best MSE
was achieved with 512 neurons, at 70% of the 1024 neuron runtime.
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In order to have a low MSE at a reasonable runtime, five hidden layers
with 512 neurons was chosen as Neural Network architecture for the
remainder of the experiments in this work.
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Table B.7
Description of used features with mean min and max values and their usage in different datasets. Features are grouped into operational data, which describe features that are
individual for each collector and meteorological data which are mostly identical for all collectors.

Feature Description mean min max dataset

Operational data Data from solar field from day of gloss measurement (average values)

week of year sin week of year sin = Sin(week * (𝜋/26)) 0.08 −1.00 1.00 0; 1; 2; 3
week of year cos week of year cos = Cos(week * (𝜋/26)) −0.19 −1.00 1.00 0; 1; 2; 3
days since last cleaning Days between collector in cleaning position and gloss measurement 8.73 0.46 126.00 0; 1; 2; 3
collector pos x Collector position from west to east 37.40 1 76 0; 1; 2; 3
collector pos y Collector position from south to north 4.53 1 8 0; 1; 2; 3
collector pos loop Collector position in Loop according to flow direction 2.50 1 4 0; 1; 2; 3
irradiance Daily average irradiance from sunrise to sunset on collector aperture Avg(DNI *

cos(phi))
462.24 13.92 847.36 0; 1; 2; 3

cumul irradiance Cumulative sum of theoretical collected irradiance Sum(DNI * cos(phi) * IAM) 6.36E+04 910.38 1.43E+05 0; 1; 2; 3
focus Daily average focus factor from sunrise to sunset 0.79 0.00 0.99 0; 1; 2; 3
dumping Daily average of dumping offset 0.39 0.00 5.54 0; 1; 2; 3
collector temperature Daily average collector temperature from sunrise to sunset [◦C] 290.41 44.72 369.16 1; 3

Meteodata Meteorological data taken from last time the collector was in cleaning position up to time of gloss measurement

wind u avg Wind u component average (east–west, 90◦ to collector axis) [ m
s

] −0.83 −6.56 3.61 2; 3
wind v avg Wind v component average (north–south, aligned with collector axis) [ m

s
] 0.30 −2.93 2.95 2; 3

wind hours above
threshold

Sum of hours above theoretical saltation velocity ( 5.9 m/s at 10 m measurement
height)

26.18 0.00 381.76 3

wind hours since threshold Hours since the last time the wind was above theoretical saltation velocity 8.19 0.00 220.91 3
sca angle wind Average collector angle during the time the collector was above saltation velocity 103.77 −4.49 181.28 3
diff dew amb avg Average difference between the dew point temperature and ambient air

temperature
9.74 2.41 24.22 2; 3

dew hours under thres Sum of hours under dew formation threshold (5 K) 83.19 0.00 1808.64 3
dew hours since threshold Hours since last theoretical dew formation 20.08 0.00 180.03 3
sca angle dew Average collector angle during last theoretical dew formation 67.77 −14.16 181.38 3
precip avg Average precipitation in mm 0.48 0.00 7.30 2; 3
precip max Maximum precipitation in mm 3.57 0.00 50.90 3
precip hours above
threshold

Sum of hours precipitation was above theoretical cleaning threshold (5 mm) 9.94 0.00 216.00 3

precip hours since
threshold

Hours since precipitation was above last theoretical cleaning threshold 132.87 10.95 1436.71 3

sca angle precip Average collector angle during last time precipitation was above theoretical
cleaning threshold

18.77 −14.20 181.99 3

precip dry hours Hours of longest dry period with no precipitation (0 mm) 95.96 0.00 600.00 3
precip hours since dry
period

Hours between the last day of the dry period and gloss measurement 56.84 0.00 1364.55 3

sca angle dry Average collector angle during dry period with no precipitation (0 mm) 87.27 −3.10 181.80 3
pm 10 Average PM10 value [ μg

m3 ] 1.57E−08 3.99E−09 6.29E−08 3
Fig. B.20. The gloss values show similar distributions across the train, validation, and
est data subsets, but exhibit a clear class imbalance.
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Table B.8
Model configuration parameters for Linear Regression, Decision Tree, Gaussian Process,
Support Vector Machine and Neural Network. Any parameters not shown used default
values.

Model Parameters

LR fit_intercept=True, normalize=False, copy_X=True, positive=False
DT base_estimator=DecisionTreeRegressor(min_samples_leaf=5),

n_estimators=500, learning_rate=1e−07
GP kernel=(0.5 * RationalQuadratic(alpha=1, length_scale=1) + 1 *

WhiteKernel(noise_level=1)), n_restarts_optimizer=0,
normalize_y=True

SVR kernel = ’rbf’, cache_size=10000
NN batch_size = 100, optimizer = ’Adam’,

loss_function=torch.nn.MSELoss()
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Fig. B.21. 𝑅2, MSE, RMSE, and MAE with uncertainties from Neural Network grid search calculated from 30 different random initializations for each model configuration. The
four columns represent the different datasets. Tanh activation performs best for each dataset, compared to ReLU and Sigmoid activation. Deviations between different datasets are
small.
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Fig. B.22. True positives, false positives, false negatives, and true negatives with uncertainties from Neural Network grid search calculated from 30 different random initializations
for each model configuration. The model shows a nearly consistent performance for different datasets and different activation functions.
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Fig. B.23. Accuracy, Recall, Precision and F1-score with uncertainties from Neural Network grid search calculated from 30 different random initializations for each model
configuration. The four columns represent the different datasets. The model shows a nearly consistent performance for different datasets and different activation functions.
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