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Modern aircraft engines have large fans with a low-frequency noise signature, which
conventional liners struggle to damp efficiently. New liner concepts are therefore needed
to address low-frequency aircraft noise. In this paper, a Helmholtz resonator is combined
with a flexible plate dividing the cavity into two. The flexible plate extends the conventional
single-degree of freedom system to a multi-degree of freedom system, with resonances below the
conventional Helmholtz resonance. The plate’s motion is investigated experimentally at the
aero-acoustic wind tunnel DUCT-R with a vibrometer and compared to numerical simulations
based on FEM, where good agreement is found. We showed that the face sheet and plate size
is a crucial parameter of the concept which alters the number of resonance frequencies, their
absorption amplitudes and their resonance frequencies. The flexible wall vibrates strongly and
adds multiple damping peaks when the plate resonances lie in the vicinity of the Helmholtz
resonance. Furthermore, we resolved the deflection shapes and the absorption of the Helmholtz
resonator with a flexible wall of variable size numerically. The results help to fortify confidence
in the proposed liner concept for future optimization and application.

I. Introduction
State-of-the-art aircraft are 75 % quieter compared to the first civilian jets in operation 50 years ago [1].The noise

from first jet aircraft was completely dominated by roaring jet noise. Nowadays, not only jet noise but additional
broadband and tonal noise radiated by fan, compressor, combustor, and airframe need to be taken into account. The
relative contribution differs from the type of aircraft and engine in use as well as the specific flight stage such as takeoff
or landing [2]. This evolution is largely due to the increase in fan size and thus bypass ratio, which is defined as the
ratio between the mass flow rate of the bypass stream to the mass flow rate entering the core. Modern turbofan aircraft
engines have a bypass ratio up to twelve and engine manufacturers are developing engines with even larger fans. The
drawbacks of larger fans are increased size, weight and drag. Nevertheless, a larger fan is able to produce the same thrust
with a reduced jet velocity and a slower rotation frequency, which reduces the environmental impact (fuel consumption
and overall noise) of aviation. A slower rotation frequency, however, leads to a lower blade passing frequency and
consequently to fan noise with tonal components at lower frequencies.

While liners are an efficient and established method to dampen aircraft noise, it is a challenge for them to address
these new low-frequency components. Conventional liners consist of a face sheet backed with a honeycomb structure and
a rigid end plate. They can be modelled similar to a Helmholtz resonator with a resonance below that of a _/4-resonator.
The resonance frequency of a _/4-resonator only depends on its depth, while the Helmholtz resonance can be tuned by
the cavity volume (cross section and depth) and the perforated face sheet parameters such as its thickness, hole number,
hole pattern and hole size. The Helmholtz resonator can be tuned towards low frequencies by increasing the air mass in
the face sheet’s holes. This, however, greatly decreases the resonance bandwidth. Alternatively, its resonance frequency
can be lowered by enlarging the back cavity. Unfortunately, these cavity depths are limited due to installation space
constraints, as a large cavity depth needs a large nacelle which would lead to more drag and consequently more fuel
consumption. As a consequence, new liner concepts are needed to damp low-frequency noise.
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One way to enable noise reduction at lower frequencies than conventional liners, is to combine hard walled Helmholtz
resonators with additional mechanical elements such as bars, membranes or plates. These mechanical elements have the
benefit, that their individual resonance frequencies can be tuned independently of the Helmholtz resonator. In this way
low-frequency noise can be damped without increasing the overall resonator volume.

These mechanical elements differ in their elasticity. Membranes are elastic because of the applied tension, similar to
a drum. The advantage of using a membrane is that it is tunable by a variable tension. The disadvantage is that this
tension is challenging to determine and will most likely decrease over time. Successful implementations of resonators
combined with membranes can be found for example in [3–7].

Plates on the other hand draw their elasticity from their flexural rigidity, similar to the top plate of a classical guitar∗.
In previous studies, flexible plates were often at the cavity end to improve attenuation [9–11]. Another approach is to use
flexible walls to couple multiple resonator chambers [12–14]. Yet another possibility is to subdivide the resonator main
cavity into two chambers with a flexible wall acting as a plate [15, 16]. This represents the approach used in this work.

Both, the excitation as well as the measurement of the vibration of small flexible limb structures are challenging.
Generally speaking, one can distinguish between contact and contactless methods. Contact methods to excite the
structure such as shakers or impulse hammers offer a good signal-to-noise ratio. They, however, are not an option for
flexible structures with a submillimeter thickness as the large excitation forces would damage the structure. A similar
reasoning rules out accelerometers as a mean to measure the structure’s vibration, as the accelerometers’ mass would
severely affect the structure’s response. A natural excitation choice is the non-contact plane wave acoustic excitation
similar to [14]. This ensures a realistic, controllable amplitude with the drawback that the excitation is planar and
not concentrated in one excitation point. For these reasons, we excited the resonator with an acoustic plane wave and
measured the output, the plate vibration, with a (contactless) vibrometer without affecting the plate’s response.

Conventional liners are usually only investigated in the air domain and the acoustical effect of a possible structural
response is not of interest. Thus, significantly less literature about the vibro-acoustic behavior of conventional liners can
be found. The reason for this is the fact, that the underlying cavity structure prohibits vibrations of the face sheet or
back plate in the relevant frequency range. When dealing with larger structures, however, the perforated face sheet’s
motion does need to be taken into account [17, 18]. In the proposed liner concept here, the acoustic-structure interaction
between the flexible plate and the Helmholtz resonator cavities is a crucial effect which needs special experimental
and numerical attention. Systems with acoustic-structure interaction are often modeled via the finite element method
(FEM) [5, 19–21], which is also pursued here.

In this work we investigate the acoustic properties of the resonator experimentally and numerically. The experimental
setup allows us to analyze the system globally (by measuring the overall impedance and absorption) and locally (the
vibration of the flexible plate). Furthermore, we make use of the FEM to investigate the plate behavior at characteristic
frequencies and resolve the multi modal resonator behavior. Precisely, we want to investigate the following questions:

• How can one distinguish between Helmholtz associated resonances and flexible plate associated resonances?
• How does the flexible plate size affect the acoustic performance?
• What effect does a change in the face sheet have onto the flexible plate and the overall acoustic parameters?
• Is the FEM a suitable choice to resolve, analyze and extend the liner concept?

This paper is structured as follows: Details about the measurement setup can be found in Section II, while the numerical
setup is presented in Section III. Section IV includes the presentation and discussion of the experimental results,
the comparison to the results from the FE-Analysis and further numerical results. Finally, a conclusion is drawn in
Section V.

II. Experimental setup
The vibro-acoustic experiments are conducted at the duct acoustic test rig (DUCT-R) facility of the German

Aerospace Center (DLR) in Berlin. We investigate a Helmholtz resonator with a flexible wall which consists of a face
sheet, a main cavity, a flexible plate and a second cavity. The resonator system is attached to the end of the upstream
section of the test rig. A schematic view and a photograph of the measurement setup is depicted in Fig. 1.

The attachment of the resonator at the end of the duct effectively transforms it into a large impedance tube, which
enables us to use the same resonator system as previously studied in [16]. We choose the direct incidence setup instead
of the usual grazing setup, due to the accessibility of the vibrometer and the straightforward determination of the

∗The body of a classical guitar can be viewed as a Helmholtz resonator with a flexible face sheet (top plate) with a single (sound) hole. In this
case the resonator/body does not damp but, on the contrary, amplify sound [8].
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(a) Sketch of the test rig DUCT-R as an impedance tube with the resonator system
placed at the upstream end

(b) Photograph of the vibrometer
pointing through the transparent
back wall at the flexible plate

Fig. 1 Experimental setup to investigate Helmholtz resonators with flexible walls at the modified DUCT-R

acoustic impedance of the resonator system. The duct has a rectangular cross section of 60 mm × 80 mm and therefore a
cut-on frequency of the first higher mode of 2142 Hz. The sound source is an upstream loudspeaker (BMS-4599-ND)
attached to the side wall of the duct. The end opposite to the resonator system has an anechoic termination. We use a
multi-microphone method with five microphones flush mounted in the measurement section to decompose the sound
field in incoming and reflecting acoustic waves. The resulting equation system

e−i𝑘𝑥1 ei𝑘𝑥1

...
...

e−i𝑘𝑥5 e−i𝑘𝑥5

︸                ︷︷                ︸
𝑨

[
𝑝+

𝑝−

]
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𝑝′ (𝑥1)

...

𝑝′ (𝑥5)

︸    ︷︷    ︸
𝒃

, (1)

is fitted in a least-square sense by calculating 𝑥 = 𝑨+𝑏 with 𝑨+ denoting the pseudo inverse of 𝑨. In Eq. (1), i denotes
the imaginary unit, 𝑘 = 𝜔/𝑐 the (plane) wavenumber as the quotient of angular frequency 𝜔 and speed of sound 𝑐, 𝑝±
the incoming and reflected sound wave respectively and 𝑝′ (𝑥𝑛) the measured sound pressure at the distance 𝑥𝑛 from the
reference plane. The viscothermal losses inside the duct walls are taken into account as proposed by Dokumaci [22].
The sound waves are excited successively with a single tone and an incoming plane wave amplitude of 100 dB. In this
region, the resonator system’s acoustic properties are independent of the incident amplitude. Due to the special setup of
the DUCT-R as an impedance tube, measurements with grazing flow are not possible.

Based on the decomposed waves, the complex reflection factor of the sample 𝑟 = 𝑝−/𝑝+ can be calculated. This
reflection factor is then used to calculate the absorption 𝛼 = 1 − |𝑟 |2 and the complex normalized impedance

Z = 𝑍/𝜌𝑐 = \ + i𝜒 =
1 + 𝑟

1 − 𝑟
. (2)

The laser Doppler vibrometer (Polytec OFV-5000 with a OFV-200 single point sensor head) is of a heterodyne-
interferometer type. A Helium-Neon-laser emits a beam with a carrier signal which is focused by the sensor head to a
small point on the plate. The reflected light of the vibrating object is subject to a Doppler shift proportional to the
vibration velocity. This Doppler shift induces a frequency and phase modulation of the carrier signal which is registered
by a light detector inside the vibrometer. This light detector then converts the fluctuation in light intensity into an electric
signal. The vibrometer has two decoders. One decoder uses the frequency modulation to calculate the vibration velocity
and the other uses the phase modulation to calculate the vibration deflection. We use the largest velocity sensitivity
(50 mm/s/V) of the built-in velocity decoder to allow a maximum measurement range up to 500 mm/s. With the same
idea in mind, we set the sensitivity of the deflection decoder to 5 mm/V. This enables deflection measurements up to
50 mm. Note, that the vibration velocity 𝑣vib is the time derivative of the deflection 𝑥vib and for harmonic signals it
yields 𝑣vib =

𝜕𝑥vib
𝜕𝑡

= i𝜔𝑥vib. The acoustic excitation by the loudspeaker in the upstream section is held for five seconds
prior to every measurement to ensure a stationary behavior of the flexible plate.
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The experimental setup is similar to that introduced in [14], but here the modified channel is terminated with a
resonator system instead of a flexible plate. This resonator system is made out of a face sheet, a main cavity, a flexible
wall, a second cavity and a 5 mm thick transparent back wall made out of acrylic glass (polymethyl methacrylat, PMMA).
The main cavity with a quadratic cross sectional area of 𝐴cav = 35 mm× 35 mm and a depth of 𝑙cav1 = 60 mm is attached
to the duct end via an interchangeable perforated face sheet. Note, that the resonator cross section is smaller than the
duct cross section and the overall impedance is the resonator impedance smeared with the hard wall area around the
resonator. In the base configuration, the face sheet (FS1) is 2 mm thick, has 18 evenly spaced orifices with a diameter of
𝑑FS1 = 1.5 mm and the open area ratio 𝜎FS1 is 2.6 %. Additionally, we use a second face sheet (FS2) with a single hole
with a diameter of 𝑑FS2 = 8.9 mm, yielding a porosity of 𝜎FS2 = 5.1 %, which is roughly twice as much as the one in
FS1. The regular cavity walls are made out of aluminum with a thickness of more than 5 mm. The flexible wall is a
thermoplastic plate, which is clamped between two plate holders with a circular cut-out of variable diameter, followed
by a second cavity and rigid back wall. We choose this plate material to make use of its suitable low flexural rigidity and
high internal losses to ensure that the first eigenfrequency is within the investigated frequency range. The material
values (𝐸 : Young’s Modulus, [: loss factor, 𝜌p: density, ap: Poisson’s ratio, ℎplate plate thickness) are taken from [23].
We investigated three different flexible plate diameters: 𝑑1 = 15 mm, 𝑑2 = 22.8 mm and 𝑑3 = 30 mm. The depth of the
second cavity can be varied, however it was fixed to a depth of 𝑙cav2 = 15 mm in this study. Additional properties of the
investigated resonator are listed in Table 1.

Table 1 Properties of the experimental resonator

Cavity dimensions Plate properties

𝑙cav1 = 60 mm 𝐸 = 15.36 MPa
𝑙cav2 = 15 mm [ = 0.1
𝐴cav = 35 mm × 35 mm 𝜌p = 1080 kg/m3

ap = 0.48
ℎplate = 0.3 mm
𝑑[1;2;3] = [15; 22.8; 30] mm

Face sheet 1 Face sheet 2

𝑑FS1 = 1.5 mm 𝑑FS2 = 8.9 mm
𝑁FS1 = 18 𝑁FS2 = 1
𝜎FS1 = 2.6 % 𝜎FS2 = 5.1 %

In preliminary investigations, we measured the motion of the perforated face sheet, plate holder and the transparent
back wall. We found that all of their vibration amplitudes are at least two orders of magnitude below that of the flexible
plate and consequently they can be assumed rigid (not shown here). This is crucial, as the laser beam passes through the
transparent back wall onto the flexible plate. Consequently, special care needs to be taken to ensure that the signal
associated with the flexible plate’s motion is not corrupted by a possible back wall motion. We furthermore investigated
whether the transparent back wall made out of PMMA is suited for laser vibrometer measurements. We measured the
flexible plate vibration without the transparent back wall and with the transparent back wall at a sufficient distance to the
resonator. Both vibration measurements agreed very well (not shown here) and the transparent back wall can therefore
be assumed sufficiently transparent without adding any bias error.

Due to the plane wave excitation of the flexible plate, we assume that the flexible plate can vibrate only in radial
modes. In this case the center point is always a maximum in the deflection and velocity amplitude for a clamped circular
plate, hence we choose the center point as the (only) focal point of the vibrometer’s laser beam.

The in vacuo eigenfrequencies of the flexible plate decrease inversely with the square of the plate diameter 𝑑:

𝑓𝑖 𝑗 =
2_𝑖 𝑗
𝜋𝑑2

√√
𝐸ℎ2

plate

12𝜌p (1 − a2
PR)

(3)

with _𝑖 𝑗 denoting the radial and azimuthal eigenfrequency parameter [24]. The theoretical radial eigenfrequencies of
the investigated flexible plates are shown in Table 2.
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Table 2 Theoretical radial eigenfrequencies of the investigated clamped circular plates

𝑑 in mm 𝑓1 in Hz 𝑓2 in Hz 𝑓3 in Hz 𝑓4 in Hz

15 426 1657 3712 6591
22.8 184 717 1607 2853
30 106 414 928 1648

III. Numerical setup
The experimental investigations are accompanied with numerical simulations conducted with the commercial finite

element software Actran 19.0. The main purpose of the numerical investigation is to examine the plate vibration in
order to compare its absorption spectrum with the measured data. Therefore, we conduct a direct frequency response
(DFR), which allows us to calculate the absorption spectrum of the resonator system and the plate vibration as well.
This enables future parameter variations not feasible with purely experimental methods.

Therefore, a part of the duct is modeled corresponding to the dimensions of the DUCT-R test rig. The model of
the resonator and duct is built and meshed in the free 3D finite element mesh generator Gmsh and is imported in
Actran afterwards. The perforated sheet, which separates the first cavity from the duct is modeled by an admittance
boundary condition using the equivalent fluid model from Atalla and Sgard [25]. In order to increase the accuracy of
the simulation results, the area around the perforated sheet is meshed significantly finer. This avoids numerical artifacts
in the transition through the perforated sheet. The remaining air domain is meshed with six elements per smallest
wavelength and a quadratic interpolation is used in Actran. The plate requires an even finer mesh, since different sound
velocities have to be taken into account for airborne and structure-borne sound. In order to avoid unnecessary nodes, the
meshes of the duct with the first cavity, the plate and the second cavity are modeled independently. This allows us to use
a coarser grid for the fluid and a finer grid for the flexible plate without getting an unnecessary fine grid in the vicinity.
We used coupling surfaces to couple the meshes. The Actran model is depicted in Fig. 2. The geometrical and material
properties for the numerical model are listed in Table 1 as well.

(a) Overview of the mesh of the entire model (b) Detailed view of the mesh in the coupled resonator system

Fig. 2 FE-Mesh of the coupled resonator system at the end of the duct
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IV. Results and Discussion
In this section the experimental results of the measurements with a vibrometer are presented first and afterwards

compared to the finite element solution.

A. Experimental Results
Figure 3a displays the measured normalized impedance Z = \ + i𝜒 together with the absorption coefficient 𝛼 for

normal incidence of the resonator with face sheet one (FS1) and a flexible plate of diameter 𝑑1 = 15 mm. The resonance
associated with the flexible plate around 430 Hz as well as the Helmholtz resonance around 610 Hz are visible as maxima
in the absorption (red) and minima in the absolute value of the reactance (blue, dashed). In between, the antiresonance
is visible as a maximum in the normalized reactance (blue, solid) and a zero-crossing of the reactance with negative
slope around 480 Hz. Consequently, in this configuration, the resonator acts as a 2DOF resonator with the air mass in
the perforated plate as one degree of freedom and the first mode of vibration of the flexible plate as the other. The
compressible air volumes in the main and back cavity can be seen as springs. The distinction between both resonances
is clearly visible in Fig. 3b, as the highest deflection and velocity in the center point of the flexible plate measured with
the vibrometer is around 480 Hz, as well. Note that the deflection at an excitation of 100 dB already exceeds 10 % of the
plate thickness (ℎplate = 0.3 mm). While these deflection amplitudes are still small compared to the plate thickness,
excitation amplitudes of just 120 dB (ten times the acoustic pressure amplitude) suggest plate deflections in the same
range as the plate thickness. This might pose problems when trying to model the flexible plate using linear plate theory.
Additionally, the vibrometer measurements reveal that the plate is strongly excited around the Helmholtz resonance as
well. This is plausible, as the flexible plate is driven by a pressure difference between the main and second cavity, which
is increased near the Helmholtz resonance. This also means that very far from the Helmholtz resonance (excluding
higher cavity modes) there is not enough pressure difference to excite the flexible plate. The antiresonance does not
seem to affect the plate vibration. At frequencies higher than the Helmholtz resonance, no additional maxima are visible
in the vibration spectra and one can conclude that no higher plate mode order is excited in this configuration. This is
most likely due to the fact that the theoretical eigenfrequency of the second radial mode is too high for the investigated
frequency range.

(a) Normalized resistance \ (blue, solid), normalized reactance
(blue, dashed) and absorption 𝛼 (red) versus frequency

(b) Center point plate deflection amplitude |𝑥 | (blue) and plate
velocity amplitude |𝑣 | (red) versus frequency

Fig. 3 Measured normal incidence impedance, absorption, plate deflection and plate velocity for FS1, 𝑑1 = 15 mm

Based on this reasoning, if multiple plate eigenfrequencies are near the Helmholtz resonance, then the resonator
system should inhibit multiple absorption peaks, which is investigated in the following.

Figure 4a displays the absorption spectra of the resonator system with three different clamped circular flexible plates
with a diameter of 15 mm, 22.8 mm and 30 mm respectively. One can see that plates with a larger diameter indeed show
a multi modal behavior as the absorption spectrum of the plate with a diameter of 𝑑2 = 22.8 mm (red) now consists of
three local maxima around 330 Hz (first radial eigenmode), 590 Hz (Helmholtz resonance) and 740 Hz (second radial
eigenmode). The absorption spectrum of an even larger plate with a diameter of 𝑑3 = 30 mm (yellow) consists of even
more characteristic points, which, however, are not as distinct. Two larger maxima around 430 Hz and 610 Hz are
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(a) Absorption 𝛼 for different plate diameters (b) Center plate velocity amplitude |𝑣 |

Fig. 4 Absorption 𝛼 and plate velocity amplitude at the center point |𝑣 | for different flexible plate diameters,
FS1

accompanied by slope changes around 350 Hz and 870 Hz. Note, that these resonance frequencies are similar but do
not match the in vacuo eigenfrequencies, listed in Table 2. The a priori determined eigenfrequencies, therefore give
a hint of the expected number of significant plate modes in the resonator system but are not sufficient to predict the
complete resonance behavior. The first slope change may be a very weak excited first radial plate mode, even though one
would expect its resonance frequency below that of 𝑑2. A possible explanation is that the flexible plate with the largest
diameter 𝑑3 was slightly pre-stressed during application, as a tensed plate is stiffened and consequently its resonance
frequency is shifted towards higher frequencies. The second slope change is most likely a weakly excited higher radial
plate mode. Note, that the global absorption maximum has shifted towards lower frequencies by more than 150 Hz
when comparing the resonator system with the largest and smallest flexible plate. The plate diameter is, consequently, a
crucial parameter to tune both the broadband (multi modal) behavior as well as the low-frequency behavior.

The plate velocity for the same configurations is depicted in Fig. 4b. Focusing first on the plate with a diameter
of 𝑑2 = 22.8 mm (red), one can see that the first mode around 330 Hz is excited the most and that both the Helmholtz
resonance as well as the second radial mode show a similar velocity. The plate velocity amplitude of the largest
plate 𝑑3 = 30 mm (yellow) is the lowest of all plate configurations. The highest values are around 350 Hz near the
first slope change, which gives further reason to expect the first plate mode at this frequency region. Additionally, a
substantial vibration can be detected for higher frequencies around 900 Hz, near the second slope change. Nevertheless,
the vibration velocity of the largest diameter is quantitatively only roughly one fourth of the values of the other plate
diameters. Thus, no clear trend between vibration amplitude and plate size can be found.

The changes in the normalized impedance are depicted in Fig. 5. The most prominent difference is the peak values
of the resistance in Fig. 5a. These peaks do not stem from amplitude dependent behavior near the Helmholtz resonance,
as they do not occur at the resonance frequencies. On the contrary, they can be attributed to the antiresonance. The
resonator with 𝑑1 only inhibits one resistance peak, while the resonator with 𝑑2 inhibits two and 𝑑3 has three. This gives
further reason to suggest that the number of significant flexible plate modes increases with the larger plate diameters, as
there is always an antiresonance between two resonances. Additionally, the antiresonance peak for 𝑑2 with the highest
vibration velocity is the strongest. This suggests that a higher plate velocity strongly affects the resonance as well as the
antiresonance behavior.

The flexible plate is embedded into a resonator system consisting of a face sheet, a main cavity, the flexible plate
itself and a second cavity. A crucial parameter for the acoustic performance is therefore the perforated face sheet.
The absorption and plate velocity spectra under variation of the face sheet is depicted in Fig. 6a. One can see, that
the global maximum of the absorption (blue) is shifted towards lower frequencies in the resonator with FS2 (dashed,
𝜎FS2 = 5.1 %), which has a higher porosity compared to FS1 (solid, 𝜎FS1 = 2.6 %). In contrast, the flexible plate
resonance around 430 Hz is not shifted. However, the absolute value is increased, as the Helmholtz resonance is closer
to the plate resonance. These trends can also be found in the plate velocity spectrum, depicted in red in Fig. 6a. The
plate velocity is increased around the resonance and follows the downshift of the Helmholtz resonance. A higher
porosity therefore seems to be beneficial to increase the plate vibration. A possible explanation is that a higher porosity

7
This is the author's version (post-print) of the work that was accepted for publication in the proceedings of the 2023 AIAA AVIATION Forum held in San Diego, CA (USA), June 2023. 
The final version was published in the proceedings of the conference as paper no. 2023-3348: https://arc.aiaa.org/doi/10.2514/6.2023-3348
© 2023. This manuscript version is made available under the CC-BY-NC-ND 4.0 license; http://creativecommons.org/licenses/by-nc-nd/4.0/



(a) Normalized resistance \ of the resonator with a flexible
plate of different diameters

(b) Normalized reactance 𝜒 of the resonator with a flexible
plate of different diameters

Fig. 5 Normalized impedance Z = \ + i𝜒 for different flexible plate diameters

(a) Absorption 𝛼 (blue) and plate vibration amplitude |𝑣 | (red)
for different face sheets FS1 (solid) and FS2 (dashed).

(b) Normalized resistance (blue) and reactance (red) for dif-
ferent face sheets FS1 (solid) and FS2 (dashed).

Fig. 6 Effect of different face sheets on the resonator with the smallest flexible plate diameter 𝑑 = 15 mm

leads to higher pressure differences in the cavities. Fig. 6b shows a comparison of the impedance of the resonator with
variable face sheets which reveals that the resistance is higher for FS1. On the contrary, the reactance is higher for FS2
while the difference increases with respect to the frequency.

Similar trends can be found in the absorption and plate velocity spectra under variation of the face sheet of the larger
plates, which are depicted in Fig. 7. It is interesting to note that the change of the face sheet affects both local absorption
maxima in Fig. 7a and Fig. 7b. It is therefore beneficial to tune the face sheet in such a way, that the Helmholtz resonance
frequency lies in between multiple radial plate modes to obtain a broad absorption spectrum with multiple absorption
peaks.
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(a) Intermediate flexible plate diameter 𝑑2 = 22.8 mm (b) Largest flexible plate diameter 𝑑2 = 30 mm

Fig. 7 Absorption 𝛼 (blue) and center point plate vibration amplitude |𝑣 | (red) for different face sheets FS1
(solid) and FS2 (dashed) of the resonator with a flexible plate of diameter 𝑑2 = 22.8 mm (left) and 𝑑3 = 30 mm
(right)

B. Numerical results
The experimental results are compared to the numerical results obtained with the FEM Software Actran. The

absorption spectra obtained experimentally and numerically for FS1 and the smallest diameter 𝑑1 = 15 mm are presented
in Fig. 8. Additionally, the absorption calculated with the analytical model presented in Kohlenberg et al. [16] is
depicted.

Fig. 8 Absorption 𝛼 of the resonator with a flexible plate of diameter 𝑑 = 15 mm and FS1 as determined
experimentally (blue), numerically (red), and analytically (yellow)

All spectra show a good agreement regarding their resonance behavior. The analytical and FEM simulations predict
both local maxima associated with the plate resonance (400 - 440 Hz) and Helmholtz resonance (610 Hz) respectively.
The analytical and numerical simulations, however, predict a lower plate resonance and a stronger valley in around the
antiresonance. An explanation for this might be that the plate used in the experiments was slightly pre-stressed.

A comparison between the measured and predicted absorption for the plate with an intermediate diameter of
𝑑 = 22.8 mm is depicted in Fig. 9a. Again, a good agreement between the respective resonance frequencies is found. In
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(a) Intermediate diameter 𝑑 = 22.8 mm (b) Largest diameter 𝑑 = 30 mm

Fig. 9 Absorption 𝛼, as measured (blue) and numerically predicted (red) for different flexible plate diameters
𝑑 = 22.8 mm (left) and 𝑑 = 30 mm (right)

this case a slight shift in the Helmholtz resonance (550 - 580 Hz) and in the second plate resonance (700 - 730 Hz) can
be found, while the first resonance (340 Hz) matches the experiments very well. Nevertheless, the resonator system with
two significant radial plate modes is predicted numerically reasonably well, too. The situation for the largest plate with
the largest diameter of 𝑑3 = 30 mm, shown in Fig. 9b is more ambiguous. The highest absorption, namely at the second
and third resonance peaks, are captured reasonably well in the simulation. However, the first peak in the simulation at
280 Hz is not as distinguishable in the experimental results and is most likely shifted towards 360 Hz, visible as a slope
change in the blue curve. The highest absorption peak in the slope change is flattened in the experimental results but
still visible as a slope change. Similar results can be found when using the other face sheet FS2 and are omitted here.

The experimental results with the impedance tube in combination with the single-point vibrometer hints that several
absorption peaks are associated with different plate modes. Furthermore, we assumed that only radial plate mode shapes
are excited; an assumption which needs proof. The numerically determined normalized plate deflection shape of the
flexible plate inside the resonator system with the smallest diameter 𝑑1 is presented in Fig. 10. The color map ranges
from high deflection amplitude (deep red) to low deflection amplitude (deep blue). Note that the clamped boundary
condition suppresses both edge rotation and displacement.

(a) First resonance (400 Hz) (b) Second resonance (607 Hz)

Fig. 10 Numerically determined normalized plate deflection of the flexible plate inside the resonator evaluated
at different resonance frequencies, smallest diameter 𝑑1 = 15 mm

In Fig. 10a we can see a very clear example of the first mode shape of a clamped circular plate with the highest
deflection in the middle and the lowest at the boundary. The plate deflection shape at the Helmholtz resonance, depicted
in Fig. 10b is very similar. The Helmholtz resonance is in between the first and second radial plate resonance and we
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therefore expect the plate deflection to be a mélange of both. However, the resonance frequency of the second radial
mode is too far away and the deflection shape at the Helmholtz resonance very much resembles the first mode shape.

(a) First resonance (340 Hz) (b) Second resonance (554 Hz) (c) Third resonance (702 Hz)

Fig. 11 Numerically determined normalized plate deflection of the flexible plate inside the resonator evaluated
at different resonance frequencies, intermediate diameter 𝑑2 = 22.8 mm

The situation is different for the plate with the moderate plate diameter 𝑑2, depicted in Fig. 11. The first resonance
(Fig. 11a) is still clearly associated with the first radial mode. The third resonance is the second plate resonance with
one nodal circle, shown in Fig. 11c. At the second resonance (Fig. 11b), attributed to the Helmholtz resonance, the
plate deflection is a mixture of both mode shapes as its frequency is almost in the middle between both plate associated
resonances. Note that these mode shapes are purely radial without any circumferential dependency. Therefore, acoustic
(circumferential) plane waves do not excite circumferential plate modes due to their symmetry.

The deflection shapes of the four distinct resonances in the numeric simulation are depicted in Fig. 12. The first
resonance (Fig. 12a) has one nodal circle but seems to be a mixture between the first and second radial plate mode,
as the amplitude of the outer ring is low in comparison to Fig. 11b. We usually expect the plate to be easily excited
specifically at their resonance, however in this case the plate deflection shape at the first resonator resonance is a mixture
between two resonances. We think that this is due to the influence of the face sheet, as the flexible plate is embedded
into a resonator system and not in vacuo. The plate deflection shape at the second resonance (Fig. 12b), attributed
to the Helmholtz resonance, is again a mixture of the adjacent radial mode shapes with two nodal circles. The plate
deflection at the highest resonance peak (Fig. 12d) seems to be a mixture between second and third radial plate mode, as
the outer ring is stronger excited compared to Fig. 12c but still with only two nodal circles. The overall absorption
is a combination of all plate modes, and it becomes apparent that with more significant plate modes, their individual
contributions are harder to distinguish.

Finally, the numerical simulations can be used to resolve the resonator system with varying flexible plate diameter.
The simulations are performed varying the diameters between 10 mm and 30 mm with 1 mm steps. The data are then
interpolated in between in order to obtain a finer representation of the absorption map, which is depicted in Fig. 13.
At small diameters the plate resonance and the Helmholtz resonance coincide and only one broad absorption peak
around 580 Hz is visible. Up to a diameter of 18 mm, the plate resonance is highly sensitive regarding a change in the
plate diameter while the Helmholtz resonance frequency is constant. With plate diameters greater than 18 mm, the
first resonance is nearly constant while a third resonance is appearing and decreasing rapidly in frequency. The third
resonance becomes significant when it approaches the second resonance for diameters greater than 20 mm. However,
both peaks never meet, as the second peak is shifted towards lower frequencies. For plate diameters higher than 26 mm,
the first resonance is shifted again towards lower frequencies with rapidly decreasing absorption. Additionally, a fourth
absorption peak is visible around 800 Hz. The occurrence and origin for the different regions with respect to the plate
diameter are still under investigation and are most likely dependent on the other resonator system’s properties such as
dimensions of the main cavity and second cavity.
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(a) First resonance (281 Hz) (b) Second resonance (450 Hz)

(c) Third resonance (669 Hz) (d) Fourth resonance (842 Hz)

Fig. 12 Numerically determined normalized plate deflection of the flexible plate inside the resonator evaluated
at different resonance frequencies, largest diameter 𝑑3 = 30 mm

Fig. 13 Influence of the flexible plate diameter 𝑑 on the numerically determined normal incident absorption 𝛼

with FS1
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V. Conclusion
In this study we investigated Helmholtz resonators with a flexible wall with a special focus on the plate’s motion using

an impedance tube in combination with a vibrometer. In the second part of the paper we compared our experimental
results with numerical simulations with the FEM software Actran to investigate the flexible plate deflection shape and to
better resolve resonator system’s dependency on the plate size.

Our experimental setup enabled us to successfully combine acoustic resonator properties (impedance, absorption),
obtained via impedance tube measurements with the plate vibration (deflection, velocity), obtained by simultaneous
vibrometer measurements. We showed that for this concept, the plate size is a crucial parameter. In fact, this alters
the number of resonance frequencies, their absorption amplitudes and their resonance frequencies. The face sheet
mainly alters the Helmholtz resonance and only to a minor degree the plate resonance at higher frequencies. We showed
with the vibrometer that the different resonances can be clearly separated between Helmholtz and plate resonances.
Additionally, we found that the flexible plate vibrates stronger, when plate resonances and the Helmholtz resonance
are closer together. We found the analytical eigenfrequencies of the clamped circular plate to be a reasonable starting
point to guess the system’s resonant behavior. If the in vacuo eigenfrequencies are near the Helmholtz resonance,
additional absorption due to the plate vibration is to be expected. However, analytical or numerical simulations are
needed to predict the overall resonant behavior of the proposed liner concept. When larger plates with a sufficiently low
flexural rigidity are used, it is necessary to take higher radial plate modes into account. Additionally, we showed that the
concept’s resonance behavior can be successfully modelled via FEM, although for larger flexible plates with multiple
resonances, the agreement was less accurate. At the Helmholtz resonance, the plate vibrates in a mixed mode shape of
the neighboring radial plate modes. We showed that the plane wave excitation only excites radial plate modes and that
circumferential modes can be omitted. We found different regions where the plate resonance has a varying degree of
sensitivity towards the plate diameter. Consequently, the FEM was found to be a suitable choice to resolve, analyze and
extend the proposed concept.

Measurements with further instrumentation, such as microphone inside the main and back cavities should reveal more
insights into the plate vibration near the Helmholtz resonance and antiresonances. Additionally, different rectangular
plate shapes, which might fit better into a conventional liner system, should be investigated for future optimization of the
concept. Furthermore, future research on Helmholtz resonators with flexible walls should focus on the dependencies of
the cavity dimensions, as well as nonlinear influences such as high excitation amplitudes and a grazing flow onto the
flexible wall.
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