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1 INTRODUCTION 

The demand for precise positioning, i.e. 10 cm 
horizontal and vertical position accuracy, in inland 
water applications has been increasing due to 
requirements of driver assistance functions [1] and the 
ongoing development of autonomous vehicles. Here, 
Global Navigation Satellite Systems (GNSS) are 
mainly used for the provision of Positioning, 
Navigation and Timing (PNT) information. The two 
classical algorithms to achieve cm-level accuracy 
based on GNSS are Real-Time Kinematic (RTK) and 
Precise Point Positioning (PPP) [2]. RTK uses the code 
and phase observations of a reference station close to 
the user's position to build double differences of the 
observations between the receivers as well as the 

satellites to mitigate atmospheric delays and errors on 
the satellites' side such as their orbits and clocks.  

PPP, on the other hand, only uses the observations 
from one receiver but requires precise satellite orbit 
and clock information as well as ways to mitigate the 
atmospheric delay, e.g. applying atmospheric 
products, estimating the delays or using the 
ionospheric-free linear combination of the 
observations. A more recent trend is PPP-RTK [3,4] 
which is based on PPP but uses real-time corrections 
based on a network of reference stations. Here, the 
broadcast satellite orbits, satellite clocks, code and 
phase biases as well as atmospheric delays are 
corrected. This allows for fixing the ambiguities as 
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integers and achieving precise positioning without the 
long convergence time of estimated float ambiguities. 

However, inland water navigation poses severe 
challenges [5] on the positioning in scenarios such as 
passing a waterway lock or passing a bridge where 
line-of-sight to the satellites cannot be guaranteed. 
Several methods to handle these challenges have been 
proposed such as robust filtering [6] to downweight 
or exclude faulty observations affected by multipath, 
the use of a multi-antenna setup [7,8,9] to have more 
redundancy as well as being able to determine the 
attitude of the vessel, and sensor fusion [10] using the 
angular velocities of an Inertial Measurement Unit 
(IMU). Nonetheless, most of these methods will fail, 
i.e. cannot provide precise position continuously, if 
there are no GNSS observations for several epochs. 

 
Figure 1. Bridge passing scheme using baseline approach 

We propose a method which combines the 
approaches by using a multi-antenna setup and 
sensor fusion with an IMU based on PPP as well as 
applying moving baseline measurements in nominal 
conditions from an RTK approach between the 
antennas. The idea is to have two antennas on the 
vessel whose fixed baseline is longer than the width of 
the bridges and, ideally, orthogonal to the bridge 
crossed as can be seen in Figure 1. Then there is 
always at least one antenna which has line-of-sight to 
the satellites and a precise position. By knowing the 
pitch and yaw of the baseline with the help from 
previous baseline measurements and the angular 
velocities of an IMU, we can accurately determine the 
position of the other antenna. Due to this, as soon as 
the second antenna has line-of-sight again, we can 
quickly estimate the new ambiguities which helps in 
having a precise position even when the first antenna 
loses track of the GNSS satellites. This enables having 
precise position, velocity and heading information 
during and after bridge passing. 

We start by explaining the methodology of our 
baseline approach based on PPP using the classical 
ionospheric-free linear combination which we then 
expand to two antennas using IMU as well as baseline 
measurements. Afterwards we apply the method to a 
real-world scenario and highlight the advantages in a 
difficult scenario for inland waterways, i.e. bridge 
passing, in comparison to the classical approach only 
using one antenna. In the end, we sum up the paper 
and show possible way forwards. 

2 METHODS 

We start with describing the classic PPP approach for 
one antenna where the unknowns are estimated in an 
Extended Kalman Filter (EKF) [11]. We apply the 
standard notation for Kalman Filters, i.e. F is used for 
the state-transition model, X for the Kalman state and 
h denotes the measurement functions. 

To get precise results, we need precise satellite 
clock and orbits. For this, one can use postprocessed 
final products from the International GNSS Service 
(IGS) or the German Research Centre for Geosciences 
(GFZ). For real-time applications one can use global 
correction services such as the Galileo High Accuracy 
Service (HAS) [12] for GPS and Galileo satellite orbit, 
satellite clock, code and phase bias corrections, and 
the IGS Real-time Service [13] providing satellite 
clock, satellite orbit, code and phase bias corrections 
for GPS, GLONASS, Galileo, BeiDou as well as a 
global ionospheric model. Due to using the 
ionospheric-free linear combination, there is no need 
for local ionospheric corrections as required for PPP-
RTK. 

Hence, we assume precise satellite clock and orbits 
as well as the application of additional corrections for 
the Earth's tides and the phase center variation of the 
satellites. 

2.1 Problem formulation for one antenna 

In the following we consider two-frequency code 
,1i sR  and phase observations ,1Φi s where the 

frequency is denoted by i and the satellite by s 

( ),1 1 1 1 ,1 ,12 δ δ ε= − + − + + +i s s s s i s i sR x x c t t T I

( ) ( ),1 1 1 1 ,1 , ,1 1 ,12Φ δ δ λ= − + − + − + + +i s s s s i s i s i s s i sx x c t t T I A w   (1) 

The variables are the antenna position 1x , satellite 
position sx , speed of light c , receiver clock offset 

1,δ t  satellite clock offset δ st , tropospheric delay 1sT , 
ionospheric delay ,1i sI , wave length ,λi s , phase 
wind-up 1sw , integer ambiguity ,1i sA  and the 
remaining errors ,1ε i s , ,1i s , e.g. multipath and 
receiver noise. 

We then apply the classical ionospheric-free linear 
combination ( )⋅ IF  to (1) and split the tropospheric 
delay into the dry ( hZ ) and the wet ( wZ ) zenith delay. 
The zenith delays are used in conjunction with vienna 
mapping functions hm , wm  [14] which depend on 
the elevation of the satellite, the receiver position and 
the time. 
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( ) ( ) ( ) ( ) ( )1 1 1 1 1 1,1 , , ,2Φ δ δ λ λ= − + − + + + +s s s sIF s IF s IF s IF sx x c t t T A w 

1 ,1 ,1 ,1 ,1= +s h h s w w sT Z m Z m  (2) 

The Kalman state 1X  consists of the antenna 
position 1x , velocity 1v , clock offsets 1δc t , clock 
drifts 1δ c t , the float ambiguities ( )1λ IFA  and the wet 
zenith delay ,1wZ  whereas the dry zenith delay is 
approximated using the receiver's position. Assuming 
constant velocity and constant clock drifts for state 
transition and letting Gn  being the number of GNSS 
and An  the number of float ambiguities, this can be 
summarised as: 
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To improve the a priori prediction for the position, 
velocity, receiver clock offsets as well as their drifts, 
we use time-differenced carrier phase measurements 
(TDCP) as described in [15]. This gives us highly 
accurate estimates of the change in position as well as 
change in the receiver clock offsets from the last to the 
current epoch which is especially important for real 
world scenarios where constant velocity cannot be 
assumed for all times. 

The measurement functions for the code and phase 
observation of satellite s derived from (2) are 

( ) ( )
1 1 ,1 ,12

1 1
1 1 ,1 ,1 1 ,2

  
δ

δ λ
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We use the Melbourne-Wübbena [16] and the 
geometry-free [17, p. 85-87] linear combination to 
detect cycle slips. In case a cycle slip is detected, the 
uncertainty of the respective float ambiguity is set to 
an arbitrary high value, e.g. 410 , and the a priori 
ambiguity is estimated from the ionospheric-free 
linear combination of the phase observations and the 
a priori Kalman state. 

2.2 Two-antenna baseline approach 

The idea is that a second antenna is mounted on the 
vessel and we assume that the distance between the 
two antennas is constant. Then the position of the 
second antenna 2x  can be calculated using the 
position of antenna 1 and the baseline between the 
antennas, i.e. 
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( )1
ECEF
ENUC x  is the transformation matrix from the 

ENU frame which has antenna 1 as its origin to an 
ECEF frame where 1ϕ  and 1λ  are the latitude and 
longitude of antenna 1. ( ),θ ψl  is the baseline with 
θ  and ψ  being the pitch and yaw of the baseline 
which correspond to the elevation and azimuth of 
antenna 2 in the respective ENU frame. Both frames 
are displayed in Figure 2. As can be seen in (5) we 
only need to know the length of baseline but not how 
the antennas are mounted on the vessel, but ideally, 
they should be as far away as possible from front to 
back. 

  
Figure 2. a) ENU in ECEF frame, b) ENU frame with 
antenna 1 in its origin 

The velocity of antenna 2 can also be expressed in 
terms of antenna 1 and the baseline by totally 
differentiating (5) with respect to time: 
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To link the rate of turn of the vessel with the 
change in the yaw of the baseline, we have to make 
some assumptions on the mounting of the antennas in 
the ship's body frame. Ideally, the baseline's 
projection onto the ship's horizontal plane, i.e. the 
plane defined by vessel's across and along ship axis as 
can be seen in Figure 3, is parallel to the along ship 
axis (Figure 3a) which would imply the pitch of the 
vessel differing from the pitch of the baseline in the 
ENU frame by a constant offset. Of course, for this we 
do need to know the height of the antennas in the 
ship's body frame. If the horizontal projection of the 
baseline is not parallel to the along ship axis, we have 
to assume the pitch of the baseline being identical to 
the pitch of the vessel, both with respect to the ENU 
frame. Hence, the baseline has to be parallel to the 
vessel's horizontal plane as displayed in Figure 3b. In 
both cases, the rate of turn of the ship would be 
identical to the change of the yaw of the baseline. 

  
Figure 3. a) Baseline's horizontal projection, b) Baseline 
parallel to horizontal plane 

To further reduce the number of parameters to be 
estimated, we assume the same wet zenith delay for 
both antennas, i.e. ,1 ,2= =w w wZ Z Z , since the length of 
the longest ships is less than half a kilometre. In 
practice, most ships are far shorter than that. All in all, 
the Kalman state for the second antenna only consists 
of the receiver clock offsets 2δc t , clock drifts 2δ c t  
and the float ambiguities ( )2λ IFA . Again, we assume 
constant receiver clock drifts. 
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As with antenna 1, we use TDCP to get accurate 
estimates of the velocity and receiver clock drifts. 
Applying (6) gives us a measurement for 1v  whereas 
the change in the receiver clock offset of antenna 2 is 
used as an apriori estimate for its receiver clock drifts.  

While the two-antenna baseline approach reduces 
the Kalman state for the second antenna, we have to 
estimate four additional parameters. These are the 
pitch θ  and yaw ψ  of the baseline as well as their 
velocities θ  and ψ . Assuming constant angular 
velocity, the state-transition model for the baseline 
looks as follows: 
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To make further use of the two antennas, we apply 
a moving base approach as implemented in [18] to 
estimate the baseline whenever possible, i.e. we have 
enough good observations for the two antennas from 
the same satellites using double-differenced 
observations. The calculated baseline is then 
transformed from an ECEF into the ENU frame where 
its pitch and yaw can be determined. We use these 
two values as direct measurements of θ  and ψ . 

2.3 IMU measurements 

The integration of an IMU requires considering 
additional measurements and parameters. The 
number of parameters depends on whether a full 
integration of all gyro as well as acceleration 
measurements is done or if a reduced model is 
chosen. We propose a simple model that only uses the 
biased rate of turn measurements. 

In the following, we assume that the roll and pitch 
of the vessel as well as their velocities are 0 which is a 
fair assumption for large inland waterway vessels due 
to small waves and current as well as being less 
affected by smaller ships. Furthermore, the IMU is to 
be mounted on the vessel in such a way that each axis 
of the IMU is parallel to the respective axis of the 
vessel. By this, the rate of turn of the vessel is identical 
to the unbiased rate of turn of the IMU, and as 
described in section 2.2 identical to the change of yaw 
of the baseline. 

All in all, the biased IMU measurements of the rate 
of turn can be described as 

( ) ψψ= +IMUh X b  (9) 

The gyro bias ψb  is estimated in the Kalman Filter 
and is assumed to be constant, hence 

( ) 1τ
ψτ+ = ⋅ = ⋅t t t

IMU IMU IMUX F X b  (10) 

To make the pitch estimation more robust, we 
suggest to add an artificial angular velocity 
measurement of zero with regards to the pitch in case 
there is no baseline measurement. This is in line with 
our initial assumptions for the IMU on an inland 
waterway vessel. Using (3), (7), (8) and (10) the full 
Kalman state X  of the two-antenna baseline 
approach and its transition model can be summarised 
as 
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3 RESULTS 

A measurement campaign was conducted on the 23rd 
of February 2022 in Strasbourg as part of the 
SCIPPPER project [19]. The goal was to automatically 
enter a waterway lock using GNSS, IMU as well as 
nearfield sensors. For this, we could use the Victor 
Hugo, a cruise ship from CroisiEurope. The 
dimensions of the vessel as well as the placement of 
the two geodetic antennas, each connected to a 
JAVAD Delta receiver, can be seen below: 

 
Figure 4. Schematic placement of the two GNSS antennas on 
the Victor Hugo 

As displayed in Figure 4 the antennas were not 
mounted parallel to the ship's axes. Furthermore, the 
height of the antennas differed by 10 cm in the ship's 
body frame. In total, the length of the baseline was 
68.74 metres and the displacement of the antennas 
caused an offset in the pitch and yaw of the baseline 
w.r.t. the ship's body frame of about 0.08° and 2.43° 
respectively. A sensonor MEMS IMU (STIM300) was 
mounted directly under the bow antenna. It has a 
gyro bias instability of 0.3 °⁄ h and a gyro noise of 0.15 
°⁄√h which were used in the Kalman Filter for the 
uncertainty of the gyro measurements as well as the 
uncertainty of the constant gyro bias assumption in 
the state-transition model. 

To synchronise the GNSS observations with the 
IMU measurements which have a sampling rate of 
about 249 Hz, the IMU measurements are integrated 
over each epoch assuming piecewise constant values. 

The ship started in the south in the harbour and 
drove northways crossing several bridges. After 
arriving at the waterway lock to the Rhine, it 
automatically entered the waterway lock three times 
from east to west [20]. Afterwards it went from north 
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to south back to the harbour, again crossing several 
bridges. The overall trajectory of the Victor Hugo and 
a nearby GNSS station are shown in the following 
figure: 

 
Figure 5. Trajectory of Victor Hugo (black line) and GNSS 
station ENTZ00FRA (purple star) [Google Maps, 2022] 

We use a postprocessed RTK solution from 
RTKLIB as a reference with the base station being the 
GNSS station ENTZ00FRA from the EUREF 
Permanent GNSS Network [21] as can be seen in 
Figure 5. During the measurement campaign the 
baseline between the base station and the antennas on 
the ship was between 10.5 and 12.5 kilometres long. A 
close-up of the ship's trajectory can later be seen in 
Figure 7. 

We processed observations from GPS, GLONASS 
and Galileo with an elevation mask of 10° and a 
sampling rate of 2 Hz. The precise satellite clock and 
orbits were obtained from the final products of GFZ. 
The uncertainty of the state-transition model in the 
Kalman Filter was adapted to the Victor Hugo with 
the maximum acceleration in East and North assumed 
to be 0.5 m/s2 and 0.1 m/s2 in Up direction. The 
maximum angular acceleration for pitch and yaw was 
set to 0.1°⁄s2. These uncertainties were observed as 
maximum values from measurements on previous 
days on the Victor Hugo and are therefore in general 
overbounds of the true uncertainties with regards to 
the ship's movement.  

As a first proof of concept, we check whether the 
pitch and yaw of the PPP baseline approach 
converged to the correct values in a stationary 
scenario, even without IMU or baseline 
measurements. For this we look at a time when the 
vessel was in the harbour and the PPP algorithms 
were initialised at 8 a.m. 

 
Figure 6. Pitch and yaw of the baseline in a stationary 
scenario 

As can be seen in Figure 6 both pitch and yaw 
converged to the same values as the baseline 
measurements. When baseline measurements were 
included (yellow and purple line in the figure), the 
estimated values were almost identical to the 
measurements without needing to converge. 
Furthermore, including IMU measurements helped in 
determining the right pitch and yaw of the baseline 
faster. Without IMU measurements, it took about 31 
and 14 minutes for pitch and yaw to be within 0.1° of 
the baseline measurements whereas with IMU 
measurements it only took about 14 and 6 minutes 
respectively. 

Note that without baseline measurements the 
Kalman Filter needs reasonable approximations of the 
pitch and yaw as starting values to converge. We 
found that a single-differenced moving baseline 
approach only using code observations is good 
enough for this, so there is no need to apply advanced 
algorithms right from the start to resolve ambiguities. 

Next, we have a look at the estimated heading 
during bridge passing. For this we mark five bridges 
passed during the measurement campaign which we 
will analyse in detail. 

 
Figure 7. Five bridges that were passed during the 
measurement campaign [Google Maps, 2022] 

Bridge 1 and 3 are railway bridges whereas bridge 
2 (Pont Vauban), 4 (Pont d'Anvers) and 5 (Pont Pierre 
Brousse) can be crossed by cars. All bridges have a 
width of less than 25 metres which is shorter than half 
of the antennas' baseline on the Victor Hugo. In the 
following figure the estimated yaw with and without 
using IMU and/or baseline measurements during the 
passing of bridge 2 and 3 from south to north is 
shown. 

 
Figure 8. Yaw of baseline during passing of bridge 2 and 3 

It is clear to see that without IMU measurements, 
the heading deviated when passing bridges by up to 
1.3° since there is no yaw information if at least one 
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antenna has insufficient observations. During this 
time, there were no baseline measurements for 22 and 
19 seconds respectively which is the time frame where 
the heading deviated by more than 0.1° (yellow line). 
Note that without IMU nor baseline measurements, it 
took about 3 minutes for bridge 2 (blue line) until the 
heading was correct again, i.e. within a range of 0.1°. 
When the IMU was used, the difference to the results 
using both IMU and baseline measurements was less 
than 0.07° the whole time, even without applying 
baseline measurements. 

To sum it up, having consistent rate of turn 
information is crucial for our baseline approach 
during times when there are no baseline 
measurements which are important in nominal 
conditions to have precise pitch and yaw. 

Next, we analyse the positioning results during the 
bridge passings. As we had no reference position 
during the passings, we took the positions of the RTK 
solution with fixed ambiguities closest to the 
respective bridge before and after the passing which 
were in agreement with the PPP baseline solution, i.e. 
within 10 cm in East and North. This is due to the 
RTK solution having some outliers close to bridges as 
displayed in Figure 9a. The straight line between 
those two points is our reference trajectory which is a 
reasonable approximation since all bridges were 
crossed without unnecessary turning. Furthermore, 
we assume constant velocity for the reference to 
analyse the along as well as the cross track error for 
the reference as seen in Figure 9b. Note that in the 
figure the grid lines of the along track axis coincide 
with the along track of the reference to better visualise 
deviations in this direction. Here, we compare the 
classic PPP approach for one antenna without any 
additional measurements as described in section 2.1 
with our PPP baseline approach applying both IMU 
and baseline measurements. The following figure 
shows the positioning results of the stern antenna 
during the two time passing of Pont Pierre Brousse. 

  
Figure 9. a) Passing bridge 5 two times, b) Cross and along 
track for East to West passage [Google Maps, 2022] 

Both times our PPP baseline approach was better, 
i.e. the trajectory was straighter, than the classic 
approach. This is especially noticeable in the cross 
track direction when the vessel drove from east to 
west where the one antenna approach deviated to the 
north w.r.t. to the RTK reference after the bridge 
passing and it took about one minute until it was in 
agreement with the reference. During the passing 
from west to east there was no RTK solution for 36 
seconds whereas the PPP baseline approach delivered 
reliable and precise results with regards to the 
reference line for all epochs. 

A quantitative analysis for the different bridges 
can be found in Table 1. Here, classical stands for the 

one antenna approach and baseline denotes our 
baseline method. We computed the maximum 
absolute error as well as the root-mean-square error 
(RMSE) of the cross and along track error. We 
analysed the passings going from south to north for 
the first four bridges whereas we looked at the vessel 
driving from east to west for bridge 5 as can be seen in 
Figure 9b. To put the following numbers into 
perspective we also applied the analysis to an open 
sky scenario with a time frame of 15 seconds which 
occurred before the first passing of bridge 1. This was 
done to ensure that the classic PPP approach had 
converged and was not disturbed by previous NLOS 
events. 
Table 1. Cross and along track error during bridge passings 
for stern antenna ________________________________________________ 
      Cross track     Along track  
      error [cm]     error [cm] ________________________________________________ 
      Max   RMSE  Max   RMSE ________________________________________________ 
      C  B  C  B  C  B  C  B ________________________________________________ 
Bridge 1, S→N 49.0  2.8 19.7  1.4  64.0  9.5 31.2 5.0 
Bridge 2, S→N 77.1 26.6 42.8 17.7  87.9 12.0 42.6 3.8 
Bridge 3, S→N 41.6  6.0 26.1  2.4 199.9 30.8 137.7 21.1 
Bridge 4, S→N 56.8 19.0 37.2 11.3  21.8  7.3 12.1 4.3 
Bridge 5, E→W 76.9 14.5 49.2 10.4  39.8  6.3 30.0 4.0 
Open sky    5.8  4.9  2.7  3.2  11.6  9.4  6.0 5.9 ________________________________________________ 
C – Classical 
B – Baseline 
 

For all bridges our approach gave better results, 
even up to an order of magnitude as can be seen in the 
cross track error for bridge 1. Furthermore, the RMSE 
of the along track error was less or equal to 5 cm for 
four of the five bridges using our PPP algorithm 
which is remarkable for these difficult conditions 
where multipath and less observations would 
normally impact the quality of a GNSS based positing 
solution. 

To highlight the non-line-of-sight (NLOS) effects of 
these scenarios we have a look at the number of 
visible satellites during the passing of Pont Vauban 
and the following railway bridge. 

 
Figure 10. Number of visible satellites during passing of 
bridge 2 and 3 for the bow (top) and stern (bottom) antenna 

Even though we used three GNSS, there were 
epochs without any observation for the stern antenna 
around 8:38 (UTC) which didn't have any major 
impact on the positioning using our baseline 
approach. During a time frame of 13 seconds, there 
were less than 6 satellites in view for both antennas 
during the first bridge passing. The spacial separation 
of the antennas can also be seen in the time difference 
between the minima of the visible satellites which is 
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about 45 seconds for the two antennas during the 
passing of the railway bridge. In nominal conditions 
each antenna had over 20 satellites in view with up to 
10 from GPS and 6 to 7 satellites from each of Galileo 
and GLONASS.  

Next, we analyse the position of the bow antenna. 
In Figure 11a we can see the RTK reference as well as 
the trajectory of both PPP algorithms for the passing 
of Pont Vauban from south to north. 

  
Figure 11. a) Passing bridge 2 from South to North, b) Cross 
and along track [Google Maps, 2022] 

Again, the baseline approach gave superior results. 
Note that the classic approach deviated to the west 
during and after the passing where it converged to the 
RTK solution after some time. Additionally, in Figure 
11b one can also see the errors along track especially 
before and after the passing of Pont Vauban. The 
baseline approach didn't have those large differences 
and was, apart from a slight offset to the west, in line 
with the RTK reference as well as the reference line 
which is defined in the same way as before. The 
quantitative results for the other bridges can be found 
in the following table. The additional open sky 
scenario refers to the same time frame as the one in 
Table 1. 
Table 2. Cross and along track error during bridge passings 
for bow antenna ________________________________________________ 
      Cross track     Along track  
      error [cm]     error [cm] ________________________________________________ 
      Max   RMSE  Max   RMSE ________________________________________________ 
      C  B  C  B  C  B  C  B ________________________________________________ 
Bridge 1, S→N  93.1 18.0 39.2 14.8 275.1 15.5 238.5 10.8 
Bridge 2, S→N 132.7 16.0 72.8 12.2  63.2  8.7 40.2 4.1 
Bridge 3, S→N  60.9  7.4  26.9  3.9  36.7 10.3 16.8 4.1 
Bridge 4, S→N  44.0 10.9 16.0  5.4  26.4  3.9 12.8 2.6 
Bridge 5, E→W  26.9 10.9 12.1  7.6  26.4 10.4 15.6 7.0 
Open sky     4.1  5.6  1.6  2.8  12.7  9.2  7.3 6.1 ________________________________________________ 
C – Classical 
B – Baseline 
 

Similar to the stern antenna, the PPP baseline 
approach yielded better results in all cases. Especially 
for bridge 2 where the along as well as the cross track 
error was almost an order of magnitude smaller with 
regards to the classic approach. Furthermore, the 
RMSE was below 10 cm in the majority of the bridge 
passings and 14.8 cm at most. This clearly shows the 
suitability of our approach for this difficult scenario. 

4 CONCLUSIONS 

We presented a PPP algorithm for two antennas based 
on the constant baseline length between them. By 
adding baseline as well as IMU measurements the 

algorithm is able to deliver precise and reliable 
positioning, even when one antenna suffers from non-
line-of-sight effects. The method was applied to an 
inland waterway scenario and showed superior 
results with respect to the classic one antenna PPP 
approach, especially during the passing of bridges. 

The algorithm could be improved if all IMU 
measurements were used as the additional 
acceleration measurements would be useful in 
determining the velocity. Furthermore, the integration 
of all angular velocities would be needed if the 
assumption of a constant pitch is not realistic due to 
waves from other ships or a strong current in general. 
Also, the approach can be generalised to any position 
on the baseline, e.g. in the middle of the baseline. 

An additional improvement in the positioning 
results would be made possible by using 
undifferenced observations which have less noise 
than the ionospheric-free linear combination [17, p. 
76]. On the one hand this would require additional 
estimation of or information on the atmospheric 
delays, but on the other hand this would allow for 
fixing the ambiguities as integers instead of just 
estimating them as float variables. This would allow 
for precise positioning with fast convergence. This 
becomes of upmost importance in the growing need 
for real-time application using PPP-RTK [4] and real-
time correction services such as the Galileo High 
Accuracy Service [12] and the IGS Real-time Service 
[13]. 
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