Modelling of district heating networks at DLR-VE

Diana Maldonado, Nachiket Gaikwad, Patrik Schönfeldt, Sunke Schlüters

Focus and scope:

• Main focus:

- Heating network
- Thermal performance
- Consumer: Individual
 heat exchangers
- Energy source: Source +

sink

Modelling of existing HTDN

HTDN under study

815

B14Q

OB13

Piping connection

Meter location

Heat exchanger

Fork

Network diagram

Source

Sink

First glance at available data

Initial results

6

Analysing the erorr for building 2:

Diana Maldonado, DLR VE, June 22nd 2023

System shutoff: (Effect of thermal inertia)

Modelling of adiabetic mixing valves

Calculation for return-mixed-buildings

Assumptions: Tin ≈ input of previous building

Mass balance: @B $\dot{m}_c = \dot{m}_{in} + x.\dot{m}_c$

Energy balance: @B $h_{in}.\dot{m}_{in} + h_{out} x.\dot{m}_{c} = h_{e}.\dot{m}_{c}$

For single phase liquid, $h \alpha T$ $T_{in}.\dot{m}_{in} + T_{c} x.\dot{m}_{c} = T_{c}.\dot{m}_{c}$

Model calibration

Branch selection

Iterative calibration method based on an specific branch of the system

- Calibration parameter: aggregated heat conduction (UA) , described by $Q = U \cdot A \cdot \Delta T_{log}$
- Target parameter: deviation between the measured and the simulated inlet temperature at all consumers (*T*_{in})
- Simulation period: 12 hours in January (high demand)
- Desired maximum deviation: 0.5 C

Diana Maldonado, DLR VE, June 22nd 2023

T_measured T_measured T_kA_calibrated T_kA_data_sheet Temperature [°C] Temperature [°C] W Time [15 min] Time [15 min]

Calibration: Example

Calibration summary

Comparison of uncalibrated and calibrated model absolute mean error and RMSE for the month of January

Temperature error at different mass flow regimes

Temperature error at different inlet temperature regimes

Model template for residential energy supply systems (MTRESS)

- Simplified creation of energy system models
- Currently integrates electricity, heat, and gas as energy carriers
- Written in Python, using *oemof.solph*
- Variable selection and dimensioning of components
- Integrates with PyGMO for optimisation of the dimensioning
- Variable time steps allow calculations at different levels of detail

Storage formulations

Single input (and output)

- One active flow per time step
- Storage temperature in next timestep has to be lower than the input level

Multiple inputs (and outputs)

- Multiple active fows per time step
- Fully mixed: Energy flow bounded by difference between temperature levels
 → sequential flows
- Layered: Energy flow always allowed
 → parallel flows

16

Fully mixed: Supply depending on storage quantity

- Temperature proportional to the stored energy
- For heat storages a layered storage model is reasonable
- The storage level influences the uses of the stored energy, e.g. at low temperatures the energy cannot be used for DHW

Heat losses in typical networks

MILP heat network model

MILP formulation of heat pumps with part load efficiency

- Mixed-integer linear formulation
 - Constant losses (when active)
 - One binary variable per time step
- Significantly changes operation
 - Part load often outweighs COP(T)
 - Energy prices/possibility of own consumption has larger influence
- Limited effect on other results (whole system)
- Not advised for long time horizons (due to much higher complexity)

19

20

- Two states: liquid and frozen
- Ice formation on the heat exchanger produces counteracting effects
 - Surface area increases
 - Ice has an insulating effect
- Temperature has a non-linear relationship to the storage level (relevant for heat pump COP)
- Two implementations in the works
 - Ice storage component for *oemof*
 - Separate storages for the liquid and frozen state

Storage content

Summary and Outlook

Calibration of static model

- Steady-state model reproduces network behavior
- Successfully calibrated model
- Next: Use for Off-Design tests

Linear optimisation

- Losses independent of flow
- Discrete temperatures \rightarrow optimize flow
- Next: Integrate puzzle pieces

