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Acoustic liners are an effective way to dampen aircraft noise. Conventional single-degree-of-

freedom liners consist of a perforated facesheet backed with a honeycomb structure and a rigid

end plate. Their damping excels near their resonance frequency which is anti-proportional

to the cavity depth (𝝀/4-resonator) or the cavity volume (Helmholtz resonator). However, this

is a challenge for low-frequency noise with long wavelengths due to the limited installation

space. We therefore propose a resonator in which the back cavity is divided into two cavities by

a flexible plate. The aim is to combine the damping mechanisms of the Helmholtz resonator

with the material damping of the flexible plate. With carefully chosen parameters, this flexible

plate resonates well below the Helmholtz frequency. We derived an analytic model based on

waveguide theory to predict the impedance of the resonator concept. The Helmholtz equation

was solved to (numerically) determine the scattering coefficients of a channel section in which

one wall is lined with the predicted resonator impedance. The predicted dissipation agreed well

with experimental data from measurements at the aero-acoustic wind tunnel DUCT-R.

Nomenclature

𝐴, 𝐴wall = area, area covered by the cavity wall of one resonator cell

𝑐 = speed of sound

𝐷 = flexural rigidity
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𝐸 = Young’s modulus

ℎ = plate thickness

𝐼, 𝐼𝑚 = area moment of inertia, modified Bessel function of the first kind of mth order

𝐽𝑚 = Bessel function of the first kind of mth order

𝐾1 = modal stiffness

𝑘 = wave number

𝑙 = length

𝑀1 = modal mass

𝑁 = number of openings per cavity

𝑝 = sound pressure

Δ𝑝 = acoustic pressure difference

𝑃𝑟 = Prandtl number

𝑅, 𝑅p = energy reflection, outer plate radius

𝑟 = reflection factor

𝑟cav = (equivalent) radius of the cavity

𝑟neck = radius of the neck in the facesheet

𝑆 = plate surface

𝑠 = shear wave number

𝑇 = energy transmission

𝑈 = perimeter

𝑣, �̂� = velocity, velocity amplitude

𝑊 = wave impedance

𝑥 = deflection

𝑌,𝑌bl,th = admittance, thermal boundary layer admittance

𝑍, 𝑍m,in, 𝑍m,out = acoustic impedance, - of the inner attached mass, - of the outer attached mass

𝛾 = heat capacity ratio

𝛿a, 𝛿m = thickness of the acoustic boundary layer, end correction length

Δ = energy dissipation

Z = normalized impedance

[ = loss factor

\, 𝜒 = normalized resistance, normalized reactance

_, _𝑚,𝑛 = acoustic wave length, frequency parameter for each eigenform
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akin, aPR = kinematic viscosity, Poisson’s ratio

b = ratio of hole area to reference area

𝜌 = density

𝜎 = open area ratio

𝜙 = angle

𝜓 = eigenmode

𝜓Fock = Fock function to account for hole interactions

𝜔 = angular frequency

Subscripts

cav, cav1, cav2 = cavity, main cavity, second cavity

neck = facesheet opening

0 = ambient

p = plate

𝑛, 𝑚 = index

PH = plate holder

cc = circular clamped

I. Introduction
The reduction of aircraft noise is an ongoing challenge with ever increasing demands for quieter flights. Aircraft

noise can be subdivided into airframe and propulsion noise. In the past, significant noise reduction of the latter was

achieved by cut-off design for rotor-stator-interactions and by increasing the bypass-ratio of the turbofan engine – a

trend which is expected to continue. A higher bypass-ratio enables the operation of the fan with reduced speed which

leads to noise with lower frequency components of broader bandwidth. This design approach is beneficial to tackle the

origin of propulsion noise, but challenging for further sound attenuation by liners. Conventional liners currently in

use usually consist of a perforated facesheet with a honeycomb structure underneath [1]. Their capability to dampen

sound waves with long wavelengths is limited; however, as they need more cavity space to achieve this. Due to drag and

weight restrictions, the installation space in the nacelle is limited and consequently, deeper cavities are not an option.

Therefore, new advanced liner technologies are needed to tackle this low-frequency noise.

Conventional liners are usually modelled as a Helmholtz resonator, which is a rigid cavity filled with a compressible

fluid such as air and a neck. For wavelengths much greater than the system’s dimensions, the Helmholtz resonator is

often modeled by combining lumped elements. In this case, the cavity is regarded as a spring and the neck as a mass
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[2], acting with a Single-Degree-Of-Freedom (SDOF). The viscothermal losses inside the neck are modelled as an

equivalent resistance. Contrary, viscothermal losses inside the cavity are usually neglected, since the main dissipation

mechanisms are concentrated in the neck [3]. The combination of a neck with a cavity allows a resonance frequency

lower than a resonator only consisting of a cavity (_/4-resonator). This, however, comes at the cost of a smaller sound

absorption bandwidth. A straightforward way to regain broad noise reduction is by combining multiple distinctive SDOF

resonators for example with variable depth [4]. This concept can be extended by using bent chambers or facesheets with

attached tubes [5]. A different approach is to design a liner with multiple coupled resonators, therefore acting with

Multi-Degrees-of-Freedom (MDOF). A common approach is the subdivision of the cavity with additional elements

such as mesh-material [5–7] or perforations [8–10].

One way to enable noise reduction at lower frequencies than conventional liners, is to combine hard walled Helmholtz

resonators with additional mechanical elements such as membranes or plates. These mechanical elements have the

advantage, that their individual resonance frequencies can be tuned independently of the Helmholtz resonator. The main

difference between membranes and plates is the physical principle of their elasticity. Membranes are elastic because of

the applied tension, similar to a drum. Contrary, plates draw their elasticity from their flexural rigidity, similar to the top

plate of a classical guitar. A combination, for example a thin plate with applied tension, is sometimes called a foil [11].

Even if a rigorous prediction of such a foil’s motion is complicated, a rule of thumb is that positive pre-stress seems

to stiffen the plate, while a negatively pre-stressed plate appears to be more flexible [12]. Plates are often treated in

building acoustics with respect of sound transmission through walls. An important aspect in that research field is the

coincidence frequency, where the projected incoming sound wavelength matches the bending wavelength of the plate.

However, since flexible plates used inside resonators for aero-acoustic damping are considerably thinner than brick

walls, the coincidence effect is in most cases negligible in the context of liners.

Many researchers investigated the effect of combining resonators with membranes. Griffin et al. [13] used a thin

membrane to couple two cavities in a liner and measured the transmission loss of the system. They found multiple

transmission loss peaks and concluded that the membrane provided a coupling and alteration of the resonators cavity

volume. They developed a mechanical system with lumped elements to predict the transmission loss by modeling the

membrane as a piston vibrating only in its first mode. Zhao et al. [14] extended the concept by modeling a similar

parallel-coupled system using Green’s functions and included higher membrane modes in the process. They found that

the combined resonance frequencies are distinct compared to the uncoupled resonances. They also found that altering

the membranes stiffness had a big effect on additional transmission loss peaks.

Mi and Yu [15] combined Helmholtz resonators, a circular membrane and an U-shaped duct, acting as a Herschel-

Quincke tube, to create a sophisticated MDOF resonator. The tensioned membrane was implemented as a flexible

back plate for two Helmholtz resonators attached to the same waveguide. They proposed an analytic model based on

travelling plane waves and a modal expansion approach of the membrane and compared their transmission loss with
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finite element simulations. Apart from the subsystems’ resonances (Helmholtz resonance, membrane resonance and

Herschel-Quincke resonance), they found an additional low-frequency transmission loss peak which they attributed to

the structural-acoustic coupling.

Recently, Dodge et al. [16] included a membrane made of a dielectric elastomer in their liner. They used the

dielectric material property to change the membranes compliance to create a tunable resonator with low-frequency

damping. The impedance was modelled by a lumped element approach and good agreement with experimental data was

found. However, the inclusion of the electric effects on the impedance remained a challenge.

A difficulty when coupling resonators with membranes is the fact that their acoustic behavior strongly depends

on the membrane’s applied tension which is challenging to determine, to control and may change over time. This

disadvantage is overcome when using flexible plates instead of membranes.

In previous studies, flexible plates were often used as flexible back plates to improve attenuation. Horowitz et

al. [17] swapped the rigid backplate of a Helmholtz resonator with an aluminum diaphragm to add degrees of freedom

to the system. The system was modelled as an equivalent circuit using lumped elements. They determined an equivalent

impedance of their clamped circular end plate by an energy analysis of the total distributed potential and kinetic energy

stored in the static deflection. Material losses were not analytically modelled but added as an additional resistance to fit

the experimental data. Liu et al. [18] later extended the model with a piezoelectric composite back plate to construct a

tunable resonator. A similar approach was used by Nudehi et al. [19] who also investigated the impact of a flexible

back plate on a Helmholtz resonator. They modelled the system with lumped elements of the resonator neck and cavity

and an equivalent receptance of the flexible plate. Their study suggested the possibility to lower the system’s main

transmission loss peak in comparison to a resonator with a rigid back wall.

More recently, flexible plates have also been investigated as a mean to couple multiple resonator chambers. Knobloch

et al. [20, 21] replaced the rigid side walls of a liner segment with flexible walls to couple cavities and subsequently

enable broadband damping. In their studies, active cells with a connection to the duct were coupled with inactive cells

by flexible walls. They proved that the concept of integrating flexible walls is beneficial for low-frequency broadband

damping. Liu et al. [22] coupled Helmholtz resonators with a piezoelectric composite sheet to construct an acoustic

energy harvester. The diaphragm was excited by the phase difference between adjacent Helmholtz resonators with

different resonance frequencies.

This phase difference can also be achieved by coupling a Helmholtz resonator with a second cavity by a flexible

plate. Sanada and Tanaka [23] constructed a MDOF resonator composed of a perforated plate and two cavities coupled

via a clamped circular plate. They modelled the system by combining lumped elements of the air in the perforated

plate, the cavities and an equivalent impedance of the flexible panel. The fundamental characteristics of the absorber

were investigated using dimensionless parameters. To achieve a broad attenuation, they suggested a lightweight panel

with a loss factor as high as possible and a high porosity of the perforated plate. However, they did not model the
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resonator’s resistance neither in the perforated front plate nor in the cavity but determined the resistance experimentally.

Additionally, their study was restricted to direct sound incidence.

In the present study we propose a model of a Helmholtz resonator coupled to a second cavity with a flexible plate.

The resonator is viewed as one cell of a liner. We take into account the viscoelastic losses inside the flexible plate, as

well as viscothermal losses both in the neck and inside the cavity. Hence, multiple damping mechanisms are combined

in the resonator concept proposed here. Elastomers are reasonable candidates for the plate material, as they offer high

inherent mechanical losses. The proposed model is an extended combination of the models proposed by Sanada and

Tanaka [23] and Schulz [24], in which we combine one dimensional waveguide theory with lumped elements. The

impedances (or their reciprocals, the admittances) of the individual elements are connected alternately in series or in

parallel and are spatially transformed throughout the resonator. The idea is to start at the thermal boundary layer at the

back of the resonator and use a waveguide model to spatially transform that impedance through the resonator up to the

flow channel. The flexible plate is modelled as an equivalent impedance and integrated into the waveguide model. The

result is an impedance of the resonator system, which is used as a boundary condition in a numerical simulation that

solves the Helmholtz equation to predict scattering coefficients of the duct section with the resonator system attached to

one side. These are compared to results from measurements we conducted at the DLR liner test facility DUCT-R.

The first section treats the case of a simple Helmholtz resonator without a flexible panel (see Fig. 1) which is

connected to the flow channel by a perforated plate with multiple openings per cavity. The modelling of the flexible

plate and a coupled Helmholtz resonator with a second cavity (see Fig. 2) is introduced in Section III. The mechanical

element serves as a coupling between the main cavity with a second cavity with viscoelastic losses, thus providing an

additional damping mechanism. The experimental setup to validate the model is specified in the fourth section. The

results, which include a comparison between predicted and measured scattering coefficients are presented in the fifth

section. Finally, a conclusion and an outlook for future research is drawn.

II. Impedance model of the SDOF Helmholtz resonator
The following model is an adaption of a SDOF Helmholtz resonator model developed previously by the authors [24, 25].

Figure 1 shows the cross-sectional sketch of one resonator cell of the liner to be regarded. The liner is considered as

a periodic array of equal such resonator cells. The cavity with length 𝑙cav and diameter 2𝑟cav is coupled to the outer

acoustic field by 𝑁 equal circular, straight, and sharp-edged orifices with radius 𝑟neck and neck length 𝑙neck. The openings

are equally distributed across the front wall.

The following workflow is used to calculate the impedance of the resonator system:

1) We start at the rear wall of the cavity (𝑦 = 0) where the wall is sound-hard and the wall admittance is zero.

Hence, the normal incidence impedance only consists of the admittance of the thermal boundary layer (blue line
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2𝑟neck

2𝑟cav

0𝑙cav𝑙neck
𝑦

Cavity

Viscothermal layer Thermal layer

Fig. 1 Sketch of a circular Helmholtz resonator with viscous and thermal layers

in Fig. 1) and according to [26] reads

𝑍1 = − 𝑝
𝑣

����
𝑦=0

=
1

𝑌bl,th
= (1 − i) 𝜌0𝑐

𝑘0𝛿a

√
𝑃𝑟

𝛾 − 1
(1)

where 𝑝 is the sound pressure, 𝑣 is the 𝑦-component of the particle velocity, 𝜌0 is the ambient density of air, 𝑐 is

the speed of sound, 𝑘0 = 𝜔/𝑐 is the free field wave number, 𝛾 is the heat capacity ratio, 𝛿a =
√︁

2akin/𝜔 is the

thickness of the acoustic boundary layer, 𝑃𝑟 is the Prandtl number and akin the kinematic viscosity. The negative

sign in Eq. (1) accounts for the definition of the wall impedance with the normal particle velocity 𝑣 pointing

into the wall (i.e. in negative 𝑦-direction, see Fig. 1). Note that the effect of the viscous boundary layer at the

back wall can be neglected since the wall-parallel component of the particle velocity (which would have to be

decelerated by the friction effects) vanishes in front of the hard rear wall of the cavity.

2) The impedance 𝑍1 (at 𝑦 = 0) is transformed spatially to the position 𝑦 = 𝑙cav of the backside of the front plate.

This step takes into account the one dimensional wave propagation in 𝑦-direction in the cavity and the effect

of the lateral viscous and thermal boundary layers (marked with red lines in Fig. 1).∗ The presence of the

viscothermal boundary layers leads to a modified wavenumber for the (almost plane) waves traveling back and

forth in the cavity. This modified wavenumber for wide wave guides reads

𝑘cav = 𝑘0

[
1 + 1 − i

4

(
1 + 𝛾 − 1

√
𝑃𝑟

)
𝑈cav
𝐴cav

𝛿a

]
(2)

∗Note that the influence of the viscous boundary layer depends on the particle velocity amplitude and is only substantial when the cavity depth is
comparably large to the wavelength, due to the rigid boundary condition at the back wall.
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where 𝐴cav is the cross sectional area of the cavity and 𝑈cav is the corresponding perimeter.† Note that in the

case of a cylindrical cavity𝑈/𝐴 = 2/𝑟cav.

The lateral boundary layers in the cavity also modify the wave impedance of the cavity sound field, which is

defined as the ratio between acoustic pressure and wall-parallel particle velocity, averaged over the cavity’s cross

section [24]:

𝑊cav = − 𝑝
𝑣

����
cav

= (𝜌0𝑐)/
[
𝑘cav
𝑘0

(
1 − (1 − i)

2
𝑈cav
𝐴cav

𝛿a

)]
(3)

With the two prerequisites Eqs. (2) and (3), the impedance at 𝑦 = 𝑙cav is

𝑍2 = 𝑊cav
1 + 𝑟1 e−2i𝑘cav𝑙cav

1 − 𝑟1 e−2i𝑘cav𝑙cav
(4)

where the reflection factor of the rigid back wall with a thermal boundary layer is

𝑟1 =
𝑍1 −𝑊cav
𝑍1 +𝑊cav

(5)

3) At 𝑦 = 𝑙cav the effect of the compressible air in the cavity (expressed by 𝑍2) has to be superimposed with the

effect of the thermal boundary layer at the inner side of the front plate (left blue lines in Fig. 1). This corresponds

to an addition of the admittance 1/𝑍2 and the thermal boundary layer admittance 𝑌bl,th in Eq. (1)) since the two

kinds of acoustic compliances are driven by the same pressure. This gives

𝑍3 =
1
𝑌3

with 𝑌3 =
1
𝑍2

+ 𝑌bl,th

(
1 −

𝑁𝜋𝑟2
neck

𝐴cav

)
(6)

where 𝑁 denotes the number of openings per cavity. On the right hand side of Eq. (6), 𝑌bl,th is corrected by an

area ratio which accounts for the effective wall area where the thermal boundary layer is applied (the opening

areas are cutout).

4) The total impedance of the cavity 𝑍3 now has to be connected to the impedance of the openings which act in

parallel. The impedance of a single opening mainly comprises the friction at the sidewall of the opening and

the acceleration of the mass within the neck of the opening, including the inner and outer attached mass. The

parallel connection of the openings is expressed by the fact that each (evenly spaced) opening is described by an

equal wall surface assigned to it. In case of the inner side of the front plate this unit area is simply 𝐴cav/𝑁 . The

cross-sectional jump between this inner unit area and the area of one orifice changes the distribution of acoustic

particle velocity and hence the admittance. This is taken into account by an area transformation 𝜋𝑟2
neck/(𝐴cav/𝑁).

†Equation (2) is valid when the boundary layers are far away from each other and corresponds to the "Kirchhoff ’wide tube’" solution [27, 28]. It
is applicable when high shear wave numbers 𝑠 = 𝑟

√︁
𝜔/akin > 3 are present. A shear wave number of three corresponds to the situation of an acoustic

wave with 200 Hz in a cylinder with radius 𝑟 = 0.33 mm in air at ambient conditions.
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Next, the inner attached mass 𝑍m,in, which accounts for near fields around the inner cross-sectional jump at the

opening, is added:

𝑍4 =
𝜋𝑟2

neck
𝐴cav/𝑁

𝑍3 + 𝑍m,in (7)

It is well known [3] that the (one-sided) additional mass can be described by the impedance of a short open tube

(length ≪ _) with the radius 𝑟neck. For a circular opening in an infinite plate this gives an end correction of

𝛿m = 8/(3𝜋)𝑟neck ≈ 0.85𝑟neck and the corresponding impedance would be (in the inviscid case) 𝑍m,in = i𝑘0𝜌𝑐𝛿m.

However, this end correction is diminished by the side walls and in our case particularly by neighboring openings.

Ingard [3], by means of an inviscid theory, has derived the end correction for a circular resonator opening in a

circular or rectangular cross-sectional cavity. The effect of multiple openings above one cavity can be expressed

by mirror sources which act like virtual cavity walls at the rims of the before mentioned unit area of each opening.

The effect of hole interactions can be accounted for by the Fock function 𝜓Fock [29].‡ Alternatively, for moderate

ratios bin =

√︃
𝜋𝑟2

neck/(𝐴cav/𝑁) < 0.4 (which is fulfilled in most practical liner applications with small porosities),

the end correction can be approximated after Ingard [3] by 𝛿m = 8/(3𝜋) (1 − 1.25 bin)𝑟neck. The impedance of

the inner additional mass ,consequently, is

𝑍m,in = i
8

3𝜋
𝜓Fock (bin)𝑟neck𝑘neck𝑊neck ≈ i

8
3𝜋

(1 − 1.25 bin)𝑟neck𝑘neck𝑊neck (8)

The wavenumber 𝑘neck and the wave impedance𝑊neck of the wave propagation within the opening (seen as a

one dimensional waveguide) can be adopted from Eq. (2) and Eq. (3) but with𝑈neck/𝐴neck = 2/𝑟neck instead of

𝑈cav/𝐴cav.

5) Next, the neck mass impedance is added by a spatial transform of the impedance 𝑍4 through the opening, i.e.

from 𝑦 = 𝑙cav to 𝑦 = 𝑙cav + 𝑙neck in Fig. 1. The same procedure as in step two can be used which yields

𝑍5 = 𝑊neck
1 + 𝑟2 e−2i𝑘neck𝑙neck

1 − 𝑟2 e−2i𝑘neck𝑙neck
(9)

where the reflection factor at the inner end of the opening (𝑦 = 𝑙cav) is

𝑟2 =
𝑍4 −𝑊neck
𝑍4 +𝑊neck

(10)

6) At the exterior end of the opening, the outer additional mass impedance 𝑍m,out has to be added to 𝑍5. In addition,

the cross-sectional jump of the total impedance (from the opening area to the outer unit wall area) is taken into

account by an area transformation. This has already been used in step 4 (in the reverse manner). However, the
‡Note that Fock [29] introduced a correction term for the conductance of a hole, which is inverse proportional to the impedance of such.

Consequently, the original function was defined as the inverse of 𝜓Fock used in this work. 𝜓Fock shortens the additional length.
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outer unit wall area, i.e. the area element which can be assigned to each single opening and which in a sum over

all area elements covers the total liner surface, is slightly increased (compared to the inner unit area) because

of the finite thickness of the cavity walls. Let 𝐴wall be the area which is covered by the cavity walls of one

representative resonator cell of the liner (the liner is regarded as a periodic array of equal such resonators). Then

the acoustic flux due to the cross-sectional jump has to be "distributed" from the area of one opening to the

outer unit wall area (𝐴cav + 𝐴wall)/𝑁 . Thus the total impedance of a liner with 𝑁 circular openings above one

resonator cavity reads:

𝑍6 = (𝑍5 + 𝑍m,out)
(𝐴cav + 𝐴wall)/𝑁

𝜋𝑟2
neck

(11)

For the derivation of the outer attached mass impedance 𝑍m,out the same argument as in step 4 applies,

but accordingly the outer unit area has to be used. The length ratio bin in Eq. (8) hence is replaced by

bout =
√︃
𝜋𝑟2

neck/((𝐴cav + 𝐴wall)/𝑁).

III. Impedance model of the MDOF Helmholtz resonator with a second cavity coupled by a
flexible plate

In this section the equivalent impedance of a flexible plate is derived similar to [23]. This impedance is then

combined with the model introduced in the previous section to obtain a model of a Helmholtz resonator with a flexible

plate, depicted in Fig. 2. We assume the plate to be round, homogeneous and thin compared to its length. As the plate

is excited by acoustical pressure differences, the deflections are assumed to be small. The corresponding differential

equation for the plate’s motion then reads:

𝐷∇4{𝑥p (𝑟, 𝑡)} + 𝜌pℎ
𝜕2𝑥p (𝑟, 𝑡)
𝜕𝑡2

= Δ𝑝 ei𝜔𝑡 (12)

In Eq. (12) 𝜌p is the density of the plate, ℎ is the plate thickness, 𝑥p is the deflection of the plate, Δ𝑝 is pressure

difference due to the exciting acoustic wave. The flexural rigidity 𝐷 for a thin plate is given by

𝐷 = (1 + i[)𝐸𝐼 = (1 + i[) 𝐸ℎ3

12(1 − a2
PR)

(13)

where [ denotes the loss factor, 𝐸 denotes Young’s modulus, 𝐼 denotes the area moment of inertia and aPR denotes

Poisson’s ratio. In Eq. (12), the Laplacian Δ is applied twice: ∇4 = ΔΔ, which results in a partial differential equation

of fourth order.§ Due to the harmonic excitation, the plate’s velocity is assumed to be harmonic as well, yielding
§This is in contrast to the motion of a membrane, where the corresponding partial differential equation only contains the second derivative with

respect to the deflection.
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𝑣p (𝑟, 𝑡) = �̂�p (𝑟) ei𝜔𝑡 = i𝜔𝑥p (𝑟) ei𝜔𝑡 . Eq. (12) can therefore be written as

𝐷

i𝜔
∇4{�̂�p (𝑟)} + i𝜔𝜌pℎ�̂�p (𝑟) = Δ𝑝 (14)

The velocity of the circular plate can be expressed by the superposition of infinitely many eigenmodes 𝜓𝑛 and the

corresponding modal amplitudes �̂�p,𝑛 for each mode 𝑛 as

�̂�p (𝑟) =
∞∑︁
𝑛=0

�̂�p,𝑛𝜓𝑛 (𝑟) (15)

Following [30], the eigenmodes of a clamped circular plate (𝜓cc (𝑅p) = 𝜕𝜓cc
𝜕𝑟

|𝑅p = 0) with the outer radius 𝑅p can be

approximated by

𝜓cc (𝑟, 𝜑, 𝑚, 𝑛) =
[
𝐽𝑚

(
_𝑚,𝑛

𝑅p
𝑟

)
−
𝐽𝑚

(
_𝑚,𝑛

)
𝐼𝑚

(
_𝑚,𝑛

) 𝐼𝑚 (
_𝑚,𝑛

𝑅p
𝑟

)]
cos(𝑚𝜑) (16)

with 𝐽𝑚 the Bessel function of the first kind of 𝑚th order, 𝐼𝑚 the modified Bessel function of the first kind of 𝑚th order

and _𝑚,𝑛 a frequency parameter of each eigenform and the angle 𝜑. The frequency parameter of a clamped circular

plate can be calculated using the transcendental equation

𝐽𝑚 (_)
𝐽𝑚+1 (_)

+ 𝐼𝑚 (_)
𝐼𝑚+1 (_)

= 0 (17)

Like in Section II, we assume that only plane waves are able to propagate inside the cavity (but outside the boundary

layer). Hence, the excitation of the plate is assumed to be independent of 𝜑. Consequently, the plate’s motion is assumed

to be dominated by the fundamental eigenmode of order 𝑚, 𝑛 = 0:

𝜓(𝑟) = 𝜓cc,0 (𝑟) = 𝐽0

(
_0
𝑅p
𝑟

)
− 𝐽0 (_0)
𝐼0 (_0)

𝐼0

(
_0
𝑅p
𝑟

)
(18)

The frequency parameter of the fundamental mode 𝑚, 𝑛 = 0 is _0 ≈ 3.196.¶ Given these assumptions, combining

Eq. (14) and Eq. (15) yields
𝐷

i𝜔
∇4{𝜓(𝑟)}�̂�p + i𝜔𝜌pℎ�̂�p𝜓(𝑟) = Δ𝑝 (19)

¶Note that Eq. (18) is also valid for a circular simply supported plate, with the sole difference that the frequency parameter of the fundamental
mode is _0 (aPR=0.5 ) ≈ 2.2831 [31]. The fundamental eigenfrequency of a circular simply supported plate is, consequently, lower than that of a
circular clamped plate.
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Multiplying Eq. (19) with 𝜓(𝑟) and integrating over the plate’s surface 𝑆 = 𝜋𝑅2
p yields

∬
𝑆

𝐷

i𝜔
∇4{𝜓(𝑟)}�̂�p𝜓(𝑟) + i𝜔𝜌pℎ�̂�p𝜓(𝑟)𝜓(𝑟)d𝑆 =

∬
𝑆

Δ𝑝 𝜓(𝑟)d𝑆 (20)

𝐷

i𝜔

∬
𝑆

∇4{𝜓(𝑟)}𝜓(𝑟)d𝑆 + i𝜔𝜌pℎ

∬
𝑆

𝜓2 (𝑟)d𝑆 =
Δ𝑝

�̂�p

∬
𝑆

𝜓(𝑟)d𝑆 (21)

The modal amplitude of the plate’s velocity �̂�p can be expressed by the mean velocity of the plate �̄�p over the area of the

plate:

�̂�p =
�̄�p𝑆∬

𝑆
𝜓(𝑟)d𝑆

(22)

Using Eq. (22), we finally obtain

1
i𝜔
𝐷

∬
𝑆

∇4{𝜓(𝑟)}𝜓(𝑟)d𝑆︸                         ︷︷                         ︸
𝐾1

+i𝜔 𝜌pℎ

∬
𝑆

𝜓2 (𝑟)d𝑆︸               ︷︷               ︸
𝑀1

=
Δ𝑝

�̄�p

1
𝑆

(∬
𝑆

𝜓(𝑟)d𝑆
)2

︸            ︷︷            ︸
𝐵

(23)

With the introduction of

𝐵 =

(∬
𝑆

𝜓(𝑟)d𝑆
)2

=

(
2𝜋

∫
𝑟

𝜓(𝑟)𝑟d𝑟
)2

(24)

𝐾1 = 𝐷

∬
𝑆

∇4{𝜓(𝑟)}𝜓(𝑟)d𝑆 = 𝐷2𝜋
∫
𝑟

∇4{𝜓(𝑟)}𝜓(𝑟)𝑟d𝑟 (25)

𝑀1 = 𝜌pℎ2𝜋
∫
𝑟

𝜓2 (𝑟)𝑟d𝑟 (26)

we express the motion of the flexible plate in terms similar to a simple oscillator with a modal mass 𝑀1 and a modal

stiffness 𝐾1 of the fundamental mode as

Δ𝑝

�̄�p
= 𝑍p =

𝑆

𝐵

(
1
i𝜔
𝐾1 + i𝜔𝑀1

)
(27)

To calculate Eq. (25), we take advantage of the fact that in this case the Laplacian of the eigenmode can be expressed as

an eigenvalue problem:

Δ𝜓(𝑟) =
(
_0
𝑅p

)2
𝜓(𝑟) (28)

Consequently, it yields that

∇4𝜓(𝑟) = Δ(Δ(𝜓(𝑟))) =
(
_0
𝑅p

)4
𝜓(𝑟) (29)

12
This is the author's version (post-print) of the work that was accepted for publication in the AIAA Journal 
on the 20th of April 2023 and published online on the 29th of May 2023. 
The final version was published here: https://arc.aiaa.org/doi/10.2514/1.J062227  © 2023



which simplifies Eq. (25) to

𝐾1 = 𝐷2𝜋
∫
𝑟

∇4{𝜓(𝑟)}𝜓(𝑟)𝑟d𝑟 = 𝐷2𝜋
(
_0
𝑅p

)4 ∫
𝑟

𝜓2 (𝑟)𝑟d𝑟 (30)

Using the simple oscillator analogy, the resonance frequency of the clamped circular plate in its fundamental mode is

expressed as

𝜔𝑝 = Re

{√︂
𝐾1
𝑀1

}
= Re

{(
_0
𝑅p

)2
√︄

𝐷

𝜌pℎ

}
(31)

which is the same eigenfrequency of a clamped circular plate as calculated in [30].

In the next step, this impedance is integrated into the resonator model of Section II. The situation is depicted in

Fig. 2.

2𝑟neck

2𝑅p
2𝑟cav

0𝑙cav1 𝑙cav2𝑙PH𝑙neck
𝑦

Main cavity Second cavity

Viscothermal layer Thermal
layer

Fig. 2 Sketch of a circular Helmholtz resonator with a flexible plate inside a plate holder and a second cavity

The starting point is once again the rigid back of the cavity with a thermal boundary layer and the same reflection

factor as in Eq. (5). In contrast to the previous section, the impedance in Eq. (4) is transformed spatially to the position

of a plate holder at a distance of 𝑙cav2

𝑍I = 𝑊cav
1 + 𝑟1 e−2i𝑘cav𝑙cav2

1 − 𝑟1 e−2i𝑘cav𝑙cav2
(32)

At the position of the plate holder, there is a parallel connection between the cavity’s impedance and the impedance of

the thermal boundary layer of the plate holder

𝑍II =
1
𝑌II

with 𝑌II =
1
𝑍I

+ 𝑌bl,th

(
1 − 𝑆

𝐴cav

)
(33)
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in which the factor 𝑆/𝐴cav ensures the continuity of the acoustic flux. The influence of the viscothermal boundary layer

of the right half of the plate holder (see Fig. 2) is accounted for by

𝑍III = 𝑊PH
1 + 𝑟II e−i𝑘PH𝑙PH

1 − 𝑟II e−i𝑘PH𝑙PH
with 𝑟II =

𝑍II −𝑊PH
𝑍II +𝑊PH

(34)

The wavenumber 𝑘PH and the wave impedance 𝑊PH of the wave propagation within the opening of the plate holder

(seen as a one dimensional waveguide) can be adopted from Eq. (2) and Eq. (3) but with𝑈neck/𝐴neck = 2/𝑅p instead of

𝑈cav/𝐴cav. The impedance of the plate as calculated in Eq. (23) is connected in series and therefore it yields:

𝑍IV =
𝑆

𝐴cav
𝑍III + 𝑍p (35)

The influence of the viscothermal boundary layer of the left half of the plate holder (see Fig. 2) is accounted for by

𝑍V = 𝑊PH
1 + 𝑟III e−i𝑘PH𝑙PH

1 − 𝑟III e−i𝑘PH𝑙PH
with 𝑟III =

𝑍IV −𝑊PH
𝑍IV +𝑊PH

(36)

The effects of the cross section jump back and the effects of the thermal boundary layer of the plate holder towards the

perforated plate are described by

𝑍VI =
1
𝑌VI

with 𝑌VI =
1

𝐴cav
𝑆
𝑍V

+ 𝑌bl,th

(
1 − 𝑆

𝐴cav

)
(37)

Next, the reflection factor at this position is calculated

𝑟IV =
𝑍VI −𝑊cav
𝑍VI +𝑊cav

(38)

and a spatial transformation along the main cavity is used to the backside of the perforated plate by

𝑍 ′
2 = 𝑊cav

1 + 𝑟IV e−2i𝑘cav𝑙cav1

1 − 𝑟IV e−2i𝑘cav𝑙cav1
(39)

The rest of the steps to determine the impedance of the resonator are the same as in the Helmholtz resonator case

described in the previous section (Eq. (6) and following).

IV. Experimental setup
In order to validate the models we conducted several experimental investigations at the duct acoustic test rig

(DUCT-R) facility of the German Aerospace Center (DLR) in Berlin. The rig is sketched in Fig. 3 and consists of two

symmetrical parts with a cross section of 60 mm × 80 mm and a cut-on frequency of the first higher mode of 2142 Hz.
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Fig. 3 Schematic view of the DUCT-R test rig

Each part is equipped with five flush mounted microphones of type 1/4" G.R.A.S. 40BP-S1 to decompose the sound

field into upstream and downstream travelling sound waves in each section respectively. Their signals are recorded over

a time of 5 s with an OROS 38 data acquisition system. Since we only investigated only plane travelling waves up to

2000 Hz, we set the sampling frequency to 8192 Hz and the Hann window function with an overlap of 50 % was used

during post processing. The complex spectra of the microphone signals are obtained by using the method of Chung

[32] with the loudspeaker input signal as a phase reference. We used five instead of two microphones to improve the

accuracy of fitting the (forward and backward) travelling sound waves to the sound pressure measured at the duct wall.

Additionally, a singular solution at a certain microphone spacing between two microphones is avoided. [33] The sound

waves are excited either via upstream speaker A or downstream speaker B (see Fig. 3) of type BMS 4599HE with a single

tone and an amplitude of the incoming plane wave (downstream, if excited by speaker A, upstream, if excited by speaker

B) in the corresponding hard walls section of 110 dB. The decomposed sound field prior and after the test section is

used to determine the scattering coefficients (reflection 𝑅, transmission 𝑇 , dissipation Δ) upstream and downstream of

the channel with the tested resonator installed at one side of the duct. The test facility offers the possibility to measure

the effect of grazing flow and nonlinear sound excitation with sound amplitudes of more than 130 dB; however, this was

not investigated in this study. The facility has been extensively used for liner measurements and impedance eductions

with a low error (< 3 %) in derived dissipation [21, 34, 35]. Figure 4 shows the experimental setup to validate the

models introduced in Sections II and III. The subject of interest is a single modular Helmholtz resonator with one main

cavity which can be extended on every outer side (each of the side walls and the back wall) with a flexible clamped

plate inside a plate holder. The main cavity with a quadratic cross sectional area of 𝐴cav = 35 mm × 35 mm and a depth

of 𝑙cav1 = 60 mm is attached to a perforated facesheet with a thickness of 2 mm. The whole resonator system is flush

mounted to the DUCT-R. The resonator has 18 evenly spaced orifices with a radius of 𝑟neck = 0.75 mm and the open

area ratio 𝜎 is 2.6 %. The regular cavity walls are made of aluminum. In this setup, the back wall was replaced by a

plate holder with a flexible circular thermoplastic plate, followed by a second cavity and rigid back wall (see Fig. 2). We

chose this plate’s material in order to make use of a high loss factor and a suitable flexural rigidity to ensure that the

first eigenfrequency is in the investigated frequency range. The plate is clamped into a plate holder tightened by ten

screws to a torque of 0.2 Nm to ensure that the plate is clamped on its boundaries. The depth of the second cavity can be
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DUCT-R
Main cavity

Flexible wall
Second cavity

Rigid back wall

Fig. 4 Experimental setup to investigate Helmholtz resonators with flexible walls at the DUCT-R

Table 1 Properties of the experimental resonator

Cavity dimensions Plate properties

𝑙cav1 = 60 mm 𝐸 = 16 MPa
𝑙cav2 = 25 mm [ = 0.1
𝐴cav = 35 mm×35 mm 𝜌p = 1080 kg/m3

𝑙neck = 2 mm aPR = 0.48
𝑟neck = 0.75 mm ℎ = 0.3 mm
𝜎 = 2.6 % 𝑅p = 7.5 mm
𝑙PH = 4 mm

varied. In this setup, a depth of 𝑙cav2 = 25 mm was chosen. Additionally, a thin hose (diameter 0.5 mm) connects both

cavities to ensure that there is no static pressure difference during grazing flow measurements, similar to a static pressure

equalization vent of a microphone. Further properties of the investigated resonator are listed in Table 1. This setup

enables an investigation of a wide range of parameters including different materials of the flexible plate and different

cavity dimensions. The simplest configuration is a SDOF Helmholtz resonator with one rectangular cavity with a depth

of 𝑙cav = 50 mm. Note that this depth is smaller than 𝑙cav1 .

We furthermore measured the scattering coefficients of a liner with multiple locally reacting resonators to validate

the applicability of the Helmholtz resonator model (Section II) which forms the basis of the coupled resonator model

(Section III). The liner (HRS1b) is a generic Helmholtz resonator liner, which consists of an aluminum perforated

facesheet (opening diameter: 1 mm, perforation ratio: 1.8 %, thickness: 1 mm), tubes of polycarbonate as cells (length:

38.8 mm, diameter: 6.9 mm) and a solid back plate. The specific geometrical properties are the same as in [35] with the

sole difference that the liner has a shorter axial length of 220 mm.
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Fig. 5 Predicted normalized impedance Z = \ + i𝜒 of the Helmholtz resonator

V. Results and Discussion
Figure 5 shows the predicted normalized impedance of the simple Helmholtz resonator versus the frequency. In

this case, the main cavity is backed by a rigid back wall. The complex impedance Z = 𝑍/𝜌0 𝑐 = \ + i𝜒, normalized

by the specific acoustic impedance of air 𝜌0 𝑐, is calculated with the model in Section II and can be described by the

normalized resistance \ and the normalized reactance 𝜒.

The single resonance is clearly visible around 600 Hz at the zero-crossing of the reactance (red). The resistance

(blue) stems from the viscothermal losses and increases slightly towards higher frequencies. This predicted impedance

is used as a boundary condition when solving the convective Helmholtz equation by finite differences with the code

introduced in [36] to determine the scattering coefficients of the channel section. To compare the numerical results

with the measurements, the predicted impedance is averaged with the hard wall area besides the resonator to create an

effective channel impedance across the test section.

In Section II the viscothermal boundary layers inside the cavity are taken into account. Figure 6a shows the resistance

of the cavity with consideration of different boundary layers. When all boundary layers are neglected, the cavity

contributes no resistance (green). When the effect of the viscothermal boundary layer inside the cavity is taken into

account, the cavity dissipates energy expressed by positive resistance. This can be modeled either by the approximation

by Zwikker-Kosten (see [37], blue) or by Eq. (2) (red, dotted) which in the current case coincide, as the cavity is

sufficiently wide and the "Kirchhoff ’wide tube’" approximation holds. The contribution f the viscothermal boundary

layer is greater at lower shear wave numbers (thinner cavities or lower frequencies). Finally, the thermal boundary layer
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of the back wall is added, resulting in the yellow line. Again, the contribution is greater for lower frequencies and adds

substantially to the overall resistance of the cavity.

The latter, however, is small compared to the total resistance of the resonator in this specific example. This is visible in

Fig. 6b. The total resistance is dominated by the facesheet’s resistance (blue), whis is much higher than the cavity’s

resistance (red) and the thermal boundary layer resistance (yellow). The resistance of the cavity is, nevertheless,

significant for thin cavities and low frequencies. Note that these results are specific to the resonator geometry and

depends for example on the cavity’s width. Figure 7a depicts a comparison between the experimentally determined and

(a) Resistance of the cavity without considering boundary
layers (green), with viscothermal side wall boundary layer
according to Zwikker-Kosten (blue), with viscothermal side
wall boundary layer according to Eq. (2) (red, dotted) and with
viscothermal side wall boundary layer and thermal layer at
back wall (orange). Note, that the blue and red line coincide.

(b) Resistance of the whole resonator (blue), of the resonator
cavity (red) and the the thermal boundary layer individually
(yellow)

Fig. 6 Contribution of the cavity’s boundary layers to the resonators’ resistance

simulated scattering coefficients of the channel section with one Helmholtz resonator cell installed.

(a) Single Helmholtz resonator (b) Helmholtz resonator liner

Fig. 7 Comparison between measured (exp) and predicted (sim) scattering coefficients of the channel segment
with a) single Helmholtz resonator and b) Helmholtz resonator liner: 𝑅 reflection, 𝑇 transmission, Δ dissipation
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Both, reflection and transmission agree reasonably well. The same holds for the dissipation, as it is derived from the

reflection and transmission coefficient. The model correctly predicts the damping amplitude of the single Helmholtz

resonator. Nevertheless, all simulated curves seem to be slightly shifted towards lower frequencies. This may due

to further multi-orifice effects, not yet correctly captured in the model in Section II. The dissipation appears to be

small overall; however, one has to keep in mind that only the dissipation of a single Helmholtz resonator is shown.

Additionally, the resonator was not constructed for optimal damping but for adaptability for future parameter studies.

Additionally, the model for the simple Helmholtz resonator introduced in Section II was used to predict the scattering

coefficients of a liner with multiple locally reacting cells. A comparison between measured and predicted scattering

coefficients is presented in Fig. 7b. Again, prediction and measurement agree very well. However, at the resonance

around 850 Hz the energy reflection is mildly overpredicted. Note that Δ = 1−𝑅−𝑇 and as a consequence the dissipation

is underpredicted around 900 Hz. This might stem from nonlinear effects such as jet formation at the openings, which

suggests that a liner with a perforation ratio of 1.8 % exited by an acoustic pressure wave with an amplitude of 110 dB

already shows amplitude dependent behavior.

The predicted normalized impedance of the Helmholtz resonator with a second cavity coupled by a flexible plate is

depicted in Fig. 8. The impedance was calculated with the model introduced in Section III. Note that only the frequency

range up to 1000 Hz is shown to see the effect of the flexible plate more clearly.

Helmholtz resonance

Antiresonance

Plate resonance

Fig. 8 Predicted normalized impedance Z = \ + i𝜒 of the Helmholtz resonator with a flexible plate and a second
cavity

Multiple zero-crossings of the reactance (red) are visible. The first zero-crossing around 380 Hz can be attributed to
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the plate resonance. The peak of the resistance (blue) around 450 Hz stems from the antiresonance located between the

plate resonance and the Helmholtz resonance around 600 Hz. The antiresonance is also visible as a zero-crossing of the

reactance with negative slope.

The complex impedance Z = \ + i𝜒 at different positions inside the cavity is shown in Fig. 9 to gain a better

understanding of the coupling concept. The impedance of the second cavity \𝐼 , 𝜒𝐼 (dashed, Eq. (32)) is that of an tube

Fig. 9 Predicted normalized resistance (blue) and normalized reactance (red) of the Helmholtz resonator with
a flexible plate and a second cavity of different contributors: \𝐼 , 𝜒𝐼 - dashed, second cavity (Eq. (32)); \P, 𝜒P -
dash-dotted, flexible plate (Eq. (27)); \2′ , 𝜒2′ - dotted, main cavity and second cavity coupled by the flexible plate
(Eq. (39)); \tot, 𝜒tot - solid, total resonator impedance

with a small resistance at lower frequencies due to the viscothermal and thermal boundary layers at the walls and a

reactance of cotangent shape 𝜒𝐼 ≈ −cot(𝑘𝑙cav2 ). The first geometrical resonance at a quarter wavelength of the second

cavity alone 𝜒𝐼 = 0 is out of the plotted frequency range due to its small length.

The impedance of the flexible plate (only considering the first mode, \P, 𝜒P (dash-dotted, Eq. (27)) has a resistance

which is highest for lower frequencies but significantly larger than that of the second cavity. The resistance stems

from the material losses inside the flexible plate which are taken into account by its complex stiffness (𝐾1 ∈ C). As

presented in Eq. (27), the reactance of the flexible plate is a combination of its modal stiffness (𝐾1) and its modal mass

(𝑀1). The stiffness is the dominant factor for low frequencies below the eigenfrequency. The mass of the flexible

plate on the other hand is the dominant contributor for higher frequencies as the reactance approaches a linear slope

with respect to the frequency. The eigenfrequency of the flexible plate in vacuo is visible at the zero crossing of the

reactance 𝜒P = 0 around 350 Hz. The impedance of the main cavity and second cavity coupled by the flexible plate

\2′ , 𝜒2′ (dotted, Eq. (39)) is the normalized impedance inside the cavity just behind the facesheet. This impedance

curve displays multiple resonances and the anti resonance in between. Note that the flexible plate and the second cavity

(without the main cavity) already show multiple resonances (acting as a plate resonator), however, at much higher
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frequencies (not shown here). Finally, the total resonator impedance \tot, 𝜒tot (solid) is shown to highlight the effect of

the facesheet. The facesheet adds resistance and reactance to the total resonator impedance (\tot, 𝜒tot - solid). This,

consequently, decreases the resonance frequency of both resonance frequencies associated with the plate resonance and

the Helmholtz resonance. The total resonator impedance therefore is a sophisticated combination of multiple parameters

which all contribute to its damping behavior.

In the following the results for the Helmholtz resonator coupled with a second cavity by a flexible plate modelled

with the proposed model in Section III are presented. In Fig. 10 we see that the measured and simulated scattering

coefficients of the channel section equipped with the coupled Helmholtz resonator agree reasonably well.

Fig. 10 Comparison between measured (exp) and predicted (sim) scattering coefficients of the section with the
single Helmholtz resonator with a second cavity and a flexible plate: 𝑅 reflection, 𝑇 transmission, Δ dissipation

Both dissipation peaks are predicted correctly in their amplitude. Still, a similar frequency shift as the case of the

simple Helmholtz resonator with multiple holes in Fig. 7a is visible. It is shown that the integration of a flexible plate

in a resonator enables low-frequency damping – even lower than the Helmholtz resonance frequency. However, the

peak due to the plate’s resonance is comparably small. This may be due to the fact, that the area of the plate in the

experiment was relatively small with respect to the cross section of the cavity. However, when using larger plates,

multiple eigenmodes may be close to the Helmholtz resonance and the assumption of a single dominant eigenmode of

the flexible plate may no longer hold.

The modular setup of the single Helmholtz resonator allows the investigation of different depths of the second cavity

𝑙cav2 . We tested two additional cavity depths: 𝑙cav2 = 15 mm (Fig. 11a, smaller) and 𝑙cav2 = 50 mm (Fig. 11a, larger). It
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is visible, that the Helmholtz resonance is not very sensitive with respect to the second cavity depth, as expected. On the

contrary, the first damping resonance frequency associated with the plate resonance is altered when the depth of the

second cavity is varied. The model is able to correctly predict the direction of these changes but, nevertheless, a shift

between predicted and measured damping resonance is visible. This may due to unknown pre-stressing of the flexible

plate during application, which alters the plate’s elasticity.

(a) Smaller second cavity with smaller depth (𝑙cav2 = 15 mm) (b) Larger second cavity with more depth (𝑙cav2 = 50 mm)

Fig. 11 Comparison between measured (exp) and predicted (sim) scattering coefficients of the section with the
single Helmholtz resonator with a second cavity of variable depth and a flexible plate: 𝑅 reflection, 𝑇 transmission,
Δ dissipation

The test facility offers the possibility to investigate the influence of a grazing flow on the acoustic behaviour of liners.

The influence of a grazing flow (centerline Mach number of 0.1) and the connecting hose is depicted in Fig. 12. Neither

influence is part of the analytic model and is therefore only briefly discussed. It is, nevertheless, important to evaluate

the overall damping concept. The grazing flow has two effects on the dissipation of the resonator system: The first local

maximum associated with the plate resonance is shifted to lower frequencies and the second local maximum associated

with the Helmholtz resonator is slightly shifted towards higher frequencies, widened and decreased in amplitude. This

is most likely due to the change of the facesheet impedance due to the grazing flow. However, it becomes apparent that a

single resonator offers too little dissipation and a liner segment with multiple resonator cells is needed to investigate

these grazing flow effects in greater detail.

The implementation of a hose to obtain a static pressure equilibrium between both cavities affects mainly the behavior of

the plate under grazing flow conditions, as expected. When the second cavity is sealed (without the hose) the resonance

is shifted towards higher frequencies. We assume that in this case the plate is statically deflected by the (not measured)

static pressure difference.
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Fig. 12 Comparison between averaged dissipation of the lined duct section with the single Helmholtz resonator
with a second cavity and a flexible plate without grazing flow (blue), with grazing flow and connecting hose (red)
and with grazing flow but without connecting hose (yellow)

VI. Conclusions and Outlook
In this paper we proposed a novel modelling of a Helmholtz resonator with multiple necks and two cavities, coupled

by a circular flexible plate. The model takes losses due to thermal conductivity (in the thermal boundary layer) and

viscous damping (in the viscous boundary layer) inside the cavity and in the facesheet into account. Therefore all

damping mechanisms of the Helmholtz resonator in the linear regime are included in the proposed model. When a

flexible plate is used to subdivide the cavity, additional attenuation is introduced in the form of material damping.

The clamped circular plate is modelled as an equivalent impedance of the first dominant mode and integrated into

the Helmholtz resonator model. The predicted dissipation agreed well with experimental data of a single Helmholtz

resonator chamber with multiple necks, both with and without a flexible plate, obtained at the DUCT-R test facility. The

inclusion of a flexible plate allows the extension of the dissipation range of the system by multiple resonance peaks,

even below the Helmholtz resonance. The dimensions of the flexible panel are constrained by the cavity’s cross section,

but the material can be tuned independently. Additionally, other properties such as the depth of both cavities, can be

changed to tune the resonator. Consequently, the system’s properties can be tuned towards low-frequency damping

or broadband attenuation for a given volume. However, the resonances of the whole (system) are not the same as the

sum of the individual resonances but mutually depend on each other. To gain more confidence, the model should be

compared to different resonator geometries and liners with multiple resonators. For broader application, the effects of

micro-perforations, grazing flow conditions, nonlinear sound excitation and different plate shapes with higher modes
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need to be taken into account.
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