PREDISCOVERY ARCHIVE DETECTIONS OF LONG PERIOD COMETS IN PREPARATION FOR THE ESA COMET INTERCEPTOR MISSION. P. Lacerda^{1,2}, N. Attree³, S. Bagnulo⁴, I. Bertini⁵, A. Beth⁶, C. Goetz⁷, J. C. Gómez Martín⁸, A. Guilbert-Lepoutre⁹, H. Gunell¹⁰, S. Ivanovski¹¹, G. H. Jones¹², E. Kallio¹³, R. Kokotanekova¹⁴, M. Küppers¹⁵, M. Lazzarin¹⁶, S. Lowry¹⁷, R. Marschall¹⁸, F. Moreno⁸, B. Novakovic⁸, K. Otto¹⁹, N. Peixinho², A. Penttilä²⁰, G. Rinaldi²¹, K. Shirley²², C. Snodgrass²³, C. Tubiana²¹, J.-B. Vincent¹⁹, and V. Zakharov²⁴. ¹Instituto Pedro Nunes, PT (placerda@ipn.pt), ²Instituto de Astrofísica e Ciências do Espaço, Universidade de Coimbra, PT, ³Technische Universität Braunschweig, DE, ⁴Armagh Observatory & Planetarium, UK, ⁵Department of Science & Technology, University of Naples 'Parthenope', IT, ⁶Imperial College London, UK, ⁷Northumbria University, UK, ⁸Instituto de Astrofísica de Andalucía, CSIC, ES, ⁹CNRS - Laboratoire de Géologie de Lyon, FR, ¹⁰Umeå University, SE, ¹¹INAF - Astronomical Observatory of Trieste, IT, ¹²UCL Mullard Space Science Laboratory & The Centre for Planetary Science at UCL/Birkbeck, UK, ¹³Aalto Univ., FI, ¹⁴Institute of Astronomy and National Astronomical Observatory, BG, ¹⁵European Space Agency, ESAC, Villanueva de la Cañada, Madrid, ES, ¹⁶Univ. of Padova, IT, ¹⁷Univ. of Kent, UK, ¹⁸CNRS, Observatorie de la Côte d'Azur, FR, ¹⁹DLR Institute of Planetary Research, DE, ²⁰Univ. of Helsinki, FI, ²¹INAF - IAPS, IT, ²²Univ. of Oxford, UK, ²³University of Edinburgh, UK, ²⁴LESIA, Observatoire de Paris, France.

Introduction: Comet Interceptor (CI) is a mission led by the European Space Agency (ESA), with significant contributions from the Japanese Space Agency (JAXA) [1, 2]. It aims to study a long-period comet (or an interstellar object) entering the inner Solar System for the first time. The mission will flyby the target and study it from different vantage points using a three-component spacecraft and a range of scientific instruments.

Why now?: Such a mission has been previously impossible because the time required to prepare and launch a rendezvous mission is much longer than the time to reach the target following its discovery. Two novel aspects enable the CI mission. Firstly, the time to encounter will be shortened by developing, launching and stationing the spacecraft at Earth's L2 Lagrangian point, possibly even before the discovery of a target. Secondly, the Vera Rubin Observatory Legacy Survey of Space and Time (LSST) will increase the ability to detect a target early. LSST will likely identify a target very close to, or even before, the CI launch in 2029.

Preparation: A Science Working Team, supported by science Working Groups focussed on Target Identification [3] and the Comet Environment [4], will contribute to mission preparation by developing scientific models that address several aspects of the mission to help it maximise scientific return.

Learning from the past: In the context of target identification, we will study LSST's ability to detect a suitable target by looking at archive data. We will search for pre-discovery images of long-period comets that have visited us in the past and investigate how those distant detections can predict the comet's properties and its behaviour at rendezvous distances. We present our first results at this meeting. Acknowledgments: Contributions are supported by the national space agencies of the European Space Agency Member States.

References: [1] www.cometinterceptor.space [2] Küppers M., et al., this meeting. [3] Snodgrass C., et al., this meeting. [4] Jones G. H., et al., this meeting.