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Abstract

This thesis presents an imitation learning approach to energy-efficient trajectory
generation for elastic, legged robots. The trajectories are generated by teleoperation
with force feedback. The presented framework allows an operator to achieve
locomotion on an one-leg hopper by controlling its foot tip. The force feedback is
designed to assist the operator to find gaits which exploit the natural harmonics of
the hopper and thus improve energy efficiency.
The resulting trajectory is approximated, parameterized, and replayed on the robot.
The operator achieves a cost of transport of 0.25 at 0.63 m s−1, considering the
mechanical energy. Black-box optimization is used to keep this value with varying
hardware parameters, such as different foot-tip stiffness. A reinforcement learning
algorithm stabilizes lateral movement by active balance in simulation. Learning on
hardware shows an improvement in stability.
The concept is extended to multi-legged robots by teleoperating the two feet of
the biped DLR C-Runner in simulation. The force feedback assists the operator to
find stable gaits where the center of mass does not leave the support polygon of
the feet.
On both systems, the presented teleoperation framework utilizes the human’s capa-
bility of estimating the properties of non-linear dynamics by designing appropriate
haptic feedback.

Keywords: Legged Robots; Cost of Transport; Black-Box Optimization; Reinforce-
ment Learning; Humanoids
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1 Introduction

Mobile robots fulfill more and more important tasks in our society. Rovers are
used as a crucial tool in search and rescue missions. Others explore unknown
and for humans yet unreachable environments like the surface of Mars. Wheeled
locomotion is amongst the highest in efficiency, however accessibility is limited.
Legged robots on the other hand are superior in overcoming obstacles. The state-
of-the-art quadruped Spot of Boston Dynamics is used for search and rescue in
fires and other hazardous environments with rough terrain.

The design and control of legged robots is a topic of active research. Raib-
ert (1986) achieved a breakthrough by designing robotic hoppers that run with
dynamic balance [1]. These mono-, bi-, and quadrupeds were designed by the MIT
Leg Laboratory and use elastic linear actuators. They balance by hopping and
continuously adjusting the foot position relative to their Center of Mass (CoM)
when they are in the air. Other hoppers of that type are the ARL Monopod I and
II [2, 3]. While these robots use prismatic joints, the SPEAR robot uses revolute
joints with parallel elastic actuators [4].

Elastic robots have useful properties for legged locomotion. They are robust
against impacts and the elastic elements can store and release energy. In robots
with Series Elastic Actuators (SEAs) the mechanical spring is located between the
motor and the link of each joint. State-of-the-art legged robots with SEAs are the
biped C-Runner [5] and the quadruped bert [6] of the German Aerospace Center
(DLR). State-of-the art trajectory generation for multi-legged locomotion relies
on complex computations and CoM trajectories like the Divergent Component of
Motion (DCM) framework of Englsberger et al. (2015) [7].

These systems, as well as their inherent harmonics, are nonlinear. Exiting them
can be used for energy efficient locomotion. However, these non-linear oscillations
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are mathematically hard to find, as the established modal analysis methods only
apply in the linear case. They depend heavily on hardware parameters, external
forces and friction. Exciting them by a model-based control approach and the
transfer from simulation to hardware is still a topic of active research [8, 9, 10, 11, 12].
Model-free learning approaches have shown good results on these systems. Raffin
et al. (2022) combined Black-Box Optimization (BBO) and reinforcement learning
to stabilize and improve the locomotion of the DLR quadruped bert [6] while
drawing on the elastic properties [13].

Apart from machine learning algorithms, humans are able to excite non-linear
oscillations easily, e.g. exciting the natural oscillation of a long ruler blindfolded [14].
By feeling the reaction forces of systems, one gets an intuition of the underlying
dynamical properties [15].

The basic research idea of this thesis is combining the human intuition for
oscillatory dynamics with learning algorithms to find trajectories for energy efficient
locomotion of robots with serial elastic joints. This method is known as imitation
learning. Energy efficiency will be measured by the Cost of Transport (CoT), which
is relating the (mechanical) energy consumption and traveled distance of the robot.
The MIT Cheetah is amongst the most energy efficient legged robots. It achieved
a CoT of 0.13 [16].

The main part of this thesis is researched on a SEA one-leg testbed (cf. Fig-
ure 1.1). It is part of the unpublished next generation of the DLR bert [6].
Throughout Chapter 3, the imitation learning process is shown. The haptic device
omega.3 of the company force dimension® (cf. Figure 1.2) is used to control the
hopper with teleoperation (as depicted in Figure 1.3). High precision and low
latency force feedback is used to enable the operator to find gaits which match
the natural frequency. The recorded data is parameterized and used as a baseline
trajectory for learning algorithms to improve energy efficiency and stability. The
operator achieved a CoT of 0.25 at 0.63 m s−1. The optimization showed only slim
improvement. During teleoperation and optimization, the robot is mechanically
prevented from tipping over. In order to stabilize the hopper without this constraint,
a controller is designed by reinforcement learning. It is successfully trained in
simulation and on hardware. Chapter 4 expands the concept to bipedal locomotion.
By using two input devices, a human operator commands a walking gait of the
compliant biped DLR C-runner [5]. This is done in a real-time simulation.
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In conclusion, the main contributions of this work are designing a framework
to intuitively teleoperate the one-leg with appropriate force feedback, and achieve
locomotion. The generated trajectories are optimized for energy efficiency. The
locomotion is stabilized by a controller, designed by reinforcement learning. Ad-
ditionally, the biped C-Runner is teleoperated in simulation by using two haptic
input devices.

Figure 1.1: One-leg hopper with serial elastic joints Figure 1.2: The omega.3 haptic input device

Figure 1.3: An operator controlling the elastic one-leg hopper by teleoperation
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2 Theoretical Background

This chapter explains the fundamentals of energy efficient locomotion with elastic
robots and the imitation learning method.

2.1 Evaluation of Energy Efficiency

Energy efficiency will be evaluated by the Cost of Transport (CoT), which is
commonly used both in biology and in robotic locomotion. It is defined by the
consumed energy E of the robot over its traversed distance d, with the robot’s
mass m and gravity constant g taken into account:

CoT = E

m g d
. (2.1)

Gregorio et al. (1997) achieved a CoT of 0.7 at 1.2 m s−1 with a electrically actuated
hopper, the ARL Monopod I [2]. The CoT was improved to 0.22 with the ARL
Monopod II [3]. They used a modified control approach of the simple but effective
algorithm by Raibert (1986) [1]. The SPEAR robot is using parallel elastic actuators
to achieve a CoT of 0.45 at 0.54 m s−1 [4]. The state-of-the-art quadruped MIT
Cheetah has a CoT of 0.13 during running with 2.3 m s−1 [16]. These robots are
depicted in Figures 2.2 and 2.3.

Furthermore, the CoT of each system depends on the systems forward speed.
Mobile systems have a region of speed where their locomotion is most efficient.
This is represented by the Kármán-Gabrielli diagram (cf. Figure 2.1). It was
introduced by Gabrielli and von Kármán (1950) to compare the CoT over speed
for different systems [17]. Only the mechanical energy of the motors is considered,
i.e. the electrical energy and heat loss is neglected. This makes the different systems
comparable over the different actuators and overall efficiency.
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Figure 2.1: Kármán-Gabrielli diagram for state-of the-art elastic legged robots

1: leg motor sensor
2: leg motor
3: hip pulley
4: cables
5: ball screw
6: ball nut

7: hip motor sensor
8: hop motor
9: cable idler
10: limiting belt
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12: leg

13: hip sensor
14: body
15: servo amplifiers
16: counter weight

Figure 2.2: The ARL Monopod I. Adapted from [2].
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2.2 Serial Elastic Joint Robots

For robots with Series Elastic Actuators (SEAs), the motors and links are decoupled
by a mechanical spring. Figure 2.4 depicts the principle sketch of a single SEA,
with b and m as motor and link inertias, and qa and qu as motor and link positions
respectively. Further, k denotes the spring stiffness. The inputs u and Qu represent
the control input and external forces exerted on the link.

mu

Motor LinkSpringqa

k(qa − qu)

qu

b

Qu

Figure 2.4: Principle sketch of a single series elastic joint

The equations of motion for articulated robots with multiple joints can be
derived by the model proposed by Spong (1987) [19]:

M (qu)q̈u + C(q̇u, qu)q̇u + g(qu) = τj + Qu , (2.2)
Bq̈a + τj = u + Qa . (2.3)

The first equation of the system (2.2) reflects the properties of the rigid body
dynamics of the n-link robot, with M (qu) ∈ Rn×n denoting the link inertia matrix
and C(q̇u, qu) ∈ Rn×n the centrifugal and Coriolis matrix. The influence of gravity
is represented by the vector g(qu) ∈ Rn. These are configuration dependent,
i.e. functions of of the link coordinates vector qu ∈ Rn and q̇u for C.1 Link-side
external torques are represented by the vector Qu ∈ Rn.

The Spong model neglects the gyroscopic forces of the motor inertias [19]. The
second equation (2.3) describes the motor dynamics of the robot, with qa ∈ Rn

denoting the vector of motor coordinates. The diagonal matrix B ∈ Rn×n contains
the motor inertias and the vector Qa ∈ Rn describes the friction torque acting on
the motors. The control input u ∈ Rn actuates the motors.

1For brevity, the arguments of these matrices and vectors will be omitted throughout the rest
of this thesis.
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The system of equations is coupled by the spring torques τj ∈ Rn, defined
by:

τj = K(qa − qu) , (2.4)

with K ∈ Rn×n, denoting the diagonal spring stiffness matrix.
As mobile robots are free to move in the world in m Degrees of Freedom

(DoF), the floating base model applies. The rigid body dynamics equation (2.2) is
enhanced by the base position xb ∈ Rm and its derivatives relative to the world
frame W : Mb Mbq

MT
bq M


︸ ︷︷ ︸

M

 ẍb

q̈u

+ C

 ẋb

q̇u

+ g =
 0

τj

+ Qu . (2.5)

The submatrix Mb ∈ Rm×m is the inertia matrix of the base. The submatrix
Mbq ∈ Rm×n describes how link accelerations apply inertial torques and forces on
the base. This notation is adopted from [20].

2.3 Imitation Learning

Imitation learning is the method of observing an action and trying to repeat it.
In machine learning, a model is trained by observing and imitating behavior in a
specific task, rather than learning from explicit rules or objectives. This is useful
in robotics, because imitation can be used to omit manual programing of e.g.
trajectories, which will be the focus of this work.

Kober et al. (2008) taught a robotic arm to solve the Ball-in-a-Cup or Kendama
game. A ball is connected by a string to a cup. The goal is to propel the ball
into the cup by swinging the cup. Trajectories from a human demonstration are
used to initialize Dynamic Motor Primitives (DMPs), which were improved by
reinforcement learning [21].

8



2.3.1 The Basics of Reinforcement Learning

Reinforcement learning is searching for an agent’s optimal behavior in an environ-
ment. The underlying principle is depicted in Figure 2.5. The agent receives, with
discrete steps, information about the state of the environment st and gets a scalar
reward signal rt. The state is fulfilling the Markov property, meaning the current
state of the environment is containing all information about the environment. The
agent’s behavior is determined by the policy, which is a set of rules, that determines
the agent’s actions a based on s. The policy can be deterministic, in which case it
will be called µ(s) or stochastic π(s). The reward rt is the reward given, due to
action at. The action in the next timestep is called a′. The terminal state is sent
by the environment, when the episode is finished.

Usually, the complete state of the environment is unknown. Then the agent
receives an observation signal ot with the known state of the environment. The
principle of the algorithms applies both to given states and observations. In
this part, only states are considered. In the implementation, observations are
used. States, observations, and actions are vectors with the size of their respective
space.

The following derivation of the learning algorithms is leaned on the introduction
to reinforcement learning [22] by Sutton and Barto (2018) and the documentation of
the python library and resource platform Spinning Up in Deep RL! [23] of OpenAI®.
In this thesis, the algorithms are implemented with the stable-baselines3 python
library [24]. It features pre-tuned hyperparameters and easy implementations for a
variety of algorithms.

Agent at+1 = a′

st, rt
Environment

Figure 2.5: Agent-environment dynamic of reinforcement learning
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The aim of reinforcement learning is maximizing the cumulative reward, called
return R, which is defined by:

R(τ) =
∞∑

t=0
γt rt , (2.6)

where τ is a sequence of state-action pairs over time frame. Future returns are
discounted by the factor γ. The quality or value of a policy is measured by its
expected return. It depends on the interaction between policy and the dynamics of
the environment:

J(π) =
∫

τ
P (τ |π) R(τ) = E

τ∼π
[R(τ)] . (2.7)

The equation describes the expectation E, that τ follows the policy π. The state-
action transition matrix P (τ |π) is determining the probability of following the
trajectory τ with the policy π, when the environment’s dynamics are taken in
account.2 In short, the reinforcement learning problem is finding the best policy
π∗ by:

π∗ = argmax
π

J(π) . (2.8)

The covered algorithms rely on the Bellman optimality principle. Values are
defined by their intermediate reward plus the expected cumulative reward in the
future [25, Chapter 3.2]. The derived Bellman equations describe the value of
policies and actions. A policy is evaluated by its on-policy value function:

V π(s) = E
a∼π
s′∼P

[r(s, a) + γ V π(s′)] = E
a∼π

[Qπ(s, a)] . (2.9)

It describes the expected return in state s, if the actions are determined by π

and the next state s′ is determined by P . Is is calculated by the immediate
return r plus the discounted future rewards. Further, the on-policy action-value
function describes the expected return if an arbitrary (off-policy) action is taken
and thereafter the policy is followed:

Qπ(s, a) = E
s′∼P

[
r(s, a) + γ E

a′∼π
[Qπ(s′, a′)]

]
. (2.10)

2For brevity P (·|π) will be denoted by P .
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The optimal value functions have the best expected return, they fulfill the Bellman
optimality principle:

V ∗(s) = max
a

E
s′∼P

[r(s, a) + γ V ∗(s′)] = max
a

Q∗(s, a) , (2.11)

Q∗(s, a) = E
s′∼P

[
r(s, a) + γ max

a′
Q∗(s′, a′)

]
. (2.12)

The strategy of the covered learning algorithms is to explore the environment,
create approximations of the value functions and optimize them to fulfil the Bellman
optimality equations. The approximations are usually non-linear neural networks.
One method is Q-Learning by Deep Deterministic Policy Gradient (DDPG) [26].
It is learning the on policy action-value function by approximating it with a neural
network with the parameters ϕ. It is then minimizing the Mean Squared Bellman
Error (MSBE) between the approximation Qϕ and a target y(r, s′, a′). The target
is satisfying the Bellman optimality principle in equation (2.12):3

L(ϕ, D) = E
(s,a,r,s′)∼D

[
(Qϕ(s, a) − y(r, s′, a′))2]

, (2.13)

y(r, s′, a′) = r + γ max
a′

Qϕ(s′, a′) . (2.14)

The data of a replay buffer is used, which is the set D of learned {s, a, r, s′}
pairs. If the terminal state is reached after s, no future reward is given. The
corresponding policy is calculated by using the Bellman optimality principle in
equation (2.11):

max
θ

E
s∼D

[Qϕ(s, µθ(s))] . (2.15)

This process is called policy optimization. The generated deterministic policy µθ(s)
is a neural net with parameters θ.

3In the implemented algorithm, the target’s neural net parameters are determined by polyak
averaging [27], to solve the optimization problem.
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2.3.2 Reinforcement Learning using the Soft Actor-Critic
Algorithm

The key feature of the Soft Actor-Critic (SAC) algorithm is that the tradeoff
between exploring new policies and exploiting the return of the current policy is
handled by rewarding entropy in the policy [28]. A policy with high entropy is
more random. This enables on-policy exploration. It was used to demonstrate
in-hand manipulation on the robot Justin of the German Aerospace Center (DLR).
Using SAC, Justin was able to rotate a cube in its hand, while grasping it from
the top [29]. No visual sensors were used. The SAC algorithm is able to stabilize
highly sensitive systems and was therefore chosen for this thesis.

The entropy of a random variable x is calculated by the logarithmic likelihood
log of its distribution:

H(P ) = E
x∼P

[− log (P (x))] . (2.16)

Policies with a higher entropy are favoured, this is respected in the value func-
tions:

V π(s) = E
a∼π

[Qπ(s, a)] + α H(π(·|s)) , (2.17)

= E
a∼π

[Qπ(s, a) − α log(π(a|s))] , (2.18)

Qπ(s, a) = E
s′∼P

[
r(s, a) + γ E

a′∼π
[Qπ(s′, a′)] + α γ H(π(·|s′))

]
, (2.19)

= E
s′∼P

[
r(s, a) + γ E

a′∼π
[Qπ(s′, a′) − α log(π(a′|s′))]

]
. (2.20)

The hyperparameter α determines how much entropy is favoured, and therefore
effects the balance between exploration and exploitation.

Q-Learning often overestimates the action-values, which is exploited by the
policy learning. This is counteracted by double Q-Learning, which was introduced
by the Twin Delayed Deep Deterministic Policy Gradient (TD3) algorithm [30]. It
is also used in SAC. Two action-value functions Qϕ,i are learned with the same
target function. For each action, the target function takes the smaller action-value
of both action-value functions:
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L(ϕ1, D) = E
(s,a,r,s′)∼D

[
(Qϕ,1(s, a) − y(r, s′))2]

, (2.21)

L(ϕ2, D) = E
(s,a,r,s′)∼D

[
(Qϕ,2(s, a) − y(r, s′))2]

, (2.22)

y(r, s′) = r + γ min
j=1,2

Qϕ,j(s′, ã′) − α log(πθ(ã′|s′)) . (2.23)

The next actions in the target are sampled by the current stochastic policy:
ã′ ∼ πθ(·|s′). The next state is determined by D.

The policy is learned like in equation (2.15), but by using the minimum of both
action-value functions and taking the entropy into account:

max
θ

E
s∼D

[
min
i=1,2

Qϕ,i(s, µθ(s)) − α log(πθ(µθ(s)|s))
]

. (2.24)

The policy µθ is a deterministic approximation of the stochastic policy πθ with
added white noise.

2.3.3 Black Box Optimization with the The Tree-structured
Parzen Estimator Algorithm

Black-Box Optimization (BBO) is an optimization method, closely related to
machine learning. It is used, when the cost function cannot be directly accessed,
but only evaluated by given inputs. A direct calculation of the gradient is not
possible, therefore BBO algorithms often learn local models of the function and
find their minima.

For this thesis, the Optuna framework in Python is chosen [31]. The algo-
rithms in this framework are developed for hyper parameter optimization. Hyper
parameters control the learning process in machine learning. They influence the
performance and outcome of the algorithms. Typically, there are no functions that
connect the hyperparameters to the performance metrics. Consequently, they are
either tuned by hand or by BBO.

Depending on the problem, machine learning can take long computation time.
Consequently, hyperparameter optimizers are developed, to find minima with few
iterations. That makes them applicable for optimization problems in robotics,
where hardware is used. Naturally the real robot can not perform faster than
real time, in contrast to simulation, and needs attention and maintenance during
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experiments. Thus, optimization methods on hardware are required to be as
efficient as possible.

The algorithm of choice is the Tree-structured Parzen Estimator (TPE) [32].
It is a Bayesian optimization algorithm that approximates the cost function by
local Gaussian distribution models. After each iteration, the TPE algorithm is
creating two distribution models. The first model l(x) describes the distribution of
promising candidates, that resulted in a low cost function. The second model g(x)
is the distribution of the other candidates, that produced high cost. The parameter
λ decides, which candidates are modeled in l(x) or g(x). Setting λ = 0.5 means,
that from all previously evaluated candidates, the best 50 % are modeled in l(x)
and the rest in g(x).

The candidate for the next iteration is the most promising candidate for
minimizing cost of both distribution models, i.e. high probability in l(x) and low
probability in g(x). It is found by:

xi+1 = argmin
x

g(x)
l(x) . (2.25)

The algorithm needs a distribution model to start. Therefore, it is bootstrapped
by evaluating a number of random parameter sets at start.
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3 Solution Approach on an
Elastic One-Leg Hopper

This chapter applies the imitation learning method of Section 2.3 on an one-leg
hopper. The framework for teleoperation is presented and the generated trajectories
are discussed. A Black-Box Optimization (BBO) algorithm further optimizes the
Cost of Transport (CoT) while reinforcement learning is used to stabilize lateral
movement.

3.1 Kinematics of the Hopper

The kinematic structure of the hopper is depicted in Figure 3.1. The robot has
two Degrees of Freedom (DoF) and the corresponding generalized link coordinates
are called qu,1 and qu,2. The base frame B is attached to the floating base of the
robot and the frame F to the Tool Center Point (TCP) or foot tip of the robot. It
has the same orientation as B, regardless of the configuration of the robot. The
frame C is attached to the Center of Mass (CoM) of the robot, which is close to
the base frame.

One distinctiveness of the robot is, that qu,1 and qu,2 are kinematically coupled.
In serially articulated robots, each generalized coordinate rotates about an axis
in the frame of its respective link. Conversely, with the coupled kinematic of the
robot, both coordinates rotate about the y-axis of B (By). This makes only a
difference for qu,2. Accordingly, if qu,1 is actuated and qu,2 is e.g. aligned parallel to
Bz, it will stay parallel to Bz unless it is actuated itself. The transformation matrix
Ť converts the coupled coordinates qu into serial coordinates q̌u:
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 1 0
−1 1


︸ ︷︷ ︸

Ť

 qu,1

qu,2


︸ ︷︷ ︸

qu

=
 qu,1

q̌u,2


︸ ︷︷ ︸

q̌u

. (3.1)
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z
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qu,1

Figure 3.1: Kinematics of the one-leg hopper

The robot can move planar in the world frame W . The vector xb denotes the
position of B in W . An additional DoF γ allows a rotation of B in the Wx,z-plane.
It enables the hopper to tip over. This makes the system similar to a Spring-Loaded
Inverted Pendulum (SLIP) model and control more challenging.
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3.2 Hardware and Simulation of the Hopper

The floating base kinematics is implemented in hardware by mounting the hopper
on a rod, called boom (cf. Figure 3.2). The boom can rotate about two axes and
enables the robot to move in polar coordinates about the boom’s suspension. By
measuring the angles of the boom suspension (α and β) and its radius, the forward
distance in Wx and jumping height in Wz, and therefore the base position in the
world xb, can be calculated by the circumferences. The axis γ is located slightly
above the origin of B and can be locked by a clamp.

α

γ

β

Figure 3.2: Hardware setup of the hopper with at-
tached boom

α

γ

β

Figure 3.3: Simulation model of the hopper in
Gazebo

The robot is actuated by Series Elastic Actuators (SEAs). The drivetrain
consists of a servo motor, spring and link. The kinematic coupling is realized
through belts. The servo motors can be torque or position controlled and have
an internal controller of 8 kHz to utilize the commands. They have high friction
and motor inertia with respect to the links. The mechanical springs are made of
carbon fiber to reduce weight. Link positions are measured by magnetic position
sensors. An Inertial Measurement Unit (IMU) is mounted on top of the hopper.
It measures the accelerations of the base in frame B. The complete list of known
hardware parameters is shown in Table 3.1.

The communication with the robot is implemented with a real-time computer
and the firmware is programmed with the MATLAB® Simulink Coder™ (formerly
Real-Time Workshop®). Thus, the control framework for the robot can be directly
programmed in Simulink® and communication with the robot in real-time is
possible.
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A digital twin of the hopper was created to support the development. A simu-
lation model was created in the Gazebo multi-robot simulator [33] (cf. Figure 3.3).
For rapid prototyping, the same Simulink® model can control the robot either on
hardware or in simulation.

Table 3.1: Hardware specifications of the one-leg hopper

Motor inertia b: 0.020 kg m2

Spring stiffness K: diag(2.950, 3.100) N m rad−1

Robot mass m: 0.987 kg
Boom radius: 1.360 m
Boom inertia: 0.547 kg m2

Simulink control frequency: 1 kHz
Internal motor control frequency: 8 kHz
Static motor friction (estimate): 0.1 N m

Viscous motor friction (estimate): 0.05 N m s rad−1

3.3 Trajectory Generation by Demonstration

In the following, the framework for controlling the robot with haptic teleoperation
is laid out. The mapping from the omega.3 input to the robot aims to be intuitive
and robust. In addition, the haptic force feedback supports exciting the natural
harmonics of the hopper. Locomotion by teleoperation was not possible with lateral
movement. Therefore, the hip rotation γ is locked during the teleoperation and
optimization on the robot.

The trajectory, generated from the recorded data, is designed to have the
following properties: It is closed and periodic, with a base frequency of ω and a phase
between the two joint signals of φ. Thus qt=0 ≜ qt=T , with T representing the period.
Further the trajectory needs to be continuously deformable by a set of parameters
for optimization. To this end, imitation learning often relies on Dynamic Motor
Primitives (DMPs) [34]. However, an approximation by Fourier series is chosen, to
make the physical interpretation of the parameters more intuitive.
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3.3.1 Input Processing and Control

In order to control the hopper, the input of the operator needs to be mapped to
the two actuators of the robot. The vector xd,o is the input in the Cartesian frame
of the omega.3 device Ω, see Figure 1.2.1 The position of the foot tip of the robot
is controlled w.r.t. B. This position vector is called xf . The corresponding joint
positions are calculated by inverse kinematics. If only the configuration with the
knee on the right side is considered (as shown in Figure 3.1), there exists a direct
unique mapping from xf → q. This function, called SOLVE(), is only defined in the
workspace of the robot. Therefore, xd,o is saturated to the workspace, as illustrated
in Figure 3.5. This function is called SAT().2 The sensitivity of the input device
can be changed by the positive, diagonal gain matrix KS ∈ R2×2. An offset ensures,
that the zero position of the input device sets the robot in a suitable configuration.
In this case, the foot tip is positioned 0.22 m below the base.

Taken together, equation (3.2) describes the mapping from Ω to B to calculate
xd,sat, and equation (3.3) shows the inverse kinematic calculation:

xd,sat = SAT

KS xd,o +
 0

0.22 m

 , (3.2)

qd,sat = SOLVE(xd,sat) . (3.3)

Realizing the desired trajectory qd,sat(t) on the link-side of elastic systems is
challenging, as the link is not directly actuated. State-of-the-art link-side controllers
like the Elastic Structure Preserving Impedance (ESπ) controller generate a virtual
link-side control input [35]. However, depending on the stiffness of the system, there
is a bandwidth limitation for link-side control. Further, these types of controllers
need precisely modeled motor dynamics with torque control. These effects cause
the ESπ controller to perform poorly on the one-leg hopper. Explosive movements
from the operator can not be utilized.

1Inputs in the Ωy axis are neglected.
2The function SOLVE() is calculated by the Symbolic Toolbox of MATLAB® . The function

SAT() is calculated by a transformation in polar coordinates. Both functions are presented in
Section A of the Appendix
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xΩ

z

Figure 3.4: The haptic input device with corre-
sponding frame Ω

xB

z

Workspace

ro

xd,sat

xd,o

Figure 3.5: Input coordinates, overdrive gain and
workspace limitation of the hopper

Consequently, the internal position controller of the motors is used. This has the
advantage, that with 8 kHz control frequency and high control gains, fast changes in
qa can be commanded. Further, this control approach shapes the system dynamics
minimally. With stiff motor PID controllers, the effect of motor friction and inertia
is minimized and the dominant dynamics of the system is the link dynamics. The
two-mass swinger of Figure 2.4 becomes a one-mass swinger. Controlling the motor
side of the hopper means, that with no deflection of the spring, the link position
is controlled and with deflection through e.g. external forces, the loading of the
springs is affected.

To generate more explosive movements, the load of springs can be increased, if
the link is in contact with the ground and the motors are driven further. This is
implemented by using the radial distance between xd,o and xd,sat as an overdrive
gain called ro (cf. Figure 3.5). This effect can be influenced by the gain ko and is
saturated to 0.5. Taken together, the desired motor trajectory qd,a(t) is calculated
by:

qd,a(t) =
−ko ro 0

0 ko ro

 qd,sat(t) . (3.4)
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3.3.2 Haptic Force Feedback

The force feedback is designed to give the operator physical intuition of the system.
The operator controls the foot tip of the system and feels the forces acting on the
foot tip fext,F . These can be calculated by the link-side Jacobian in F called JF

∈ R2×2:
fext,F = inv

(
JT

F

)
Qu . (3.5)

Without additional sensors, Qu cannot be measured. However, with small link
inertias, the effects of centrifugal, gravitational, and inertial torques can be neglected
and Qu

∼= −τj (cf. equation (2.2)). A virtual spring is added that pushes the
haptic device back into zero position.3 This gives the operator a feeling of the
workspace of the input device. Additionally, a damper is implemented to improve
stability. The resulting function for the force feedback calculation is:

fΩ = KF fext,F − KP xd,o − KD ẋd,o . (3.6)

The vector fΩ contains the forces in Ωx and Ωz direction and is sent to the haptic
device. The positive, diagonal gain matrices KF , KP and KD are ∈ R2×2 and set
the magnitude of the force feedback respectively. The principle sketch in Figure 3.6
depicts the behavior of the haptic device.

−KP xd,o

KF fext,F

−KD ẋd,o

Figure 3.6: Principle sketch of the force feedback

3This spring also locks Ωy, as it is set very stiff in this direction.
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Figure 3.7 shows the link and motor coordinates over time of the teleoperated
hopper. The operator starts with the standing robot. Thereafter the hopper is
exited. The operator produces an oscillation with consistent period. At first,
controlling the foot tip of the robot rather than the base seems unintuitive, but
combined with the force feedback, a feeling of pushing against something is sim-
ulated. The sensitivity of the input device, combined with the gain of the force
feedback, influence the behavior during teleoperation. A low input sensitivity, and
small motor position changes are sufficient to excite the system. This indicates
that the operator is stimulating the natural harmonics of the hopper. However, the
operator was only able to create fluent locomotion after some training.
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Figure 3.7: Joint coordinates over time during teleoperation of the hopper

3.3.3 Approximation of the Signal by Fourier Series

The desired motor trajectory signal qd,a(t) of Figure 3.7 is approximated by Fourier
series. The base frequency ω0 and phase difference φ0 are determined by fitting a
sine wave to both signals via the least squares method. The chosen base frequency
ω0 is the mean of the frequencies of both fitted sine waves. Table 3.2 lists the
identified frequencies. A frequency analysis of the signals shows, that this frequency
also has the most signal power (cf. Figure 3.8). The harmonic at 2 ω0 is also
recognizable while other frequencies are insignificant.
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Table 3.2: Identified base frequency and phase of the demonstrated trajectory

Base frequency of qd,a,1: ω0,1: 2.035 Hz
Base frequency of qd,a,2: ω0,2: 2.040 Hz

Mean frequency: ω0: 2.038 Hz
Mean period: T0: 0.491 s
Mean phase: φ0: 0.195 s

Joint 1
Joint 2

Si
gn

al
Po

w
er

of
q

d
,a

(t
)

[ra
d2 ]

Frequency [Hz]

0

0.05

0.1

0.15

100 101

Figure 3.8: Power spectral density of the operator’s input during locomotion

As previously noted, the input from the operator is quite periodic. In order to
smoothen it, the mean signal is calculated over 23 periods, as depicted in Figure 3.9.
A fourth-order Fourier series (cf. equation (3.7)) is fitted to the data by the least
squares method:4

traj0(t) =
 a0,1 +∑4

i=1 ai,1 cos(iω0t) + bi,1 sin(iω0t)
a0,2 +∑4

i=1 ai,2 cos(iω0 (t + φ0)) + bi,2 sin(iω0 (t + φ0))

 . (3.7)

The base frequency ω is a parameter during the fit. It differed only slightly between
joint 1 and joint 2. It is substituted by ω0 in both functions, to satisfy the properties
of rhythmic trajectories (cf. Section 3.3).

4The MATLAB® command fit(xdata,ydata,’fourier4’) is used. The parameters are in
Section B of the Appendix,
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Figure 3.10 shows, that the mean signal is approximated accurately. Moreover,
the fitted function traj0(t) is close to the recorded data from the operator (cf. Fig-
ure 3.11). The desired motor trajectory can also be described in Cartesian space.
It is the trajectory, the foot tip has, if there is no control error and no deflection in
the spring (cf. Figure 3.12).
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3.3.4 Trajectory Analysis

Figure 3.13 depicts the link-side foot tip trajectory of traj0(t) and the estimated
phases in locomotion. The trajectory is projected relative to the CoM frame C
in the x-axis and relative to the world frame W in the z-axis. Consequently, the
z-axis shows the ground clearance of the foot tip xf . The movement of the foot tip
is counter clockwise.

Notably, xf is negative in the Wz axis as well. This implies that the foot tip
penetrates the ground. This discrepancy comes from the flexibility of the boom.
As a result, the exact moment of contact between foot tip and ground is unknown.
Contact is estimated to occur, when xf approximates zero in Wz. The link stays in
contact as long as xf in Wz < 0. The leg is most compressed, when MAX(τj,2 −τj,1).5

This is indicated in the Figure by red markers. After the compression phase,
thrust is applied. During maximum thrust, the base acceleration in Wz is maximal,
as indicated in yellow. The foot tip position is to the right of the CoM during
thrust. This results in a forward motion of the hopper leftwards. Afterwards, the
liftoff phase begins. The foot tip is close above the ground before it is retracted.
During retraction and repositioning, the base experiences the greatest acceleration
downwards (marked in purple), indicating falling.

5This is derived by the coupled kinematics of the hopper, see Figure 3.1
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3.4 Optimization for Energy Efficient
Locomotion

In the following, the optimization for CoT is laid out and evaluated. The optimiza-
tion is done in simulation and on the hardware.

3.4.1 Comparison of Simulation and Hardware

Transferring simulation results to the actual robot requires an accurate simulation
model. To determine how well the simulation model performs, the approximated
traj0(t) is replayed in simulation and hardware, and the relevant states and signals
are compared.

Figure 3.14 compares the motor position signals qa of simulation and hardware.
The desired traj0(t) cannot be realized on hardware. There is a significant
discrepancy between qd,a,1 and qa,1. Joint 1 experiences a the hightest load during
impact and compression. During this time, the motor runs into its torque limits
and cannot realize the desired trajectory. Internal friction, on the other hand,
prevents it from being driven back. This effect is helpful for conserving energy.
Figure 3.15 shows high frequency oscillations of the links on hardware, that are
not present in simulation. In terms of the basic frequencies and amplitudes of link
and motor signals, there are few variances between hardware and simulation. The
accelerations of the base in Bx and Bz direction are shown in Figures 3.16 and 3.17.
It has been noticed that the boom is quite flexible when it is under stress during
locomotion. This is the cause of the high frequency oscillations, mostly in Bz, that
are not present in simulation.

Small variations of the hardware have a noticeable impact on the behavior
of the robot. For instance, the foot tip broke after the demonstration part and
has been changed for optimization (cf. Figure 3.18). The new foot tip is stiffer
and larger. This negatively impacts the performance of the demonstrated trajec-
tory. The new foot tip is slipping on the floor, as indicated by the scattering in
Figure 3.19.

27



M
ot

or
C

oo
rd

in
at

e
q

a
[r

ad
]

-0.5

0

0.5

Time [s]

Simulation

Hardware

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
-0.5

0

0.5

Joint 1 Joint 2 qd,a(t)

Figure 3.14: Comparison of motor signals between
simulation and hardware

L
in

k
C

oo
rd

in
at

e
q

u
[r

ad
]

-1

-0.5

0

0.5

1

1.5

Time [s]

Simulation

Hardware

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
-1

-0.5

0

0.5

1

1.5
Joint 1 Joint 2

Figure 3.15: Comparison of link signals between
simulation and hardware

B
as

e
A

cc
el

er
at

io
n

in
B

x
[m

s−
2

]

-20

-10

0

10

20

30

Time [s]

Simulation

Hardware

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
-20

-10

0

10

20

30

Figure 3.16: Base acceleration in Bx in simulation
and hardware

-20

-10

0

10

20

30

B
as

e
A

cc
el

er
at

io
n

in
B

z
[m

s−
2

]

Time [s]

Simulation

Hardware

5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
-20

-10

0

10

20

30

Figure 3.17: Base acceleration in Bz in simulation
and hardware

Old Foot Tip New Foot Tip
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3.4.2 Parameters and Cost Function

There are 18 parameters in the Fourier series (cf. equation (3.7)). They would take
too long to optimize, especially on hardware. Therefore, the parameter space is
reduced to six parameters, that are also more in intuitive to interpret. The initial
function is scaled by A1 and A2 and offset by d1 and d2:

traj(t, Θ) =
 A1

A2

 traj0(t, ω, φ) +
 d1

d2

 , (3.8)

Θ = {A1, A2, d1, d2, ω, φ} . (3.9)

Further the period ω and phase φ are varied. The offset parameters directly
influence the foot tip position xf , while the shape of the foot tip trajectory in
Cartesian space is deformed by the phase parameter. The initial parameters and
their corresponding limits in brackets are shown in Table 3.3. Broader restrictions
have harsher negative effects on the hardware, such as collisions of the base with
the ground.

Table 3.3: Optimization parameters within their respective bounds

Gain on joint 1 trajectory: A1 [0.8..1.2]
Gain on joint 2 trajectory: A2 [0.8..1.2]

Offset of joint 1: d1 [−0.1..0.1] rad
Offset of joint 2: d2 [−0.1..0.1] rad

Period of the rhythmic trajectory, corresponding to ω: T [0.4..0.6] s
Phase parameter: φ [0.0..0.24] s

As stated in Section 2.1, the CoT depends on the velocity of the system. This is
considered in the optimization. The velocity of the robot with optimized parameters
is supposed to match the velocity during demonstration. Therefore, the CoT is
enhanced by a weight on deviations from the velocity v0, corresponding to traj0(t).
The designed cost function for the optimization is:

CoTv0 = CoT k−1 SAT
k

((
v − v0

2 v0

)2
)

. (3.10)
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The second term is saturated to k = 0.01 at the lower end. Consequently, the
cost function cannot be zero. With v close to v0 and the saturation in effect:
CoT = CoTv0. Thus, the CoT can be optimized further. If the leg hopps backwards
the CoT becomes negative. This is harmful to the hardware. The carbon torsion
springs have lesser strength when being compressed, contrary to being pulled, which
is considered in the kinematic design of the hopper. Therefore, negative CoT values
are punished by a factor of -10.

The cost function CoTv0 is evaluated over an episode to limit evaluation noise.
Each episode has a different set of parameters, determined by the optimization
algorithm. At the beginning of an episode, the hopper does n0 = 5 jumps with
the given set of parameters. During this transient, the overall system has enough
time to adapt to the new dynamics imposed by the new trajectory. Then the
cost function is evaluated after n = 20 jumps. After the episode, the traversed
distance and elapsed time are evaluated and from these values the mean velocity v

is calculated. The parameter T determines the duration of a jump, it varies with
the parameters in Θ. After each episode, the operator can either start a new one,
or reset the hopper, if it is near its bounds of movement.6

For the energy calculation the mechanical output energy of the motors is used.
For SEAs it is calculated by:

E =
∫ n T

0
τj,1 q̇a,1 + τj,2 q̇a,2 dt . (3.11)

This has the advantage, that it makes the results comparable over different systems.
In contrast, effects like motor efficiency and friction can be considered by using the
electrical energy of the motors.

The Tree-structured Parzen Estimator (TPE) algorithm is implemented with
the Optuna framework7 [31] to perform the optimization (cf. Section 2.3.3). Five
episodes are used for bootstrapping.

6This calculation is timed with the help of the Stateflow® package in MATLAB® Simulink™.
7The code is presented in the Appendix Section C.
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3.4.3 Optimization Results

Three different optimizations are performed, with 50 episodes each. An optimization
for CoT and for CoTv0 (as defined in equation (3.10)) on the hardware. The new
foot tip is used. Additionally, CoTv0 is optimized in simulation. The corresponding
parameter sets are called ΘCoT , ΘCoTv0 and ΘSim. They are listed in Table 3.4.
Figure 3.21 illustrates how the parameters have changed from their initial state. The
tendency for ΘSim parameters is often contrary to the parameters of the hardware
optimization. For instance, in simulation, ω is increased and A1 is decreased,
however on hardware, the opposite occurs.

Table 3.4: Optimized parameters of the desired motor trajectory

A1 A2 d1 [rad] d2 [rad] ω [Hz] φ [s]
Θ0 1.000 1.000 0.000 0.000 2.038 0.195

ΘCoT 1.105 0.850 0.011 −0.048 1.910 0.210
ΘCoTv0 1.034 1.032 0.019 −0.052 1.958 0.190

ΘSim 0.858 1.106 0.096 −0.020 2.185 0.177
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Figure 3.21: Spider graph of the tendency of the
optimized parameters

The related motor trajectories are displayed in Cartesian space in Figure 3.20.
It is noteworthy, that the trajectory of ΘCoT is smaller than the others. Less motor
movement is favorable to conserving energy.
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According to the Optuna framework8, the most sensitive parameter for im-
proving CoT is φ (cf. Figure 3.23). The phase parameter shapes the trajectory in
Cartesian space and can cause the hopper to move backwards, which is punished
in the cost function. If the forward speed of the hopper is taken into account,
with CoTv0, the offset parameter d1 has the biggest impact on the cost function
(cf. Figure 3.24). It directly influences the foot position and therefore the forward
speed, if the foot is placed e.g. further behind the CoM of the robot. The parameter
importance for CoTv0 in simulation roughly matches the hardware, with a greater
relevance of ω (cf. Figure 3.25). The evolution of the CoT over 50 trials is shown
in Figure 3.22. Clearly, the room for improvement is marginal.
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Figure 3.22: Study history of the optimization for
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Figure 3.25: Parameter importance for CoTv0 in
simulation

8The command optuna-dashboard() was used to evaluate the results.
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The optimized parameters are evaluated by their CoT and forward velocity v

over five episodes, as depicted in Figure 3.26. Their minimal and maximal values are
used to calculate the corresponding uncertainty in Table 3.5. In addition, the mean
foot tip clearance (max xf in Wz) is assessed. These values were calculated with
help of the boom position. Consequently, due to the boom’s flexibility, these values
are not exact. However, they can be compared in relation to other. The CoT as well
as v deteriorates with the new foot tip. The optimization for CoTv0, counteracts
that. The optimization on hardware significantly improved the CoT over the initial
value with the new foot tip. The optimization in simulation, performs poorly.
Hence, the sim to real transfer fails, even though the accuracy of the model looked
promising in Section 3.4.1. Little differences in the hardware parameters cause
noticeable changes in performance. The optimization only for CoT does not show
much improvement over CoTv0. However, v is slower and foot tip clearance is
reduced.
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Figure 3.26: Evaluation of the optimized parameters over five episodes

Taken together, further room for improvement over the initial values is slim. As
proposed, if the natural harmonics of the hopper are exploited, locomotion is energy
efficient. The performance of the operator within the teleoperation framework
shows good results. Optimization, on the other hand, can be used to maintain
performance with hardware or environmental changes.
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Table 3.5: Performance of the optimized parameters

CoT v [m s−1] foot tip clearance [m]
Θ0 old foot tip 0.2467 ± 0.0214 0.6268 ± 0.0283 0.048

Θ0 new foot tip 0.2979 ± 0.0233 0.5266 ± 0.0315 0.051
ΘCoT 0.2440 ± 0.0604 0.3946 ± 0.0591 0.047

ΘCoTv0 0.2489 ± 0.0055 0.5820 ± 0.0112 0.056
ΘSim 0.3819 ± 0.0614 0.5376 ± 0.0506 0.039

3.5 Balancing through Reinforcement
Learning

In the following, the rotation of the base about γ is unlocked. This allows the
hopper to tip over. Stabilizing the locomotion with lateral movement is important
to apply the control strategies to legged robots that move in the world without
constraints. Raibert (1986) has shown, that these types of hoppers can be stabilized
by dynamic balance [1]. This control strategy adjusts the foot tip position in flight
phase and manipulates the base angle γ in stance phase.

In this thesis locomotion is accomplished by replaying a desired trajectory, in
contrast to Raibert’s control algorithm. A reinforcement learning algorithm is
trained to find a policy that prevents tipping over by adding an offset signal to the
trajectory.

3.5.1 Definition of Action-space, Observation-space, and
Reward Function

The Soft Actor-Critic (SAC) algorithm (see Section 2.3.2) was chosen and imple-
mented with the stable-baselines3 library9 [24]. The algorithm is running at 66.6 Hz
and receiving information about the joint positions and velocities, the velocity and
acceleration of the hopper’s base and the desired feedforward trajectory as well
as the base height, tipping angle and its derivative. The terminal state is sent,
when the base of the hopper touches the ground. Then the episode is finished and
the simulation as well as the feedforward trajectory are reset. The algorithm adds

9The code is presented in the Appendix Section D.
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a varying offset of ± 0.2 to the desired trajectory. The observation space O and
action space A is defined by:

O = {traj(t), qu, q̇u, qa, q̇a, xb,z, ẋb, ẍb, γ, γ̇, TERMINAL} , (3.12)
A = {qRL,1, qRL,2} , (3.13)

qd,a = traj(t) + qRL . (3.14)

The algorithm is rewarded when the base is upright and thus γ = 0. The
reward decays with a Gaussian bell function:

R = 1
σ

√
2 π

exp
(

−1
2

(
γ − γd

σ

)2
)

. (3.15)

Where γd = 0 denotes the desired base angle and σ = 0.4 denotes the variance.
The cumulative reward grows, the longer the hopper stays upright.

3.5.2 Evaluation in Simulation

The parameters Θ of traj(t) are tuned to achieve a more stable feedforward
trajectory. To this end d2 = −0.3 shifts the foot tip closer to the hopper’s CoM.
The other parameter are Θ0. The trajectory is started at t = 0.75 s. Thereby the
hopper achieves 2-3 jumps before tipping over, without the reinforcement learning
algorithm. After 100 thousand iterations, the hopper reaches half a round. After
500 thousand, several rounds were covered. The learning is stopped after one
million iterations and five hours of training.

Figure 3.27 shows the trajectory and tipping angle γ with the learned deter-
ministic policy. At start, the hopper is reset. Then the hopper is moving for 20 s
without tipping over. It is covering a distance of 1.9 m. Several seconds after the
reinforcement learning policy is turned off, the hopper is tipping over, as indicated
by the deterioration of γ. Only staying upright is rewarded, therefore the forward
velocity with 0.1 m s−1 is significantly slower than with the demonstrated trajectory
and locked γ.
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Figure 3.27: Balancing of the hopper in simulation with reinforcement learning

3.5.3 Transfer to Hardware

For the hardware implementation, the backend for the numerical calculations is
switched to the machine learning framework JAX from Google [36]. This improves
learning performance in simulation. The hopper was able to cover several rounds
after 10 minutes of learning in real time simulation. The used hyperparameters
are in Section E in the Appendix. The agent was trained in simulation without
parameter variation, disturbances, and variation of the initial state after reset.
Continuing the training on hardware with the policy and replay buffer from the
simulation showed poor performance. Therefore, the policy is learned on the
hardware from zero. At start, the replay buffer is loaded with data from 600 steps
with randomly distributed actions. During training, the current policy and replay
buffer is saved every ten thousand steps and after manual termination. This enables
to continue learning.
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Human interaction is needed to reset the hopper. To limit an unnecessary
prolonging of the learning process, the reset process is partly automated. The
episode is terminated when γ has reached a threshold of 40◦. Then the trajectory
is stopped. After it is picked up, which is detected by measuring the hopper’s
height, the leg is automatically moved in a defined configuration. The operator
places the hopper on its foot tip and the episode is started when the joints of the
hopper are loaded and τj has reached a threshold. The action signal from the
reinforcement policy qRL is noisy. This is harmful to the motors. During training
an action filter with a corner frequency of 10 Hz is used to smoothen the signal.
The learning process is facilitated by increasing the friction in γ by tightening the
clamp.

The learning progress is shown in Figure 3.28. After 300 episodes, the return
tends to rise. The initial conditions on how the hopper is placed after reset vary.
This prolongs the learning progress as the agent has to adapt. After the most
common initial conditions are learned and respected in the policy, the learning
progress accelerates and the hopper tips over less frequently. The learning process
was stopped after five hours of training and 950 episodes. The agent favored
hitting the knee on the ground, which is harmful to the hardware. The resulting
deterministic policy is not capable of fully stabilizing the hopper. Nevertheless, the
hopper stays significantly longer upright with this policy. Figure 3.29 compares the
behavior of the hopper with and without reinforcement learning. The trajectory is
stopped, when the robot tipped over.
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4 Extension to Multi-Legged Sys-
tems: C-Runner

This chapter aims to transfer the imitation approach of Chapter 3 to the biped
C-Runner of the German Aerospace Center (DLR) [5] in simulation. Instead of
jumping, a walking gate is generated by teleoperation.

4.1 Setup and Simulation Model

The C-Runner is a biped with six Degrees of Freedom (DoF) (cf. Figure 4.1). The
hip, knee and ankle joints are elastically actuated by Series Elastic Actuators
(SEAs). Contrary to the hopper of Chapter 3, the C-Runner has no kinematic
couplings. Its basic specifications are given in Table 4.1.

Table 4.1: Model specifications of the DLR C-Runner

Motor inertia b: 1.6 kg m2

Spring stiffness K: diag(450, 564, 423, 450, 564, 423) N m rad−1

Robot mass m: 69 kg
Simulation frequency: 1 kHz

Figure 4.4 shows the frames and coordinates of the robot. The joints 1, 2 and 3
actuate left leg and joints 4, 5 and 6 the right leg. Equally to the hopper, the base
frame B is located in joint 1, frame C is located in the Center of Mass (CoM) and
xf denotes the foot position relative to B. In contrast, xf,left and xf,left do not
denote the foot tips, but the positions of joint 3 and joint 6 respectively. This has
the advantage, that the same inverse kinematics function from the hopper the can
be used to calculate xf , when its output is transformed by equation (3.1).
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Again, the Gazebo framework [33] is used for the simulation (see, Figure 4.2).
It allows a simulation in real-time. To make walking by teleoperation easier, the
rotation γ of the robot’s base about W can be locked. This is only possible in
simulation, contrary to the real robot. The operator controls the two feet of the
biped, with two haptic input devices. The Anarkik3D® Falcon devices [37] are
used, as an low-budget alternative to the omega.3 device by force dimension®. The
setup is shown in Figure 4.3.

Figure 4.1: The DLR C-Runner Figure 4.2: Simulation model of the DLR C-Runner

Figure 4.3: Setup for teleoperated walking with the DLR C-Runner in simulation
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4.2 Input Processing and Control

The control of the C-Runner is similar to the hopper. However, the operator controls
two legs xf,left and xf,right, and the desired trajectory is realized on link-side. The
corresponding joint positions q1,q2,q4 and q5 are calculated by saturating xd,o and
inverse kinematics (cf. equations (3.2) and (3.3)). Additionally, the ankles q3 and
q6 are set to keep the foot parallel to the ground by calculating:

q3 = −q1 − q2 − γ , (4.1)
q6 = −q4 − q5 − γ , (4.2)

with γ denoting the rotation of the B relative to W about the axis depicted in
Figure 4.4. The feature of motor overdrive, see equation (3.4), is omitted, as
link-side positions are commanded.

The desired link-side trajectory qd,u(t) is achieved by the Elastic Structure
Preserving Impedance (ESπ) controller [35]. This controller shapes the link-side
impedance of the robot. By introducing a coordinate transformation of the motor
coordinates qa into deflection coordinates q̄a:

q̄a = qa − K−1 uu , (4.3)

a new virtual control input on the link-side uu is created, as depicted in Figure 4.5.

uumua

Motor LinkSpringq̄a

k(q̄a − qu)

qu

b

Qu

Figure 4.5: Virtual control inputs on a SEA

The control inputs are used to add a virtual spring and damper at link-side
and a damper on motor-side by:

uu = −Kp,u (qu − qu,d) − Kd,u q̇u , (4.4)
ua = −Kd,a

˙̄qa . (4.5)
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Figure 4.6: Principle sketch of a of a SEA controlled by the ESπ controller

The SEA is behaving like the principle sketch in Figure 4.6.
The positive, diagonal matrices Kp,u and Kd,a are ∈ Rn×n for a robot with

n joints. They shape the link-side stiffness and motor-side damping respectively.
The links-side damping is set by Kd,u(qu) ∈ Rn×n. It can be designed to be
non-diagonal, configuration dependent and positive definite by considering the
eigenvalues of M(qu) [38, Section 3.3]. Subsequently, the virtual control inputs
are transformed back, to be utilized by the motors with the equation:

u = ua + uu + B K−1 üu . (4.6)

This control approach keeps the intrinsic elasticity of the system and shapes
the systems dynamics minimally. Therefore, it has proven to be robust on highly
compliant soft robots [39, 40]. Furthermore, it allows to shape the link-side stiffness
directly, which is helpful for locomotion. The ESπ controller is implemented with
the control parameters of Table 4.2.

Table 4.2: ESπ control parameters on the DLR C-Runner

Link-side stiffness Kp,u: diag(600, 400, 80, 600, 400, 80) N m rad−1

Link-side damping Kd,u(qu): Non-diagonal damping with a ratio
of diag(0.75, 0.5, 0.1, 0.75, 0.5, 0.1) N m s rad−1

Motor-side damping Kd,a: 0.6
√

B K N m s rad−1
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4.3 Haptic Force Feedback

Teleoperated walking with an unlocked hip rotation γ is challenging because the
robot is easily tipping over. Therefore, the haptic feedback is designed to support
the operator in generating a stable gait, where the CoM does not leave the support
polygon, i.e. the ground area, enclosed by the feet.

More precisely, the CoM is shifted above the forward foot in order to reduce
the load of the backward foot before lifting it. This is achieved by introducing the
distance s, which is the distance from xf to the CoM in Bx:

s = CBx − MAX (xf,Bx,left, xf,Bx,right) . (4.7)

The force feedback encourages the operator to position both feet to the left relative
to B, if the CoM is behind the forward foot. This shifts the base and therefore the
CoM to the right. Figure 4.7 provides a graphical representation of s.

xFleft

z

xB

z

xFright

z

s

Figure 4.7: The distance s of from the forward foot to the CoM

Moreover, the operator gets an intuition on how much the feet are loaded, by
using the vertical ground reaction force fext,Fz as force feedback in the z-axis of the
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falcon haptic devices.1 This enables the operator to prevent lifting a loaded foot,
which causes tipping over. Further, a damping term is added for stability. Taken
together, the equation for providing force feedback is:

fΩ,left = KF

 s

fext,Fz ,left

− KD ẋd,o,left , (4.8)

fΩ,right = KF

 s

fext,Fz ,right

− KD ẋd,o,right . (4.9)

4.4 Evaluation and Transferability to Hardware

Even though the force feedback helped stabilizing the robot with an unlocked hip
rotation, not more than a few steps were possible without tipping over. However,
fluent locomotion could be achieved with a locked hip. Figure 4.8 shows a series of
snapshots during two steps.

Figure 4.8: Slideshow of teleoperated walking on the DLR C-Runner

In addition, the trajectory of the base and feet in W is depicted in Figure 4.9.
The wavelike motion of the base is identifiable, as well as the alternating steps.

One reason, why walking with a free hip failed, is the inaccuracy of the contact
model of Gazebo. Accurate contact forces are hard to achieve in a real-time
simulation. The ground friction is very low and the robot slips a lot on the
floor. However, with some practice of the operator and tuning of control, input
sensitivity and force feedback gains, a transferability on the real robot looks
promising.

1These forces are measured at the real robot by a force sensor.
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5 Discussion and Outlook

The proposed teleoperation framework of controlling the hopper’s foot tip while
receiving the estimated external forces on the foot tip as feedback shows good
performance. The generated trajectories achieve a CoT of 0.25 at 0.63 m s−1. This
is a significant improvement over the SPEAR robot [4]. Despite being larger and
heavier, this state-of-the-art robot is the most similar robot to the hopper, that
has been found in literature. Figure 2.1 puts the hopper in relation to other legged
robots.

Further room for improvement by BBO is slim. The energy efficiency, however,
has been found to be significantly impacted by even small changes in the hardware.
BBO on the hardware can be used to mitigate these effects. Despite an accurate
simulation model, the sim to real transfer failed in both BBO and reinforcement
learning. While the lateral movement could be fully stabilized in simulation by
reinforcement learning, it only improved stability on the hardware. Variations in
the initial conditions and policies, that favored harmful behavior to the hardware,
have been the dominant challenges of applying reinforcement learning on the real
robot. Last can be mitigated in the future, by manipulating the polar angle of
the foot tip w.r.t. the base instead of adding an offset to the trajectory. That way,
the policy cannot reduce foot tip clearance and provoke knee collisions. If the
stabilization of lateral movement is successful on hardware, the policy can also
consider forward velocity and CoT.

The teleoperation framework has successfully been applied to the biped DLR
C-Runner in simulation. However, lateral stabilization must be improved in order
to apply it on the real robot. In future research, the gaits of quadrupeds may be
controlled with teleoperation by the use of virtual legs, where the legs operate in
pairs. Contrary to bipeds, quadrupeds are less prone to tipping over.
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Appendix

A Inverse Kinematics and Saturation

1 %% Symbolic I n v s e r s e Kinematics C a l c u l a t i o n
2 syms q1 q2 x z l 1 l 2
3

4 % forward k inemat ic s f o r coupled k inemat ic s
5 eq1 = x == l 1 ∗ cos ( q1 ) + l 2 ∗ cos ( q2 ) ;
6 eq2 = z == l 1 ∗ s i n ( q1 ) + l 2 ∗ s i n ( q2 ) ;
7

8 assume ( l1 , ' p o s i t i v e ' )
9 assume ( l2 , ' p o s i t i v e ' )

10 assume (x , ' p o s i t i v e ' )
11 assume ( z , ' p o s i t i v e ' )
12

13 f = s o l v e ( eq1 , eq2 , q1 , q2 , ' ReturnCondit ions ' , t rue )
14 eq_q1 = s i m p l i f y ( subs ( f . q1 , f . p a r a m e t e r s ( 1 : 2 ) , [ 0 0 ] ) )
15 eq_q2 = s i m p l i f y ( subs ( f . q2 , f . p a r a m e t e r s ( 1 : 2 ) , [ 0 0 ] ) )
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1 f u n c t i o n [ q1 , q2 ] = x 2 j o i n t ( x_in , l ink_length , c o n f i g u r a t i o n )
2 % generated from x2joint_sym.m
3 % input : x o f TCP, vec to r o f l ink_lengths , d e s i r e d c o n f i g u r a t i o n o f knee
4 % l e f t or r i g h t
5

6 l 1 = l ink_length (1 ) ; l 2 = l ink_length (2 ) ;
7 x = x_in (1 ) ; % see DOC f o r frame
8 z = x_in (2 ) ;
9

10 i f s q r t ( x^2+z ^2)≥( l 1+l 2 )
11 e r r o r ( ' x 2 j o i n t i s out o f opera t i on space ! Function undef ined ! ' )
12 e l s e i f x == 0 && z == 0
13 e r r o r ( ' x 2 j o i n t i s in s i g u r l a r i t y ! ' )
14 e l s e
15 temp_1 = ( - l 1 ^2 + 2∗ l 1 ∗ l 2 - l 2 ^2 + x^2 + z ^2) ∗( l 1 ^2 + 2∗ l 1 ∗ l 2 + l 2 ^2 ...

- x^2 - z ^2) ;
16 temp_2 = ( l 1 ^2 + 2∗ l 1 ∗x - l 2 ^2 + x^2 + z ^2) ;
17 temp_3 = ( - l 1 ^2 + l 2 ^2 + 2∗ l 2 ∗x + x^2 + z ^2) ;
18

19 i f c o n f i g u r a t i o n == 1
20 q1 = 2∗ atan2 ((2∗ l 1 ∗z + (temp_1) ^(1/2) ) , temp_2) ;
21 q2 = 2∗ atan2 ((2∗ l 2 ∗z - ( temp_1) ^(1/2) ) , temp_3) ;
22 % r o t a t e f o r i n i t i a l p o s i t i o n ( see DOC)
23 q1 = q1 + pi /2 ;
24 q2 = q2 + pi /2 ;
25 % aviod d i s c o n t i n u i t y
26 i f q1 > pi
27 q1 = q1 - 2∗ pi ;
28 end
29 e l s e i f c o n f i g u r a t i o n == 2
30 q1 = 2∗ atan2 ((2∗ l 1 ∗z - ( temp_1) ^(1/2) ) , temp_2) ;
31 q2 = 2∗ atan2 ((2∗ l 2 ∗z + (temp_1) ^(1/2) ) , temp_3) ;
32 % r o t a t e f o r i n i t i a l p o s i t i o n ( see DOC)
33 q1 = q1 + pi /2 ;
34 q2 = q2 + pi /2 ;
35 % aviod d i s c o n t i n u i t y
36 i f q2 > pi
37 q2 = q2 - 2∗ pi ;
38 end
39 e l s e
40 e r r o r ( ' s e l e c t c o n f i g u r a t i o n 1 or 2 ' )
41 end
42 % wrap to 2 p i
43 i f q1 ≥ 2∗ pi
44 q1 = q1 - 2∗ pi ;
45 end
46 i f q2 ≥ 2∗ pi
47 q2 = q2 - 2∗ pi ;
48 end
49 end
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1 f u n c t i o n [ x_sat , z_sat , alpha , r , r_sat , s t a t e ] = ...
sat_cartesian_to_op_space (x , z , r_saturat ion )

2 % s a t u r a t e to op space ( d e f i n e d in po la r c o o r d i n a t e s )
3 % input : r_saturat ion = [ lowerbound upperbound ]
4 % x and z accord ing to {COM} frame ( see DOC)
5

6 % map to po la r space
7 r = ( x^2 + z ^2) ^(1/2) ;
8

9 % s a t u r a t e r ad i u s to o p e r a t i o n a l space
10 r_sat = min ( r_saturat ion (2 ) , max( r_saturat ion (1 ) , r ) ) ;
11

12 % i f in s a t u r a t i o n : s t a t e = 1
13 i f r_sat ̸= r
14 s t a t e = 1 ;
15 e l s e
16 s t a t e = 0 ;
17 end
18

19 % map back to c a r t e s i a n space
20 alpha = acos ( x/ r ) ;
21 i f z<0
22 alpha = - alpha ;
23 end
24 z_sat = s i n ( alpha ) ∗ r_sat ;
25 x_sat = cos ( alpha ) ∗ r_sat ;
26

27 end
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B Function Parameters of the Fitted Trajectory
from Imitation

qda1 = General model Fourier4:

fit_s_mean_1(x) = a0 + a1*cos(x*w) + b1*sin(x*w) +
a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w)
+ b3*sin(3*x*w) + a4*cos(4*x*w) + b4*sin(4*x*w)

Coefficients (with 95% confidence bounds):
a0 = 0.3905 (0.3897, 0.3913)
a1 = -0.1963 (-0.1971, -0.1955)
b1 = 0.03698 (0.03547, 0.03848)
a2 = -0.07066 (-0.07111, -0.07021)
b2 = -0.005418 (-0.006441, -0.004395)
a3 = -0.03269 (-0.03309, -0.03229)
b3 = -0.004374 (-0.005178, -0.003569)
a4 = -0.01268 (-0.01314, -0.01221)
b4 = -0.003078 (-0.003636, -0.00252)
w = 12.73 (12.7, 12.76)

qda2 = General model Fourier4:

fit_s_mean_2(x) = a0 + a1*cos(x*w) + b1*sin(x*w) +
a2*cos(2*x*w) + b2*sin(2*x*w) + a3*cos(3*x*w)
+ b3*sin(3*x*w) + a4*cos(4*x*w) + b4*sin(4*x*w)

Coefficients (with 95% confidence bounds):
a0 = -0.1428 (-0.1445, -0.1412)
a1 = -0.3334 (-0.3337, -0.3331)
b1 = 0.0117 (0.005532, 0.01787)
a2 = 0.07895 (0.07871, 0.0792)
b2 = -0.03212 (-0.03493, -0.02931)
a3 = -0.02601 (-0.027, -0.02501)
b3 = 0.01959 (0.01788, 0.0213)
a4 = 0.006339 (0.006025, 0.006652)
b4 = -0.007807 (-0.008493, -0.007121)
w = 13.16 (13.08, 13.24)
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C Code for Optimization with Optuna

1 import pickle as pkl
2 import time
3 import links_and_nodes as ln
4 import optuna
5 from optuna . samplers import TPESampler
6

7 N_TRIALS = 50
8 N_STARTUP_TRIALS = 5
9 SEED = 42

10

11 # Connect to ln
12 ln_client = ln. client (" hoppy_optim ")
13

14 # Initialize Opt Parameters
15 T = ln_client . get_parameters ("opt.T")
16 phase = ln_client . get_parameters ("opt. phase ")
17 d_1 = ln_client . get_parameters ("opt.d_1")
18 d_2 = ln_client . get_parameters ("opt.d_2")
19 A_1 = ln_client . get_parameters ("opt.A_1")
20 A_2 = ln_client . get_parameters ("opt.A_2")
21

22 # Initialize Episode Parameters
23 req_start = ln_client . get_parameters ("opt. req_start ")
24 n_0 = ln_client . get_parameters ("opt.n_0")
25 n = ln_client . get_parameters ("opt.n")
26

27 study = optuna . create_study (
28 sampler = TPESampler ( n_startup_trials = N_STARTUP_TRIALS , ...

multivariate =True , seed=SEED),
29 storage =args.storage ,
30 study_name =args. study_name ,
31 load_if_exists =True ,
32 direction = " minimize ",
33 )
34

35 try:
36 for trial_idx in range (1, N_TRIALS + 1):
37

38 # Initialize Trial
39 trial = study .ask ()
40

41 # Set Test - Parameters
42 T_param = trial . suggest_float (" T_param ", 0.4, 0.6)
43 phase_param = trial . suggest_float (" phase_param ", 0.0, 0.24)
44 d_1_param = trial . suggest_float (" d_1_param ", -0.1, 0.1)
45 d_2_param = trial . suggest_float (" d_2_param ", -0.1, 0.1)

59



46 A_1_param = trial . suggest_float (" A_1_param ", 0.8, 1.2)
47 A_2_param = trial . suggest_float (" A_2_param ", 0.8, 1.2)
48

49 T. set_override (" value ", T_param )
50 phase . set_override (" value ", phase_param )
51 d_1. set_override (" value ", d_1_param )
52 d_2. set_override (" value ", d_2_param )
53 A_1. set_override (" value ", A_1_param )
54 A_2. set_override (" value ", A_2_param )
55

56 # Start Trial ( trigger simulink chart )
57 req_start . set_override (" value ", 1)
58 time. sleep (0.1)
59 req_start . set_override (" value ", 0)
60

61 # Sleep time should be no lower than
62 # transient + evaluation time
63 #( faster for accelerated simulation )
64 # T_sleep = n_0 . value * T_param + n. value * T_param
65 T_sleep = 1#( faster for accelerated simulation )
66 time. sleep ( T_sleep )
67

68 # Evaluate Trial ( trial stopps automatically , see Simulink )
69 break_while = 1
70

71 # Check for end_of_trial
72 while break_while :
73 end_of_trial = \
74 ln_client . get_parameters ("opt. end_of_trial ")
75 time. sleep (0.1)
76 if end_of_trial . value == 1.0:
77 # Reward
78 CoT = \
79 ln_client . get_parameters ("opt.CoT")
80 CoT_v_des = \
81 ln_client . get_parameters ("opt. CoT_v_des ")
82 distance_traveled = \
83 ln_client . get_parameters ("opt. distance ")
84 velocity_mean = \
85 ln_client . get_parameters ("opt. velocity ")
86 break_while = 0
87 else :
88 break_while = 1
89

90 trial . set_user_attr ("CoT", CoT. value )
91 trial . set_user_attr (" CoT_v_des ", CoT_v_des . value )
92 trial . set_user_attr (" distance_traveled ", \
93 distance_traveled . value )
94 trial . set_user_attr (" velocity_mean ", \
95 velocity_mean . value )
96
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97 # reward = CoT . value
98 reward = CoT_v_des . value
99 study .tell(trial , reward )

100 best_value = study . best_trial . value
101

102 # Disable robot for safety
103 except KeyboardInterrupt :
104 pass
105

106 # Write report
107 study . trials_dataframe (). to_csv ("../ logs/ study_results .csv")
108 with open ("../ logs/ study .pkl", "wb+") as f:
109 pkl.dump(study , f)
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D Code for Reinforcement Learning with stable-
baselines3

1 import links_and_nodes as ln
2 import numpy as np
3 import time
4 import gym
5 from stable_baselines3 import SAC
6 from stable_baselines3 . common . env_checker import check_env
7 from stable_baselines3 . common . callbacks import CheckpointCallback
8

9 ln_client = ln. client (" rl_client ")
10 port_out = ln_client . publish (" rl_cmd ", " rl_cmd_from_python ")
11 p_out = port_out . packet
12 port_in = ln_client . subscribe (" rl_tele ", " rl_tele_from_simulink ")
13

14 class CustomEnv (gym.Env):
15 def __init__ (self):
16 super (). __init__ ()
17 self. observation_space = \
18 gym. spaces .Box(low=-np.inf , high=np.inf , shape =(18 ,) , ...

dtype =np. float32 )
19 self. action_space = \
20 gym. spaces .Box(low=-1, high=1, shape =(2 ,))
21

22 def get_observation (self):
23 telemetry = port_in .read ()
24 self.q_d = telemetry .q_d.copy ()
25 self.qu = telemetry .qu.copy ()
26 self.dqu = telemetry .dqu.copy ()
27 self.qa = telemetry .qa.copy ()
28 self.dqa = telemetry .dqa.copy ()
29 self.xb = telemetry .xb.copy ()
30 self.dxb = telemetry .dxb.copy ()
31 self.ddxb = telemetry .ddxb.copy ()
32 obs = np. concatenate (
33 (
34 self.q_d ,
35 self.qu ,
36 self.dqu ,
37 self.qa ,
38 self.dqa ,
39 self.xb ,
40 self.dxb ,
41 self.ddxb ,
42 )
43 )
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44 terminate = telemetry . coll_flag
45 reward = telemetry . reward_val
46 return obs , terminate , reward
47

48 def reset (self):
49 # reset sim
50 p_out . reset_from_rl = 1.0
51 port_out . write ()
52 time. sleep (0.1)
53 p_out . reset_from_rl = 0.0
54 port_out . write ()
55 obs , terminate , reward = self. get_observation ()
56 while terminate == 1.0:
57 time. sleep (0.01)
58 obs , terminate , reward = self. get_observation ()
59 obs , terminate , reward = self. get_observation ()
60 return obs
61

62 def step(self , action ):
63 p_out . q_d_rl = action
64 port_out . write ()
65 obs , terminate , reward = self. get_observation ()
66 if terminate == 1.0:
67 done = True
68 else :
69 done = False
70 info = {}
71 return obs , reward , done , info
72

73 check_env ( CustomEnv () , warn=True)
74 env = CustomEnv ()
75

76 # Save a checkpoint every 1000 steps
77 checkpoint_callback = CheckpointCallback (
78 save_freq =10000 ,
79 save_path ="./ logs/",
80 name_prefix =" sac_hoppy ",
81 save_replay_buffer =True ,
82 save_vecnormalize =True ,
83 )
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E Hyperparameters for SAC on Hardware

1 HoppyRLEnv -v0: & droq
2 env_wrapper :
3 - rl_zoo3 . wrappers . HistoryWrapper :
4 horizon : 2
5 - custom_envs . filter_wrappers . ActionFilterWrapper :
6 sampling_rate : 66.6
7 lowcut : 0
8 highcut : 10
9

10 n_timesteps : !! float 10e4
11 policy : 'MlpPolicy '
12 qf_learning_rate : !! float 1e-3
13 train_freq : 1
14 gradient_steps : 10
15 policy_delay : 10
16 learning_starts : 600
17 # use_sde_at_warmup : True
18 # use_sde : True
19 # top_quantiles_to_drop_per_net : 2
20 policy_kwargs : "dict( layer_norm =True , dropout_rate =0.01)"
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