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Abstract. As aviation’s contribution to anthropogenic climate change is increasing, industry aims at reducing the aviation cli-

mate effect. However, the large contribution of non-CO2 effects to the total climate effect of aviation and their large variability

for each individual flight inhibit finding appropriate guidance. Here, we present a method for the simplified calculation of CO2

equivalent emissions, expressed using the physical climate metrics ATR100 or AGWP100, from CO2 and non-CO2 effects

for a given flight, exclusively based on the aircraft seat category as well as the origin and destination airports. The simplified5

calculation method estimates non-CO2 climate effects of air traffic as precisely as possible, without detailed information on

the actual flight route, actual fuel burn, and current weather situation. For this purpose, we evaluate a global data set containing

detailed flight trajectories, flight emissions, and climate responses, and derive a set of regression formulas for climate effects,

which we call climate effect functions, as well as regression formulas for fuel consumption and NOx emissions. Compared to

previous studies, this method is available for a larger number of aircraft types, including most commercial airliners with seat10

capacities starting from 101 passengers, and delivers more specific results through a clustering approach. The climate effects

calculated using the climate effect functions derived in this study exhibit a mean absolute relative error of 15.0 % and a root

mean square error of 1.24 nK with respect to results from the climate response model AirClim. The climate effect functions are

designed for climate footprint assessments, but would not create an incentive in an emission trading system, for which detailed

information on the current weather as well as the actual flight route and profile would be required.15

1 Introduction

Global aviation more than doubled from 2006 to 2019 in terms of revenue passenger kilometers (ICAO, 2015, 2021). The

associated CO2 emissions grew by 40% to 1036 Tg(CO2)yr−1 during this time span (IEA, 2022). The COVID-19 crisis

significantly reduced air transportation, with the worldwide amount of traffic plunging to 25% of the pre-COVID year 2019

in April 2020, and recovering to around 85% in 2022, based on an analysis of Flightradar24 data (Dube, 2023). As aviation20

is one of the fastest growing sectors, the share in global CO2 emissions could rise from currently about 2 up to even 22%

in 2050 (Cames et al., 2015). Apart from CO2 emissions, also non-CO2 emissions contribute to aviation-induced climate
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change. Especially the effects of contrail cirrus and NOx emissions on the concentration of ozone increase the climate effect

of aviation. Non-CO2 effects were responsible for about two thirds of the total effective radiative forcing (ERF) in 2018 when

considering all aviation emissions from 1940 to 2018 (Lee et al., 2021). The COVID-19 crisis reduced the overall climate25

impact of aviation, however, a significant reduction only occurs if it leads to changes in travel behavior (Grewe et al., 2021).

In this context, it is very important to reduce the climate effect of aviation. There are different mitigation options allowing to

achieve this goal. Beside reducing the number of flights, e.g. by replacing in-person by virtual meetings, the climate effect can

be reduced by alternative fuels and technical or operational measures. Technical measures include the reduction of the specific

fuel consumption through reduced airframe weight, optimized aerodynamics, and engine performance. In addition, optimized30

aircraft design for flying in lower altitudes or in a wider range of altitudes could mitigate the downsides of climate-optimized

flying (e.g., Dahlmann et al., 2016b). The climate effect can also be reduced by using alternative fuels like sustainable aviation

fuel (SAF) or liquid hydrogen. These fuels are potentially CO2-neutral if the fuel is produced with renewable energy. However,

the replacement of conventional fuels by SAF or liquid hydrogen also affects non-CO2 effects, e.g. contrails (Voigt et al., 2021;

Brazzola et al., 2022; Dray et al., 2022). Efficient flight guidance can reduce the fuel consumption and the effect on climate.35

As the climate effect of a flight depends not only on the emission strength, but also on the emission location and the time of

emission, it is possible to reduce the climate effect if climate-sensitive regions are avoided by these so-called climate-optimized

flights (Grewe et al., 2017b; Niklaß et al., 2019b; Matthes et al., 2021). The mitigation of non-CO2 climate effects often comes

along with an increase in cash operating costs. Therefore, the inclusion of non-CO2 effects in emission trading schemes or

marked based measures as incentives for reducing non-CO2 climate effects could be a significant contribution to the agreed40

climate goals of Paris (Grewe et al., 2021).

Carbon dioxide equivalents (CO2,e) are a common metric for unitizing the climate effects of various climate agents. Since

the climate effect of CO2 is fairly well understood due to its independence of emission source and location, it is reasonable

to express non-CO2 effects in relation to the effects of emitting a certain amount of CO2. For a given type and amount of

a climate agent i, resulting CO2,e cause the same climate response, e.g. radiative forcing (RF) or ∆T , over a specific time45

horizon (e.g. 20, 50 or 100 years) as CO2:

CO2,e,total = CO2 +
∑

i

CO2,e,i (1)

In principle, there are several CO2,e calculation methods available that are designed for different applications. In the context

of aviation, the simplest options for the computation of CO2,e are constant CO2,e factors, such as the Radiative Forcing Index

(RFI, IPCC, 1999), followed by CO2,e factors that depend on the flight distance of the evaluated flight. However, Forster50

et al. (2006) clearly pointed at the limiting shortcomings of the RFI concept, such as a large variation with time for constant

emissions, and concluded that RFI is inappropriate for comparing emissions. In addition, the altitude dependency of non-CO2

effects has to be considered in the CO2,e calculation method to avoid misguiding incentives (Faber et al., 2008; Scheelhaase

et al., 2016; Niklaß et al., 2019a). This requires detailed information about the flown aircraft trajectory (altitude profile) of each

flight. However, to obtain the flown altitude profile, one needs to query the flight data, which is an elaborate process. Instead,55

here, we use much simpler CO2,e calculation methods for the climate footprint assessment of single flights. The accuracy of
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these simple factors was investigated, for example, by Dahlmann et al. (2023), who analyzed the climate effect of one typical

long-haul aircraft type of A330-200 aircraft for more than 1000 international city pairs using the climate response model

AirClim (Grewe and Stenke, 2008; Dahlmann et al., 2016a). They found an increase in CO2,e factors with flight distances

as these typically correlate with an increased average flight altitude for distances shorter than 4000 km. This increase in total60

CO2,e values becomes less significant for flight distances longer than 4000 km, as average flight altitude hardly changes on

long-haul flights. Dahlmann et al. (2023) then fitted altitude and latitude dependent regression formulas to the AirClim results,

which can be used for a simplified estimation of aviation climate effects. They found that these regression formulas can be

used to represent the aviation climate effects much better than a constant factor. While the root mean square error for a constant

factor of 3.4 was about 1.18, that obtained with the regression formulas was about 0.24, with 95% of the estimates lying within65

a ±20% range.

Here, we expand the study by Dahlmann et al. (2023) and develop a simplified estimation method for aircraft climate effects,

expressed using the average temperature response over 100 years (ATR100) as a climate metric, using climate effect functions

that are valid for all passenger aircraft with a seat capacity of over 100. While Dahlmann et al. (2023) only analyzed one aircraft

type, we here analyze the climate impact for different aircraft types. An additional difference to Dahlmann et al. (2023) is the70

different emission development. While Dahlmann et al. (2023) used constant emissions over a typical lifetime of an aircraft

of 32 years, we here use increasing emissions over the next 100 years. In both studies, the effects of historical emissions

are neglected. We consider the climate impacts of aircraft emissions of CO2, NOx, and H2O as well as contrail-induced

cloudiness, but ignore the effects of aerosol emissions through aerosol–radiation interactions and aerosol–cloud interactions.

This simplified method provides a precise estimate of the non-CO2 climate effects of air traffic without requiring detailed75

information on the actual flight route, the amount of emissions, and the current weather situation. Instead, it is only based on

the seat capacity as well as the distance and latitude of the flight, two quantities that can be easily computed from the airport

pair.

In the first step, we evaluate a data set containing a global set of detailed flight trajectories, flight emissions (Section 2.1),

and climate responses (Section 2.2). After establishing three different clusters of flights using a K-means method (Section 2.3),80

we generate climate effect functions, which are regression formulas for the climate response (Section 2.4). We also derive

regression formulas for fuel consumption and NOx emissions (Section 2.5) that can be used as input for the climate effect

functions. We then discuss the resulting simplified formulas for the climate effect of individual flights (Section 3). The resulting

equations have been implemented into a simplified estimation tool, for which a user manual is available in Appendix A.

2 Method85

2.1 Global emission inventories and climate responses of the DLR project WeCare

As a basis for the derivation of the climate effect functions that allow for the determination of CO2 equivalent climate ef-

fects, data from the project WeCare (Utilizing WEather information for ClimAte efficient and ecoefficient futuRE aviation,

Grewe et al., 2017a) was used, which was an internal project of the German Aerospace Center (Deutsches Zentrum für Luft-
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und Raumfahrt; DLR). The project addressed both an improvement of the understanding of aviation-influenced atmospheric90

processes and an assessment of different mitigation options. An essential output of the project was a new set of emission

inventories for global aviation (Grewe et al., 2017a). The network of flight trajectories was developed following a four-layer

approach implemented in the AIRCAST method (Ghosh et al., 2016), starting from an origin–destination passenger demand

network that was built up from exogenous socio-economic scenarios, via the passenger routes network (sequence of flight

segments, a passenger actually travelled from origin to destination) to an aircraft movements network, which assigns aircraft95

categories to the resulting flight routes and provides flight frequency information. The final step is a simulation of trajectories

based on the aircraft movements obtained from the aircraft movements network layer using the Global Air Traffic Emissions

Distribution Laboratory (GRIDLAB) developed by DLR (Linke, 2016). Each mission, defined by departure and arrival cities,

aircraft type, and load factor, was simulated under typical operational conditions, resulting in a network of flight trajectories.

For this purpose, DLR’s Trajectory Calculation Module (TCM; Lührs et al., 2014) was used that applies simplified equations100

of motion known as the Total Energy Model.

Based on the aircraft’s engine state determined by parameters such as thrust and fuel flow, the engine emission distribution

of NOx, CO, and HC species along the trajectory was determined by applying the Boeing Fuel Flow Method 2 (DuBois and

Paynter, 2006). The amount of CO2 and H2O emissions was calculated assuming a linear relationship to the fuel burn. The

mapping of emission distributions of all flights onto a geographical grid resulted in 3D inventories. In WeCare, using the ap-105

proach mentioned above, emission inventories and the corresponding climate effect were calculated for the years 2015 to 2050

in 5-year steps. The forecast was based on the reference year 2012. The resulting flight plan of the base year consisted of 47,057

airport pairs and approximately 31 million flights. As it was found that aircraft with more than 100 seats contribute to about

95% of the globally available seat kilometres (ASK), only aircraft with more than 100 seats were covered by the study to reduce

complexity and ensure model availability. Therefore, five different aircraft size categories (based on the number of seats) were110

considered in the inventories (101-151 seats; 152-201 seats; 202-251 seats; 252-301 seats; 302-600 seats) and each size cate-

gory was modelled using one representative aircraft type (plus one backup aircraft type). The representative aircraft type was

selected such that it contributes to a significant share of the respective size category. Respective engine emission characteristics

were taken from the Aircraft Engine Emissions Databank of the International Civil Aviation Organization (ICAO).

2.2 Computation of climate effects of single flights using AirClim115

From the WeCare project, only aggregated flight and emission inventories were available. The determination of climate effect

functions that can be applied to individual flights requires a disaggregation of the WeCare data set. Therefore, for the entire

flight inventory from WeCare emission distributions were re-calculated on a per-flight basis following the method described

above. The resulting single trajectory inventories were then processed with the non-linear climate response model AirClim

(Grewe and Stenke, 2008; Dahlmann et al., 2016a), to obtain the climate effect per species for each flight in the flight plan.120

AirClim combines aircraft emission data (longitude, latitude, and altitude) with a set of pre-calculated non-linear emission–

response relations for a set of atmospheric locations to calculate the temporal development of the global near-surface temper-

ature change. AirClim includes the impact of the climate agents CO2, H2O, CH4, and O3 (the latter two result from NOx
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emissions), as well as contrail-induced cloudiness (CiC). For deriving the atmospheric responses for H2O and NOx-induced

changes in O3 and CH4, 85 steady-state simulations for the year 2000 were performed with the DLR climate–chemistry model125

E39/CA, prescribing normalized emissions of NOx and H2O at various atmospheric regions (Fichter, 2009). For the impact of

CiC, we use atmospheric and climate responses considering the local probability of fulfilling the Schmidt-Appleman criterion

as well as ice-supersaturated regions, which were obtained from simulations with ECHAM4-CCMod (Burkhardt and Kärcher,

2011). We follow a climatological approach in the calculation of the climate impact, meaning that the calculated values for

the climate impact represent a mean over all weather situations averaging over individual spatially and temporally resolved130

responses.

For analyzing the climate impact, we assume emissions starting in 2012 and a future increase in emissions according to

the scenario Fa1 of the Intergovernmental Panel on Climate Change (IPCC, 1992), which is a reference scenario developed

by the International Civil Aviation Organization Forecasting and Economic Support Group (ICAO FESG) with mid-range

economic growth and technology for both improved fuel efficiency and NOx reduction (IPCC, 1999). For background concen-135

trations of CO2 and CH4, which influence the climate impact of CO2 and CH4 emissions, we assume IPCC scenario RCP4.5

(Meinshausen et al., 2011). We quantify the climate impact as the ATR100 (average temperature response), which is the mean

near-surface temperature change over 100 years.

In the data structure for each of the 57631 flights, characterized by origin and destination airport as well as aircraft size

category, the resulting amounts of engine emissions were stored together with the climate effect per species. This database was140

then used to derive the climate effect functions as well as regression formulas for fuel use and NOx emissions.

2.3 Clustering of flights by climate effects using K-means

Next, we want to derive the climate effect functions, which are regression formulas for the total climate effect based on the

climate effect components of the 57631 flights in the database due to emissions of CO2, NOx, and H2O, as well as CiC, and

which allow for a quick determination of the climate effect of a given flight. The analysis uses the following quantities: flight145

distance along a great circle, mean latitude along the great circle, fuel use, NOx emissions, and climate effect. The climate

effect is further divided into climate effects from individual components (CO2, H2O, CiC, O3, PMO, CH4).

Due to the large variety of importance of the different climate effect components among different flights, it is challenging to

find a single set of equations that would reasonably predict the climate effect under most circumstances. Therefore, in the first

step, we apply a K-Means clustering algorithm to separate the flights into several clusters. This clustering is based solely on150

the share of the six aforementioned components of the climate effect in the total climate effect:

ATR100CO2

ATR100tot
,
ATR100H2O

ATR100tot
,
ATR100CiC

ATR100tot
,

ATR100O3

ATR100tot
,
ATR100PMO

ATR100tot
,
ATR100CH4

ATR100tot

This ensures that flights in a given cluster have similar climate effect characteristics. The clustering is not directly dependent

on proxy quantities to the climate effect, such as the amount and location of the emissions. We use an implementation by the155
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Figure 1. Clustering of flights, as obtained by the K-Means clustering algorithm (left) and as delineated by simple thresholds (right), shown

in the latitude–distance space. Each color corresponds to one cluster. We name them the short-flight cluster (green), the tropical cluster

(orange), and the mid-latitude cluster (blue).

free software machine learning library for the Python programming language scikit-learn (Pedregosa et al., 2011) and scale

the input quantities to the standard normal distribution before clustering. We find a partition into three clusters to be most

useful, as larger numbers of clusters lead to some clusters, whose distinctions do not have a clear physical interpretation. The

resulting three clusters occupy distinct areas in the latitude-distance space (Fig. 1). We therefore name them the short-flight

cluster (green), the tropical cluster (orange), and the mid-latitude cluster (blue).160

In the second step, simple thresholds are derived which separate the flights into three categories that approximate the found

clusters. This is necessary to be able to categorize also new flights that are not contained in the data set used for this analysis.

One threshold is a maximum distance for the short-flight cluster, and another threshold is the absolute mean latitude confining

the tropical cluster. We choose the values for these thresholds in such a way that the amount of wrongly categorized flights

is minimized. This leads to a threshold distance of 462.5 km below which flights are categorized as belonging to the short-165

flight cluster, and a threshold mean latitude of ±29.7◦ within which flights are categorized as belonging to the tropical cluster.

All other flights are categorized into the mid-latitude cluster. This approximation wrongly categorizes 16.8% of flights (5859

flights). The resulting simplified clustering is shown in Fig. 1.

The three clusters have distinct characteristics (Fig. 2). The short-flight cluster has a negligible contribution of contrails to

the climate effect at an average of 3.5% of the total climate effect, and a strong contribution of CO2 at an average of 57.4%170

of the total climate effect. Flights in this cluster are very short and therefore often do not reach the required altitude of at

least about 8km (e.g.; Kärcher, 2018) for contrail formation. The climate effect of the tropical cluster is dominated by contrails

(average contribution of 56.6%) because strong contrail formation occurs at tropical latitudes. The mid-latitude cluster contains

the remaining flights and has large climate effect contributions from NOx and H2O (average contributions of 49.1% and 6.8%,

respectively; see below for further discussion).175

6

https://doi.org/10.5194/gmd-2023-126
Preprint. Discussion started: 27 June 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 2. Histograms of the share of each climate effect component in the total climate effect for each cluster.

2.4 Derivation of climate effect functions

For each of the simplified clusters, a climate effect function is derived which approximates the climate effect for a given flight.

Figures 3-5 show the climate effect of each flight as functions of the flight distance and the mean latitude. Emissions of NOx

in the southern hemisphere have a stronger climate effect than those in the northern hemisphere (Fig. 4b; 5b) due to the lower

background concentrations in that region (Köhler et al., 2013). The climate effect of H2O is largest when it is emitted in the180

lowermost stratosphere. Therefore, its climate effect is low in the tropics (Fig. 5e), where the tropopause lies above cruise

altitude, as well as for short flights at any latitude (Fig. 3d), which do not reach a sufficient flight altitude to emit into the

stratosphere. Similarly, very short flights often do not reach the required altitude for contrail formation (Fig. 3g). The contrail–

cirrus climate effect is largest for flights in the tropics (Fig. 5h) due to the increased radiation. The usage of clusters enables us

to find climate effect functions that follow these trends in the data more closely. Following Dahlmann et al. (2023), the climate185

effect obeys the pattern

ATR100tot = ATR100CO2 + ATR100NOx

+ATR100H2O + ATR100CiC

= cCO2f + cNOx(d, ϕ̄)e

+cH2O(d, ϕ̄)f + cCiC(d, ϕ̄)d,

(2)
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Figure 3. Climate metrics ATR100NOx/e (top row), ATR100H2O/f (middle row), ATR100CiC/d (bottom row) as a function of distance d

(left column), mean latitude ϕ̄ (middle column), and both (right column) for the short-flight cluster. Colorful dots denote the values obtained

from AirClim and gray dots are fit results from the climate effect function (Eq. 2).

where f is the fuel use, e are the NOx emissions, d is the flown distance, ϕ̄ is the mean latitude, cCO2 , cNOx , cH2O, and

cCiC are cluster-dependent climate effect functions. These formulas are intended to fit the respective partial climate effects

ATR100CO2/f , ATR100NOx/e, ATR100H2O/f , and ATR100CiC/d, where ATR100NOx = ATR100O3 + ATR100PMO +190

ATR100CH4 is the combined climate effect of NOx emissions. We do not directly fit the climate effects ATR100CO2 ,

ATR100NOx , ATR100H2O, and ATR100CiC because they are linearly or almost linearly related to f , e, f , and c, respec-

tively. Instead, we fit the partial cluster-dependent climate effect functions cCO2 , cNOx , cH2O, and cCiC. The climate effect

function for CO2 is fixed at cCO2 = 8.145× 10−11mKkg−1(fuel), because the climate effect of CO2 is independent of the

emission location in AirClim, so that no fit is required.195

8

https://doi.org/10.5194/gmd-2023-126
Preprint. Discussion started: 27 June 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 4. Same as Fig. 3, but for the mid-latitude cluster.

The partial cluster-dependent climate effect functions are chosen based on the behavior of the respective values in latitude–

distance space (Fig. 3-5) as

cNOx = (aNOx,s,0d + aNOx,s,1)×
(
aNOx,s,2ϕ̄

4 + aNOx,s,3ϕ̄
3 + aNOx,s,4ϕ̄

2

+aNOx,s,5ϕ̄ + aNOx,s,6

)

cH2O = aH2O,s,0

cCiC =
(
aCiC,s,0d

2 + aCiC,s,1d + aCiC,s,2

)
ϕ̄2

(3)
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Figure 5. Same as Fig. 3, but for the tropical cluster.

for the short-flight cluster,

cNOx = aNOx,m,0 arctan(aNOx,m,1d)

+ aNOx,m,2d + aNOx,m,3

cH2O = aH2O,m,0 arctan(aH2O,m,1d)×
(
aH2O,m,2ϕ̄

2 + aH2O,m,3

)

cCiC =
(
aCiC,m,0d

2 + aCiC,m,1d + aCiC,m,2

)
×

(
aCiC,m,3ϕ̄

4 + aCiC,m,4ϕ̄
3 + aCiC,m,5ϕ̄

2

+aCiC,m,6ϕ̄ + aCiC,m,7

)

(4)200
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for the mid-latitude cluster, and

cNOx = (aNOx,t,0 arctan(aNOx,t,1d) + aNOx,t,2)×
(
aNOx,t,3ϕ̄

2 + aNOx,t,4ϕ̄ + aNOx,t,5

)

cH2O = aH2O,t,0 arctan(aH2O,t,1d)×
(
aH2O,t,2ϕ̄

2 + aH2O,t,3

)

cCiC = (aCiC,t,0 arctan(aCiC,t,1d)

+aCiC,t,2d + aCiC,t,3)×
(
aCiC,t,4ϕ̄

4 + aCiC,t,5ϕ̄
2 + aCiC,t,6

)

(5)

for the tropical cluster. The inputs for these climate effect functions are the flight distance d in km and the mean latitude ϕ̄ in

degrees. The resulting climate effects are given in units of mKkg−1(NO2) for cNOx , mKkg−1(fuel) for cH2O, and mKkm−1

for cCiC, respectively. The climate effects, particularly those of NOx and H2O, exhibit discontinuities at flight distances of205

∼ 315 km and ∼ 4600 km, which are related to higher calculated flight levels for flights with longer distances. These

discontinuities pose challenges on the fitting with continuous analytic functions. In the case of the H2O climate effect for the

short-flight cluster, we chose to use the mean instead of a more sophisticated formula, as the contribution of H2O to the total

climate effect is very low for short flights in any case. The latitudinal dependency of the climate effects is generally modelled

with polynomials, where the number of terms depends on the complexity and symmetry of the data’s behavior. The dependency210

of the climate effects on the flight distance is modelled using a combination of polynomial terms and arctangents, which capture

the behavior of an initial steep increase in and later flattening of the climate effect data (see also Dahlmann et al., 2023). The

coefficients a are determined for each of the nine regression formulas by a non-linear least-squares fit and are given in Table 1.

The resulting CO2,e factor can then be computed as

CO2,e =
ATR100tot

ATR100CO2

. (6)215

2.5 Derivation of fuel and NOx functions

Using a selection of all flights of a given seat category from the database of all flights, we derived regression formulas which

approximate the burnt fuel (BF) and the emission index of NOx (EI(NOx)) for a given flight distance d (Fig. 6). These

regression formulas are based on fuel uses and NOx emission indices derived from the Boeing and DLR fuel flow methods.

Fuel functions obey the pattern220

BF = a0 + a1d + a2d
2 , (7)

with the coefficients ai as given in Table 2. The coefficient of determination R2 is > 0.99 for all seat categories.
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Table 1. Best-fit solutions for the coefficients in Eq. 3-5. These coefficients are only valid when using the respective equations with flight

distances d in km and mean latitudes ϕ̄ in degrees.

short-flight cluster

i aNOx,s,i aH2O,s,i aCiC,s,i

0 2.00347786× 10−15 9.03099431× 10−13 4.56196374× 10−19

1 −7.13997187× 10−14 − −1.95682151× 10−17

2 2.365071× 10−4 − −1.4614218× 10−14

3 1.54249099× 10−4 − −
4 −1.4608542 − −
5 1.1732398 − −
6 6.47293618× 103 − −

mid-latitude cluster

i aNOx,m,i aH2O,m,i aCiC,m,i

0 4.78782759× 10−4 1.11758077× 10−12 2.56886171× 10−21

1 1.28634039× 102 1.4423854× 10−3 −5.84017454× 10−17

2 5.2802694× 10−14 5.91431647× 10−3 −3.02860089× 10−14

3 −7.52058168× 10−4 4.86022794 −1.36665996× 10−3

4 − − −1.17906742× 10−2

5 − − 5.452753

6 − − 5.03288373× 101

7 − − −7.7344541× 103

tropical cluster

i aNOx,t,i aH2O,t,i aCiC,t,i

0 1.41434794× 10−1 1.04883173× 10−8 3.58811246× 10−5

1 1.15507399× 10−3 1.35263527× 10−3 2.18840126× 101

2 4.9301452× 10−2 7.62155078× 10−7 −1.91139484× 10−13

3 6.06235609× 10−12 2.94922714× 10−4 −5.63576858× 10−5

4 −2.90148707× 10−10 − 5.92278899× 10−7

5 5.02677523× 10−8 − −1.63789849× 10−3

6 − − 1.13661959

The derived EI(NOx) regression formulas vary for distances smaller and larger than 2000 km and are described by

EI(NOx) =





a0 + a1 ln
d

km
if d < 2000km

a2 + a3d + a4d
2 + a5d

3 if d≥ 2000km .
(8)
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Figure 6. Fuel functions for the simplified calculation of burnt fuel as a function of flight distance.

Figure 7. NOx functions for the simplified calculation of the NOx emission index as a function of flight distance.

Best fit solutions for EI(NOx) regression formulas are provided in Tables 3 and 4 and Fig. 7. The fuel and NOx functions225

are not used for the derivation of the climate effect regression formulas, where the exact values for each flight are used.

Nonetheless, we provide them as additional information that might be useful and can be applied in the simplified estimation of

a flight’s climate effect, as only the seat category and the flight distance are required for their computation.

An interesting feature of the NOx functions (Eq. 8; Fig. 7) is the lack of correlation between the seat category and the

EINOx. The EINOx mainly depends on the combustion temperature, with a higher temperature leading to more emissions.230

The combustion temperature depends on the properties of the engine in the specific aircraft. For the computation of the NOx

functions, aircraft that are frequently used within their seat category were chosen, but these are not necessarily representative

of the entirety of used aircraft within that seat category. In particular, the most efficient and therefore economically successful

aircraft may be overrepresented.
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Table 2. Best fit solutions for fuel regression formulas.

Seat category maximum range [km] a0 [kg] a1 [kgkm−1] a2 [kgkm−2] R2

101-151 6,000 632.36 2.5809 5.0× 10−5 0.9997

152-201 7,000 629.27 2.5388 3.8× 10−5 0.9992

202-251 13,000 997.62 4.6586 7.3× 10−5 0.9994

252-301 13,450 2,789.10 4.1618 2.2× 10−4 0.9907

302-600 14,500 2,277.30 8.5406 2.4× 10−4 0.9999

Table 3. Best fit solutions for EI(NOx) regression formulas for flight distances < 2000km.

Seat category a0 [g(NO2)kg−1] a1 [g(NO2)kg−1] R2

101-151 34.403 -2.667 0.868

152-201 25.963 -1.986 0.892

202-251 35.811 -3.007 0.923

252-301 29.287 -2.220 0.930

302-600 31.717 -2.475 0.971

3 Results and discussion235

The climate effect functions can generally capture the trend, as can be seen by the fits (gray dots in Fig. 3-5) and by the mean

absolute relative error of the fit, which we define as

MARE =
1
N

N∑

i=1

∣∣∣∣∣
ATR100true

tot −ATR100fit
tot

ATR100true
tot

∣∣∣∣∣ , (9)

where N is the number of flights. The MARE is 9.4 % for the short-flight cluster, 16.1 % for the mid-latitude cluster, and

15.0 % for the tropical cluster. When combining results from the different clusters, this leads to MARE = 15.0% and a root240

mean square error of 1.24 nK. The true model values obtained by AirClim are generally strongly correlated with the values

obtained from the climate effect functions (Fig. 8). However, the features of the correlation between true model values and fit

values differ for each climate effect contribution. For NOx, there is very good correlation at short flight distances, but the fits

fail to mirror the large variability at long distances (>∼ 5000km) and instead predict a more confined behavior. For H2O,

some rather short flights (∼ 500− 1000km) are overestimated by the fits. For the climate effect through contrails, flights with245

a low climate effect per distance travelled may be both overestimated or underestimated, but the correlation is better at higher

climate effects. The correlation of the total climate effect is better than that of the individual contributions, owing partly to the

addition of CO2 climate effects, which are linear in the model and therefore perfectly fit.

Since the climate effect functions for the different clusters are independent of each other, mismatches at the cluster bound-

aries cannot be avoided (Fig. 9 - 10). The lines in Fig. 9 - 10 indicate the climate effect at the cluster boundary calculated250
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Table 4. Best fit solutions for EI(NOx) regression formulas for flight distances ≥ 2000km.

Seat category a2 [g(NO2)kg−1] a3 [g(NO2)kg−1km−1] a4 [g(NO2)kg−1km−2] a5 [g(NO2)kg−1km−3] R2

101-151 17.478 −2.70× 10−3 5.8× 10−7 −4× 10−11 0.978

152-201 13.163 −1.84× 10−3 3.6× 10−7 −2× 10−11 0.992

202-251 14.742 −1.14× 10−3 1.5× 10−7 −6× 10−12 0.970

252-301 13.428 −6.93× 10−4 7.8× 10−8 −3× 10−12 0.970

302-600 13.992 −7.61× 10−4 9.7× 10−8 −3× 10−12 0.970

Figure 8. Correlation plots contrasting the true model values of quantities ATR100NOx/e, ATR100H2O/f , ATR100CiC/d, and

ATR100tot obtained by AirClim with the fit values obtained from the climate effect functions. The color indicates flight distance. The

gray line is the 1:1 line.

using the equations for either cluster for a flight with average NOx emissions and fuel use. The difference between lines of

the same color indicates the mismatch. For average NOx emissions and fuel use cases, the mismatch is never larger than 83%.

Particularly large mismatches are found between the short-flight and the tropical cluster for flights with a mean latitude in the

equatorial region (Fig. 10), as well as for very long flights between the mid-latitude and tropical clusters (Fig. 9). We also

calculated the climate effect at the cluster boundary using either cluster for flights with minimal and maximal NOx emissions255

and for flights with minimal and maximal fuel use and found that the most extreme mismatch, reaching 128%, is between cal-
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Figure 9. ATR100 at the cluster boundary of 462 km computed from different clusters’ climate effect functions for average NOx emissions

and fuel use. Average conditions are taken as the average of all flights with flight distances of 462± 50km.

Figure 10. ATR100 at the cluster boundaries of 29.7◦N (blue) and 29.7◦S (orange) computed from different clusters’ climate effect functions.

The average fuel use per flight distance and NOx emissions per flight distance of all flights with mean latitudes of 29.7±2◦N and 29.7±2◦S,

respectively, were used in the computation.

culations using the climate effect functions for the tropical and mid-latitude cluster for a flight with maximal NOx emissions

at very long flight distances with a mean latitude of 29.7◦S.

Table 5 shows the climate effect components of selected example flights, representing the three clusters and different seat

categories. The values in the table are computed for a distance that is 95 km larger than the great circle distance to account260

for arrival and departure procedures according to the EN 16258 standard. The relation between non-CO2 effects and CO2 is

higher than the factor of 2 to 3 known from the literature for non-CO2 effects of aviation, which is based on the total CO2

level from pre-industrial times (e.g., from 1940 to 2018 for Lee et al., 2021). The level of the CO2,e factors strongly depends

on the level of the CO2 reference. Since CO2,e climate effect functions are designed to estimate the climate impact of present

and future flights, we do not consider any emissions of historic aviation. As the climate impact of CO2 is more affected by265

the historical emission than short lived non-CO2 effects, this leads to larger CO2,e factors in this study. Another reason for the
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Table 5. Climate effects and CO2,e factors for selected example flights.

Seat category 101-151 152-201 252-301

Origin airport LHR JFK MAD

Destination airport CDG MUC BUE

Distancea [km] 443 6572 10147

Mean latitude [◦N] 50.25 49.89 3.20

Fuel burnb [kg] 1784 18971 68910

NOx emissionc [kg] 32.4 190.2 788.5

Cluster short-flight mid-latitude tropical

ATR100CO2 [nK] 1.44 15.32 55.66

ATR100H2O [nK] 0.02 6.03 3.25

ATR100NOx [nK] 1.14 22.28 100.22

ATR100CiC [nK] 0.73 31.27 242.49

ATR100tot [nK] 3.33 74.91 401.62

CO2,e factor 2.3 4.9 7.2

a Great circle distance + 95 km; b according to Eq. 7; c according to Eq. 8

larger CO2,e factors in this study is that previous studies sometimes only included line-shaped contrails, but no contrail cirrus

(e.g.; IPCC, 1999; Sausen et al., 2005).

4 Summary and conclusions

Within this study, we developed a method for a simplified estimate of CO2 equivalents per flight. The simplified calculation270

method aims at estimating non-CO2 climate effects of air traffic as precisely as possible, without detailed information on the

actual flight route, actual fuel burn, and the current weather situation. For this purpose, we evaluated a data set containing a

global set of detailed flight trajectories, flight emissions, and climate responses for various aircraft types with seat capacities

ranging from 101 to 600. Based on that data set, we generated climate effect functions and regression formulas for fuel

consumption and NOx emissions.275

In order to increase the accuracy of the climate effect functions, flights were clustered using the K-Means clustering algo-

rithm. The resulting three clusters have distinct characteristics. For flights in the short-flight cluster, the contribution of contrails

to the climate effect is very low at an average of 3.5% of the total climate effect, whereas the contribution of CO2 is strong at an

average of 57.4% of the total climate effect. Flights in this cluster often do not reach sufficient altitudes for contrail formation.

The climate effect of the tropical cluster is dominated by contrails (average contribution of 56.6%) because contrails have a280

particularly large climate effect in the tropics. The mid-latitude cluster contains the remaining flights and has large climate

effect contributions from NOx and H2O (average contributions of 49.1% and 6.8%, respectively).
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The resulting climate effect functions (Eq. 2-5) can be used in combination with their best-fit coefficients (Table 1) to

efficiently compute the climate effect in terms of ATR100 of any flight with given distance, mean latitude, fuel use, and NOx

emissions without the need to run a climate response model.285

By deriving climate effect functions for each of the simplified clusters, the mean absolute relative error of all flights and

aircraft types was reduced to 15.0%, which represents the AirClim computations 5% better than the CO2,e regression formulas

of Dahlmann et al. (2023) for the A330-200 aircraft. The mean absolute relative error is 9.4% for the short-flight cluster, 16.1%

for the mid-latitude cluster, and 15.0% for the tropical cluster. Since the climate effect functions for the different clusters are

independent from each other, mismatches at the cluster boundaries cannot be avoided. For average NOx emissions and fuel290

use cases, the mismatch is never larger than a factor of two. Particularly large mismatches are found between the short-flight

and the tropical cluster for flights with a mean latitude in the equatorial region, as well as for very long flights between the

mid-latitude and tropical clusters.

The climate effect functions and the regression formulas for fuel and EI(NOx) that were derived in this study were also

embedded into an Excel application called “simplified CO2 equivalent estimator”, which we provide in the supplementary ma-295

terials. After a selection of input values (climate metric; aircraft seat category; origin and destination airports; flight frequency),

the tool returns

– the great circle distance (GCD) plus 95 km for arrival and departure procedures,

– a fuel burn estimate,

– estimated CO2 and NOx emissions, and300

– CO2 equivalents for H2O, NOx, and CiC.

This simplified estimate of CO2 equivalents is designed for climate footprint assessments, for which the climate effect

functions provide a more accurate representation than constant factors for non-CO2 effects. The tool is not designed for use in

an emissions trading system because this would require the actual flight routes and profiles to reflect mitigation measures such

as lower flight altitudes or the avoidance of regions with large contrail climate effects, which are not included when assuming305

standard flight profiles and great circle routes. However, the tool allows for providing an estimate for plausibility checks or a

backup when airlines are unable to provide the more detailed data.

Code availability. The python code used for the clustering and generation of the climate effect functions as well as the creation of the figures

is given in Thor et al. (2023).
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Appendix A: User guide310

For simplifying the estimation of CO2 equivalents per flight, the resulting climate effect functions and regression formulas for

fuel and NOx were embedded into an Excel application. The basic user version of the Excel application consists of three Excel

sheets: “Info”, “Calculator”, and “AirportDatabase”:

1. The “Info” sheet provides general information such as the release date and the version number. In addition, you will find

an instruction for the use of DLR’s simplified CO2 equivalent estimator and an exclusion of liability.315

2. The “Calculator” sheet is the core of the application. All input values are entered in this sheet and all calculation results

are displayed.

3. The “AirportDatabase” provides detailed position information for almost 9000 airports. Airports are identified via the

IATA airport code, which is a three-letter geocode defined by the International Air Transport Association (IATA). If the

desired airports are not included in the "AirportDatabase" sheet, users are free to add them.320

In the developer version of the Excel application there are two more Excel sheets: Fuel & NOx functions and “CO2,e functions”

1. In the “Fuel & NOx functions” sheet, regression formulas, and polynomial coefficients are stored for various aircraft

classes. These formulas and coefficients are used for the calculation of the fuel consumption and the cruise emission

index of nitrogen oxides.

2. The “CO2,e functions” sheet provides all necessary formulas and polynomial coefficients for the climate effect function325

calculation. Formulas and coefficients are stored separately for the “short-flight”, “mid-latitude”, and “tropical” cluster

and differ according to the climate agent (CO2, H2O, NOx, CiC). In addition, conversion factors are stored here, which

allow to express the CO2,e either in the climate metric ATR100 or in AGWP100 (absolute global warming potential over

100 years).

The calculations of CO2 equivalents is based on following input parameters, which users enter into the "Calculator" spread-330

sheet of the Excel application:

1. Selection of the preferred climate metric for the calculation of CO2 equivalents in cell "B2". The drop-down list allows

the user to choose between ATR100 or AGWP100.

2. Selection of the preferred aircraft seat category in column “A”. A drop-down list allows the user to choose between five

different seat categories. The proposed seat categories range from 101-151 seats to 302-600 seats and represent following335

aircraft types:

– 101-151 seats: like Airbus A319, A320, Boeing 737

– 152-201 seats: like Airbus A320, A321, Boeing 737, 757

– 202-251 seats: like Airbus A330, A340, Boeing 767, 777
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– 252-301 seats: like Airbus A330, Boeing 777340

– 302-600 seats: like Airbus A340, A380, Boeing 747, 777

3. Enter the IATA airport code of the origin and destination airports in columns “B” and “C”. Columns “E” and “F” indicate

whether the airports are included in the "AirportDatabase" sheet or not. If one of the desired airports is not included,

users are free to add it in the "AirportDatabase" sheet. Also indicated in the "G" column of the "Calculator" sheet is

whether the selected origin–destination pair is flyable with the selected aircraft seat category.345

4. The number of flights performed on the city pair connection is entered into column “D”. The value "1" is the minimum

input value here.

5. Output parameters

If all entries have been made correctly the “Simplified CO2,e Estimator” will return the following output data in columns “H”

to “T” of the “Calculator” sheet:350

– The great circle distance (GCD) plus 95km for arrival and departure procedures (in km),

– The fuel burn estimate (in kg),

– The estimated amount of CO2 emissions (in kg),

– The estimated amount of NOx emissions (in kg),

– The estimated CO2 equivalents of H2O, NOx, and CiC (in kg), based on ATR100 and AGWP100355

– The estimated CO2 equivalents of all non-CO2 effects (in kg),

– The estimated CO2 equivalents of all effects (CO2 and non-CO2 effects) (in kg),

– The estimated CO2 equivalent factor of the flight (CO2 equivalents / CO2).

In row 2 of the “Calculator” sheet, aggregated values for all flights are displayed for the distance, fuel consumption, emissions

(CO2, NOx), and CO2 equivalents (total value, value of all non-CO2 effects, mean factor).360

Author contributions. R. N. T. performed the clustering, the regressions for the climate effect functions, created all figures, and wrote the

manuscript with the help of all coauthors. F. L. simulated the trajectories and created the emissions inventory. K. D. computed the aviation
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