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1 German Aerospace Center (DLR),
Institute of Software Methods for Product Virtualization,

Dresden
Johannes.Wendler@DLR.de, Immo.Huismann@DLR.de, Ronny.Tschueter@DLR.de

2 German Aerospace Center (DLR),
Institute of Aerodynamics and Flow Technology,

Göttingen
Stefan.Fechter@DLR.de

Abstract. The present work focuses on the performance analysis of
the DG-SEM implementation of the CFD solver CODA. The turbulent
Taylor-Green vortex is employed as a simple testcase for scaling be-
havior, while for a more detailed node-level performance analysis more
granular kernel benchmarks are used. Bottlenecks in the implementation
are highlighted and possible solutions proposed.

Keywords: DG-SEM, CFD, performance analysis, optimization

1 Introduction

While steady-state RANS simulations are the state of the art for flow simulation
in industry, they often mispredict the resulting flow patterns [1][2]. Scale-resolving
and time-resolving simulations offer a way out of the predicament at the expense
of resources. Not only does the flow have to be resolved on a per-timestep basis,
but low diffusivity is also required. This is where high-order methods can shine.

From the available high-order methods, the nodal discontinuous Galerkin
spectral-element method (DG-SEM) offers speed and scalability while allowing
for shock capturing and coupling with finite-volume methods [3, 4]. The speed
results from two factors: On the one hand, tensor-product operators can be
well optimized such that the code stays compute-bound, not memory bound [5].
On the other hand, well-crafted DG-SEM methods can scale up to one element
per core [6]. In order for these methods to jump the gap from academia to
industry, CODA implements a DG-SEM method. CODA is the computational
fluid dynamics (CFD) software being developed as part of a collaboration between
the French Aerospace Lab ONERA, the German Aerospace Center (DLR), Airbus,
and their European research partners. CODA is jointly owned by ONERA, DLR
and Airbus.

While the DG-SEM method allows for reaching peak performance, it is often
not reached in practice. Meticulous performance engineering is essential here [8].
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For this purpose we analyze the current DG-SEM implementation of CODA
and HyperCODA [9] with the turbulent Taylor-Green vortex as a simple
testcase for scaling behavior and perform more granular benchmarks to evaluate
the node level performance of the most relevant kernels using Score-P [12] and
LIKWID [13]. This analysis reveals some inefficiencies and we propose possible
optimization strategies.

2 Test case

The focus of this paper is the performance evaluation of CODA to enable efficient
simulations of complex use cases with the DG-SEM method. As a simple test
case we chose the turbulent Taylor-Green vortex. It is a benchmark from the
1st International Workshop on High-Order CFD methods, test problem 3.5 [14].
The time-resolved simulation of the Taylor-Green vortex transitions to fully
turbulent at the chosen Reynolds number of Re = 1600 [10, 11].

The Taylor-Green vortex test case is simulated with the flow solver CODA,
using the DG-SEM discretization implemented using the methods for shock
capturing and multispecies extension by Renac [17] and Marmignon et. al. [18]. As
discretization, we chose DG-SEM of order n = 4, meaning each element contains
four points per direction. The computation is performed on a cubical domain of
643 elements until 20T was reached. T = 1/u0 represents the characteristic time
scale of the flow, where u0 is the amplitude of the periodic initial velocity. For
time stepping a fourth-order, time-explicit Runge-Kutta scheme with constant
time step size during the whole simulation is employed. As typical with DG-SEM,
an “implicit LES” is used, i.e. the inherent dissipation of the discretization serves
as turbulence model [6]. Furthermore, the Roe scheme in conjunction with the
second scheme of Bassi and Rebay (BR2) [15, 16] were employed.

Fig. 1. Vortex structures in the Taylor-Green vortex at different times, visualized
via isoplanes of negative relative pressure of p− p0 = −0.002. Left: t = 0 · T , middle:
t = 7 · T , right: t = 11 · T .

Figure 1 depicts the resulting vortex structures, their decay and generation
of smaller structures. Here, isoplanes of negative pressure visualize the vortex
structures. Initially, the periodic, analytic pressure distribution can be observed,
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until t = 5T , where vortices form and join. At t = 10T , the flow becomes fully
turbulent with the large-scale vortices decaying into ever-smaller ones.

3 Performance analysis

To investigate the performance of the DG-SEM implementation in CODA we
performed benchmarks on the DLR cluster CARO. The machine has two sockets
per node, each with an AMD EPYC 7702, running at a fixed clock speed of
1.8 GHz for all test runs. All used binaries were compiled with GCC 10.3.0, using

-O3 -march=native --param inline -min -speedup =1 --param

inline -unit -growth =200 -DNDEBUG

as additional compile flags and with disabled asserts in the build system for
CODA version 2022.07.0-137.

3.1 Scaling behavior

As a baseline, we performed a weak scaling analysis with 10 timesteps of the
turbulent Taylor-Green vortex test case from 1 to 32 nodes. The number of
elements per node is kept constant and the size is roughly 2.5 times the size of
the L3 caches to stay in memory.

Figure 2 depicts the runtime per element and the parallel efficiency for the
DG-SEM orders n = 4, n = 8 and n = 16. Each node having the same amount
of data should, in the best case, keep the runtime constant. The linear increase
of total elements w.r.t. the number of nodes then leads to a linear decrease in
runtime per element. This exact behavior is represented in the plot of runtime over
the number of nodes. Also the parallel efficiency stays at the ideal 100 % mark.
From these two metrics of this benchmarks, we conclude that the parallelization
and communication parts of the implementation are no bottleneck to consider
for optimization.

3.2 Identification of critical Kernels

For the identification of critical kernels, we use a version of CODA instrumented by
Score-P [12]. The turbulent Taylor-Green vortex benchmark was rerun with a
DG-SEM of order n = 4 on a cubic domain of size 643. Profiling data (aggregated
runtime of functions) and a trace (time resolved data about communication
and computation patterns) were extracted. The runtime overhead compared to
the original simulation was below 2 %, meaning the data depicts an accurate
representation of the simulation.

Figure 3 depicts a time-resolved stack of the computation, where the lowermost
bar is the currently running function. It can be seen, that the most time is spent
in the mesh loopers (light blue), which are all called by the residual calculation
(turquoise), which is in turn called four times by the Runge-Kutta scheme.
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Fig. 2. Left: Runtime per element and right: parallel efficiency for different numbers of
nodes for the Taylor-Green vortex, with roughly the same amount of data per node.
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Fig. 3. Trace of one timestep, showing the callstack. The red ellipses highlight the critical
kernels (1: Lifting Operator, 2: Convection and Diffusion face flux, 3: Chandrashekar [7]
element contribution), which are called by the residual calculation and loop over the
mesh.

Table 1 summarizes the aggregated runtime data of the most relevant kernels.
Three of the mesh loopers stand out in particular: the convection and diffusion
face flux functor, the element contribution functor and the lifting operator. These
three plus a few smaller functor loopers make up the residual evaluation, which
accounts for more than 87 % of the total runtime.

3.3 Analysis of critical kernels

With the relevant parts of the code identified, their behavior for different DG-
SEM orders and how these kernels scale with it is the focus of this next section.
The next step then is the analysis of node level performance of the residual
calculation to grasp how well the implementation utilizes the capabilities of the
hardware.

To have an estimation of how the kernels should behave, we took a look at
the loops and operations performed in the residual calculation. It gets triggered
four times during one time step, once for each Runge-Kutta stage. Inside, one
loop over the faces and two loops over the elements of the mesh. All the functors
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Table 1. The most relevant function calls with their respective percentage of total
runtime on a cubic domain with a width of 64 elements with DG-SEM of order n = 4.

Kernel runtime percentage

Residual evaluation 246.6 87.7
· Convection and Diffusion face flux 81.7 29.1
· Chandrashekar element contribution [7] 74.1 26.4
· Lifting Operator 65.6 23.3
· Zero Setter Functor (gradient) 18.1 6.4
· Inverse mass matrix 7.1 2.5

Explicit Runge Kutta 18.6 6.6
Other 16.0 5.7

Total 281.2 100

of these loops use the BR2 scheme with a lifting operator when accessing the
state of the simulation. The lifting operator is triggered when the state gradient
is accessed for the first time by any operator. The lifting operator itself sets the
gradient inside the element to zero (order n3), then computes a face integral
contribution to the gradients for each point on the element faces, which is of order
n2. Lastly it applies the inverse mass matrix on the gradients for the element,
again order n3.

The face loop of the residual calculation, which computes the convection and
diffusion flux, is called first and triggers the lifting operator of order n3. For the
flux computation on the faces (order n2), the gradient is needed for each point,
which is of order n per point, resulting in order n3 for the faces.

Of the two element loops, the first called functor calculates the volume
term contributions to the residual. First the entropy conservative and kinetic
energy preserving numerical convection flux is calculated using the scheme of
Chandrashekar [7], which is of order n per point, leading to order n4 for the
numerical flux. Then the convection and diffusion flux is evaluated for each point
inside the element (order n3), which triggers the gradient computation for each
point, exactly as in the face loop, resulting in order n4. Lastly the source terms get
evaluated in this element functor, but as there are none in the Taylor-Green
vortex test case, we leave this one out.

The last step for the residual calculation is the application of the inverse mass
matrix on the residual on all points inside an element, simply of order n3.

Figure 4 shows the scaling behavior w.r.t DG-SEM order of the critical
kernels. Due to the fact that the lifting operator is triggered by the convection
and diffusion functor, they are measured together here. As can be seen in the
runtime per element plot, the convection and diffusion face flux plus lifting
operator scales nearly with order n3 and the element contribution scales almost
perfectly with order n4, just as expected. Also, the whole residual calculation
gets dominated by the Chandrashekar contribution for higher orders, which is
apparent in both the time per element and throughput diagram.
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Fig. 4. Left: Runtime per element and right: throughput as computed degrees of freedom
per second in Mega Lattice Updates per Second (MLUP/s) for the different operators.

3.4 Roofline model

As the parts of the residual evaluation scale as expected, we analyze how well the
hardware is actually utilized. The roofline model is a well established analysis
tool for node level performance. It uses the concept of arithmetic intensity

I =
flops performed

bytes loaded or stored
, (1)

which is a measure of the code balance between computation and memory transfer.

Table 2 shows the ideal number of flops performed and bytes transferred
through the memory interface of the CPU for the three most relevant kernels. To
obtain these values we made a few assumptions: All constant values and local
buffer data structures reside in the caches, special functions (i.e. log, sqrt) are
counted as a single flop and index calculations are ignored. This theoretical code
balance of the implementation proves unattainable in practice, but provides an
upper limit, where it could be, when no unnecessary data is loaded or stored.

Table 2. Flops performed and bytes loaded/stored by each kernel.

Flops Bytes
Scaling order n2 n3 n4 n2 n3

Convection and Diffusion face flux 853 12 - 640 -
Lifting Operator 24 5 - 88 80
Chandrashekar Element contribution - 459 414 - 320
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The roofline itself is then defined as

PRoofline = min(β ∗ I, PPeak), (2)

where β is the memory bandwidth of the CPU and PPeak the peak performance
of the CPU. The peak performance is given by

PPeak = clock · nAVX · nFMA · nports · ncores. (3)

The AMD EPYC 7702 CPU is running at a clock speed of 1.8 GHz, has AVX
registers that fit 4 double precision float values, has two execution ports that
can perform FMA instructions (multiply and addition in one cycle) and CARO
has 128 cores per node. This results in a peak performance of 3.69 TFlop/s per
node and 0.92 TFlop/s without AVX vectorization. The memory bandwidth was
determined with a sum stream benchmark to be 360 GB/s.

To measure the achieved flops and memory throughput, we use LIKWID [13],
a lightweight tool for accessing hardware counters on CPUs during runtime of
an application. The AMD Zen2 architecture provides counters for flops and
for cachelines transferred through the memory interface, which together with
the runtime provides measured data for arithmetic intensity and computation
performance.

Figure 5 depicts the roofline analysis, once with the measured and once with
the computed arithmetic intensity (Table 2). On the left, in the classic roofline
plots, it can be seen that the measured intensity is much lower than the computed
one. On the right are the percentages of the roofline performance that the kernels
reach. Assuming our computed arithmetic intensity, the element contribution
functor, which is the more relevant one for higher orders, achieves less than 10
% for orders n > 4, with order n = 16 reaching 9.0 %. Even for the measured
intensity of the current implementation it is only around 25 % of the hardware
limit.

The most conspicuous thing to note is the unexpected behavior of the element
contribution kernel: Its arithmetic intensity should be higher, which suggests
unnecessary data transfer happening. Also, the low performance hints at a low
utilization of vectorized instructions, especially towards higher orders, where it
should be compute bound.

Lastly, to get a different angle of the element contribution kernel, its generated
assembly code was analyzed. Almost no vectorized instructions were present and
many functions were not inlined by the compiler, even with the compile flags
allowing more aggressive inlining. Instead of AVX instructions, the assembly code
shows many mov and push instructions, i.e.moving and handling of data. In
general it seems the compiler is not able to optimize much from the very complex
DG-SEM implementation in CODA, at least for the configuration chosen here.

4 Optimization potential

The above performance analysis leads to a few possible optimizations that can
be considered down the line.
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Fig. 5. Top left: Measured Roofline for both critical kernels, top right: percentage of
roofline performance reached over the DG orders, bottom left: Roofline of the critical
kernels with their respective performance at the theoretically optimal intensity (Table 2)
and bottom right: percentage of roofline performance reached for optimal intensity.

First and foremost, the low utilization of vectorized instructions and function
inlining is the most pressing concern. As long as the compiler is not capable of
properly interpreting and optimizing the code, most optimizations will prove
fruitless. The first focus here should be the Chandrashekar computation of the
numerical flux, with its n4 complexity. It is purely dependent on the element
itself and does only require local restructuring of the data access patterns to
enable the compiler to vectorize the code.

Secondly, the gradient gets computed multiple times, once for each functor
requiring it. Also the convection and diffusion face flux kernel would be of order
n2 instead of n3 without the gradient computation inside. With some reordering
and the gradient being saved after being calculated when needed for the first
time this can be implemented more efficiently.

Lastly, the lifting operator looping once over the mesh, setting the gradient
to zero is unnecessary when the implementation of the actual computation is
changed accordingly.

A long term consideration would be to introduce a different memory layout,
with better cache locality and clearer access patterns for the compiler to vectorize
with more ease. Figure 6 depicts the current memory layout and a reordered
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variant. Placing the states of four points of four different elements, all with the
same index and the same physical variable, next to each other can bring the
compiler to calculate 4 elements in parallel during one loop, each instruction
working on 4 points at the same time.

Current memory layout:

00 01 02 03 0... · · · 10 11 13 12 1... · · · 20 21 22 23 2... · · · 31 30 33 32 3...

Optimized memory layout:

00 10 20 30 01 11 21 31 02 12 22 32 03 13 23 33 · · ·

Fig. 6. Top: current memory layout with data of all integration points of an element
locally grouped in memory and bottom: optimized memory layout with integration points
of the same index of four different elements grouped together for better vectorization.

A second step can be to evaluate how the number of abstraction layers in the
heavily templated code could be reduced. This can lead to more inlining, possibly
also more vectorization and other optimization methods the compiler can utilize.

5 Conclusion

The performed benchmarks of CODA using the turbulent Taylor-Green vortex
and a more granular kernel benchmark show, that the current DG-SEM imple-
mentation scales well, but the node level performance leaves much to be improved
upon. Through the performance analysis using the roofline model we found some
inefficiencies in the gradient computation and the lifting operator that can be
removed. The assembly code additionally revealed optimization potential in more
inlining and more vectorization. The next step consists of assessing the possible
optimization strategies and choose the desired approach.
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