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Modelling of district heating networks at DLR-VE
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Modelling and Validation
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Focus and scope:
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• Main focus:

• Heating network

• Thermal performance

• Consumer: Individual 

heat exchangers

• Energy source: Source + 

sink 

3



Modelling of existing HTDN 
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Typical DH network HTDN under study Network diagram

DHN modelled in TESPy
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First glance at available data
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Initial results
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Tespy 

model

▪ Pipe characteristics

▪ Mass flow

▪ Supply temperature

▪ Consumer demands

▪ Soil temperature

▪ Network 

temperatures

▪ Pipe thermal 

losses

▪ Total energy 

consumption

Input
Output
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Analysing the erorr for building 2:
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DAQ_datasheet

Error of 1.95°C

Error in Simulation

P lost = m.Cp.ΔT

= 3.25 x 4.18 x 2

≈ 25kW

Error in measurement

Resistance type 
sensor

- Improper thermal contact

-Air gap

-Measurement in boundary 
layer

-Contact resistance in series 

-sensitivity is 0.385 Ω/°C

Caliberation error

../ICM-T-Datenblatt-F775 (1) (1).pdf


System shutoff: (Effect of thermal inertia)
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Modelling of adiabetic mixing valves
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A : Input from DHN

C:  Location of Meter

Mixing Valve logic : 

if Tin > Tset,

m= x.mc

𝑥 =
(Tc− Tin)

(Tout − Tin)

From 

DH 

network



Model calibration

10
Diana Maldonado, DLR VE, June 22nd 2023

• Calibration parameter: aggregated heat 
conduction (UA) , described by Q = U · A · ∆Tlog

• Target parameter: deviation between the 
measured and the simulated inlet temperature at 
all consumers (Tin)

• Simulation period: 12 hours in January (high 
demand)

• Desired maximum deviation: 0.5 ◦C

Iterative calibration method based on an specific 
branch of the system



Calibration: Example
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Calibration summary
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Temperature error at different mass flow regimes

Temperature error at different inlet temperature regimes 

Comparison of uncalibrated and calibrated model absolute mean error 
and RMSE for the month of January
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Linear Optimisation



Model template for residential energy supply systems 
(MTRESS)
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▪ Simplified creation of energy system 
models

▪ Currently integrates electricity, heat, 
and gas as energy carriers

▪ Written in Python, using oemof.solph

▪ Variable selection and dimensioning 
of components

▪ Integrates with PyGMO for 
optimisation of the dimensioning

▪ Variable time steps allow 
calculations at different levels of 
detail
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https://github.com/mtress/mtress
https://doi.org/10.1109/OSMSES54027.2022.9768967


Storage formulations

▪ One active flow per time step

▪ Storage temperature in next timestep 
has to be lower than the input level
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Single input (and output)

▪ Multiple active fows per time step

▪ Fully mixed: Energy flow bounded by 

difference between temperature levels 

→ sequential flows

▪ Layered: Energy flow always allowed

→ parallel flows

Multiple inputs (and outputs)
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M

Qin (T2)

Qin (T1)

Qin (T0)

Storage

Qout (T2)

Qout (T1)

Qout (T0)

arXiv:2211.14080

Qin (T2)

Qin (T1)

Qout (T0)

https://arxiv.org/abs/2211.14080


Fully mixed: Supply depending on storage quantity
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▪ Temperature proportional to the 

stored energy

▪ For heat storages a layered storage 

model is reasonable

▪ The storage level influences the 

uses of the stored energy, e.g. at low 

temperatures the energy cannot be 

used for DHW
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Heat losses in typical networks
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MILP heat network model
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Location A Location B

T2, Qloss,2 , ሶQmax,2

T1, Qloss,1 , ሶQmax,1

T0, Qloss,0 , ሶQmax,0

>
>



MILP formulation of heat pumps with part load efficiency
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▪ Mixed-integer linear formulation

▪ Constant losses (when active)

▪ One binary variable per time step

▪ Significantly changes operation

▪ Part load often outweighs COP(T)

▪ Energy prices/possibility of own 

consumption has larger influence

▪ Limited effect on other results (whole 

system)

▪ Not advised for long time horizons 

(due to much higher complexity)
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https://oemof.github.io/heat-pump-tutorial/model/tespy-partload-performance.html


Ice storage implementation is in the works
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▪ Two states: liquid and frozen

▪ Ice formation on the heat exchanger 

produces counteracting effects

▪ Surface area increases

▪ Ice has an insulating effect

▪ Temperature has a non-linear 

relationship to the storage level 

(relevant for heat pump COP)

▪ Two implementations in the works

▪ Ice storage component for oemof

▪ Separate storages for the liquid and 

frozen state
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SUMMARY AND OUTLOOK
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Summary and Outlook

▪ Steady-state model reproduces 

network behavior

▪ Successfully calibrated model

▪ Next: Use for Off-Design tests
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Calibration of static model

▪ Losses independent of flow

▪ Discrete temperatures → optimize flow

▪ Next: Integrate puzzle pieces

Linear optimisation
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