MULTI-SCALE TIME SERIES OF BIOPHYSICAL PARAMETERS AND VEGETATION STRUCTURE IN HETEROGENEOUS LANDSCAPES OF WEST AFRICA

Frank Thonfeld, Jonas Meier, Ursula Gessner + CONCERT & WASCAL-DE-Coop teams

WASCAL Science Symposium 2022, Ouagadougou, Burkina Faso, 6-9 December 2022

Greenhouse Gas Emissions & Mitigation Options Under Climate- and Land Use Change in West Africa: A Concerted Regional Modelling & Observation Assessment

CONCERT

Objectives

- Quantify and estimate present greenhouse gas emissions (GHG) and agricultural productivity for the WASCAL region
- Set up, initialize and calibrate a coupled regional climate-hydrology-dynamic vegetation Earth System Modeling (ESM) framework
- to assess water availability, land use, crop production, biogeochemical cycling, and GHG emissions, specifically adapted to the West African conditions and defined IPCC emission scenarios
- Derive up-to-date and high-resolution dynamic land cover and vegetation status information for the WASCAL region
- Information about land cover (change) & vegetation dynamics is not yet adequately addressed in climate models → their impact on climate change & extremes unclear (Sy & Quesada 2020)

Land Cover (Janga Site) – Opportunities & Limitations

+ Fractional cover

Copernicus Land Cover 2019 (Buchhorn et al. 2020)

WorldCover 2021 (Zanaga et al. 2022)

Land Cover

Forests Shrubland Herbaceous Veget Cropland Built-up Bare / Sparse Vege Snow & Ice Permanent Water Herbaceous Wetla Moss & Lichen

	Closed forest	Open forest
	Evergreen needle-leaved	Evergreen needle-leaved
tation	Deciduous needle-leaved	Deciduous needle-leaved
	Evergreen broadleaved	Evergreen broadleaved
etation	Deciduous broadleaved	Deciduous broadleaved
Bodies	Mixed type	Mixed type
and	Unknown type	Unknown type

- Global maps
- PROBA-V 100 m vs. S1/2 10 m
- 10+12 discrete classes vs. 11
- 2015-2019 & 2020-2021

Land Cover

Tree Cover Shrubland Grassland Cropland Built-up Bare / Sparse Vegetation Snow & Ice Permanent Water Bodies Herbaceous Wetland Mangroves Moss & Lichen

Land Cover

- Tree classification based on Bing maps & U-Net convolutional neural networks (CNN)
- Limited transferability of training data to other environments
- Huge demand for training data & processing power

(a) RGB image.

(b) Prediction.

Bad performance

(a) RGB image.

(b) Prediction.

Good performance

Frank Thonfeld, DLR, WASS 2022, 6-9 December 2022

MA thesis, Hoefer 2022

BIOPHYSICAL PARAMETERS

4 1/2

DLR

Discrete Maps & Biophysical Parameters

Discrete maps

- Land cover
- Strong changes (conversion of land cover types, e.g. deforestation)
- Status

Time series of biophysical parameters

- Related to biological/physical/chemical processes
- Allow to reveal vegetation dynamics at various temporal scales
- Indicator of abrupt changes, long-term changes, changes in dynamics, changes in seasonality, phenology etc.
 - \rightarrow Sensitive to
 - (climate/climate change related) events (e.g. droughts, floods, insects) & processes
 - human impact (e.g.land use, land management, land degradation)

Biophysical Parameters (Leaf Area Index)

- MODIS MCD15A2H Leaf Area Index/FPAR (MODIS-LPDAAC, Myneni et al. 2015)
 - 8-day composites
 - 500 m resolution
 - Radiative transfer modeling & look-up tables
 - Since 2002
- MODIS GLASS LAI (MODIS-UMD, Ma & Liang 2022)
 - 8 day
 - 250 m resolution
 - Deep learning based on surface reflectance data
 - Since 2002
- Copernicus Sentinel-3/PROBA-V LAI (Fuster et al. 2020)
 - 10 day
 - 300 m resolution
 - Neural network based on surface reflectance data (OLCI) or TOA (PROBA-V), smoothing, gapfilling, compositing
 - Since 2014

Plank Thonfeld, DLR, WASS 2022, 6-9 December 2022

Biophysical Parameters (Leaf Area Index)

- Sentinel-2 LAI (Pipia et al. 2021)
 - daily
 - 20 m resolution
 - Gaussian process regression to model LAI & to fill gaps
 - Since 2015

Biophysical Parameters (Leaf Area Index)

LAI @ Janga site

- MODIS LPDAAC: noisy, overestimation in off-season(?)
- MODIS UMD: outleveling seasonality (secondary growth cycles lost)
- Sentinel-3/Proba-V: harmonic, with gaps
- Sentinel-2: overestimating secondary peak

Biophysical Parameters (Leaf Area Index)

LAI @ Janga site

3.5

3.0

2.5

(m²/m²) 1.5

1.0

0.5

0.0

Jan

PHENOLOGY

Photo: Frank Thonfeld

Phenology Based on Sentinel-1 Time Series

SoS (start of season), EoS (end of season), LoS (length of season)

Descals et al. 2020

Phenology Based on Sentinel-1 Time Series

- (Global) discrete classification schemes do not adequately reflect the heterogeneity of West African landscapes
- Tree cover still uncertain, not adequately resolved in coarse-scale products
- LAI is a good proxy of phenology but is inconsistent among products
- Challenges in creating dense time series of high-resolution satellite data due to presence of clouds & cloud shadows
- SAR data as option

Dr. Frank Thonfeld frank.thonfeld@dlr.de

THANK YOU FOR YOUR ATTENTION