
Addressing the Entry Barrier for Experimentation in Perception-aware
Trajectory Planning for Planetary Rovers

Moritz Kuhne1 , Riccardo Giubilato1 , Daniel Leidner1 , Máximo A. Roa1 , Senior Member, IEEE

Abstract— To fully evaluate perception-aware planning meth-
ods for planetary rover, we need a platform that takes action
commands and captures perception data. Even with suitable
hardware and simulation available to us, there exists an ”entry
barrier” for performing research in active vision, as developing
methods with a system-in-the-loop is time intensive. We present
our approach for tackling this entry barrier by incrementally
moving from toy examples to integration and deployment
on real robots. Our approach aims at reducing the overall
development complexity by producing intermediate results that
are used to validate and evaluate the active algorithm.

I. INTRODUCTION

Perception-aware trajectory planning belongs to the
broader scope of active vision. These methods consider
perception objectives for choosing the next action and thus
the perceived information. Since active vision methods close
the perception-action loop, they can’t be truly evaluated
on prerecorded test data but require an agent to perform
the perception-action loop. The authors of [1] argue that
simulation and flexible research hardware could be used to
fill the gap of a missing system-in-the-loop (SiL). Although
hardware and simulators exist for specific platforms [2], [3],
[4], there is still the lack of a flexible SiL that captures the
diversity of robotic platforms. Furthermore, working with a
system is time-consuming. Investigating a failed state or un-
expected behavior requires reverting a full system to a former
state. Although an agent is necessary to benchmark active
vision methods, we reason that development complexity and
time can be reduced when carrying out research on active
vision methods without a fully-fledged SiL.

We investigate a workflow for concurrently developing and
testing a perception-aware trajectory planner for a planetary
rover. This workflow is inspired by test-driven software
development. New functionality is checked and evaluated
against increasingly integrated tests and in environments with
growing complexity. Our approach focus on the principles
below:

• getting intermediate results and plots
• only implement functionality that one needs
• regression on the existing tests
• evenly distribute the workload over the research time

frame
Section II reviews related work. In III, we describe our

contribution of a software development process named plot-

* This work was supported by projects ARCHES (contract number ZT-
0033)

1The authors are with Institute of Robotics and Mechatronics, German
Aerospace Center (DLR), Muenchener Str. 20, 82234 Wessling, Germany
firstname.lastname@dlr.de

driven development (PDD). We demonstrate it at the hand
of our current work on a perception-aware trajectory planner
for the LRU rover, shown in Fig. 1. Section IV discusses
the benefits and cost of PDD in the context of developing
software for scientific research.

Fig. 1: LRU on Mt.Etna, Italy at the ARCHES demo-mission
site where the real data for testing was collected.

II. RELATED WORK

Our work is inspired by the principles of test-driven devel-
opment [5]. Whereas test-driven development emphasizes on
fully automated testing, we generate plots in an automated
manner but delegate the task of inferring correctness of the
resulting plots to the researcher. The authors of [6] share our
reasoning that checks on visual representations are easily
done by a human but hard to package into a test. We,
however, deploy this visual test step during development and
not in a postponed testing and verification step.

Many approaches test robotic software on a component-
level [7], i.e. testing a ROS node. This component-level
testing is also shared by tests using a SiL [8], [9]. We, on
the other hand, test without a time-consuming SiL and in a
more granular approach to gain incremental feedback along
the development cycle.

III. PLOT-DRIVEN DEVELOPMENT

We use PDD as a workflow for developing a perception-
aware trajectory planner for a planetary rover. In the spirit of
PDD, we tackle the complexity of research in this instance
of an active method by developing new functionality against
tests.

https://orcid.org/0000-0002-4053-7510
https://orcid.org/0000-0002-3161-3171
https://orcid.org/0000-0001-5091-7122
https://orcid.org/0000-0003-1708-4223


As the initial action of PDD, we think of visualization that
demonstrates the wanted new functionality. We implement
the plotting within software tests. These tests produce two
results. First, they pass a hard-coded condition. We use con-
ditions to check for assumptions that are easily formulated,
e.g. the number of trajectories in collision. Second, the tests
create output that is plotted and checked by the researcher.
This visualization serves as a test for behavior that is harder
to formulate, e.g. the trajectories generated in a receding
horizon fashion for reaching the goal form a smooth path.
The tests and visual checks pass when the conditions hold
and the visualized behavior is accepted by the research.
Finally, the tests and plotting are used to regress on when
further functionality is added and refactoring is required.

We frame the process of envisioning a plot that demon-
strates new functionality and wrapping the execution, asser-
tion, and visualization of the functionality into tests plot-
driven development. This process is shown in Fig. 2.

Fig. 2: The process of plot-driven development.

A. From Toy-Examples to Real-data Test

We use the proposed workflow to develop a perception-
aware trajectory planner for the LRU rover. While full
integration of the trajectory planner requires a SiL, the devel-
opment can be based on recorded data. We want this planner
to follow a path with motion primitives and track a point
of interest (POI) along the global path with forward-facing
cameras mounted to the robot base. The final outcome of the
development that we describe here should be a envisioned
plot, showing a robot that traverses a terrain map gathered
at Mt. Etna [10] as shown in Fig 3a. The robot trajectory
should follow the global path without large oscillations and
closely. This condition is checked visually in the plot. Below
we outline the steps of adding this wanted functionality along
desired plots.

We use an existing perception-agnostic trajectory planner
[11] as a baseline. This planner supports the dynamic model
of our robot base, is executed in a receding horizon fashion
as required for navigation in unknown environments, and
uses the same middleware (ROS [12]) as the LRU. When
adding new functionality (here the complete perception-
agnostic trajectory planner), we opt for high-level integration
test that executes most code at once and adds a meaningful
new plot. We start our development by envisioning a plot
that shows robot body trajectories which are colored based
on their scored of progress towards a goal in a map. We
wrap the execution of the existing trajectory planner into
a test that runs the planner on a simple world with a single
obstacle. We check for progress towards the goal (score) and
infeasibility of trajectories with hard-coded conditions. The

plot is checked visually. The passing visualization is shown
in Fig. 4a.

Next, we require a perception objective, that scores a
trajectory on the alignment of a POI with the cameras
mounted to the robot body. We envision a plot that visualizes
camera frustrums whose colors are determined by their POI-
objective. The associated test for tests for the expected costs
and outputs the plot shown in Fig 4b.

Following, we want a perception-aware trajectory planner
that combines the perception-agnostic trajectory search and
the perception awareness. The envisioned plot should show
the body trajectories and camera frustrums in colors based
on their progress towards a goal and their orientation towards
a POI in a map with an obstacle. The implementation
integrates the functionalities and visualization elements that
were incrementally developed for the succeeding plots. The
passing visualization is shown in Fig. 4c.

For the next development step, we want to use the
perception-aware trajectory on a model of the LRU with the
POI being a cell along the path in a real data map. The
envisioned plot is similar to the previous plot (Fig. 4c) but
showing the true robot motion and perception capabilities.
The accepted plot for this test is shown in Fig. 4d.

Finally, we pass the initially defined visual check of
traversing the map of Mt. Etna in Fig. 3a and tracking a
POI with the cameras, by looping over the test for Fig. 4d.
The result is shown in Fig. 3b.

B. Comparing Active Methods on prerecorded Data using
PDD

We replay recorded data to compare active methods based
on metrics that can be computed at an instantaneous time
stamp. For each sampled time step, we evaluate the output
of the active methods to be compared. Finally, in line with
plot-driven development we wrap this procedure into a test.
We demonstrate this at the hand of the perception-agnostic
and perception-aware planners from III-A.

We use prerecorded data that was generated by traversing
the map in Fig. 3a. At sample times ti, we run the two plan-
ners (perception-agnostic and perception-aware) to retrieve
their output trajectories. Though not used during planning,
we compute the cost c(ti)POIag

associated to the perception-
objective of tracking the POI with the perception-agnostic
trajectory. At the same time stamps, we plan a POI-aware
trajectory with perception cost c(ti)POIaw . In the test, we
check for the constraint 0 ≥ c(ti)POIag

− c(ti)POIaw
and

plot their difference

∆c(ti)POI = c(ti)POIag
− c(ti)POIaw

as shown in Fig. 5a.
Special interest lies in the time stamps where ∆cPOI is

large. These time stamps indicate the states of robot and
environment in which the perception-objective contributes
most to the decision making of the perception-aware planner.
Fig. 5b shows the POI-aware and POI-agnostic trajectories
generated at tmax(∆cPOI) for the largest value of ∆c(ti)POI .



(a) Traversibility map with path connecting start and goal locations.

(b) Global path tracking with perception-aware motion primitives.

Fig. 3: A 2.5D traversibility map (red are obstacles, green
to yellow are small to large costs, grey is unknown space)
collected at Mt. Etna with a global path (black line). The tra-
jectories (colored pink to turquoise to distinguish individual
trajectories) are generated with a perception-aware trajectory
planner using properties of the LRU robot, e.g. size, velocity
limits, traversibility.

C. Robotic System Integration

At the time of writing, the perception-aware planner has
only been tested without a SiL. We use ROS as a middleware
on our target system. The code, developed for Fig. 3 to 5, is
encapsulated such that we can test it without a running ROS
master or tf-look-ups. For the system integration, we add
a ROS-wrapper around our planner that makes connections
to the ROS master and internally passes on the data and
requests.

Since the core functionality is already implemented, we
will start by reproducing the highest integrated test on the
robot, namely traversing a map with a receding horizon POI-
aware trajectory planner. If this first test fails, we plan to
investigating the plots in III-A and III-B for the recorded data

(a) Testing the initial perception-
agnostic trajectory planner.

(b) Scoring camera orientation
on a perception objective (POI).

(c) Adding perception-awareness
to the trajectory planner.

(d) Running the perception-
aware planner on a real dataset.

Fig. 4: Integration tests for a perception-aware trajectory
planner tracking a global path (black line). Trajectories that
collide with an obstacle (red circle) are invalidated (gray
trajectory) and the valid trajectories are ranked (turquoise
to pink for lowest to highest cost) by progress to the
goal (turquoise star) and orientation to the POI (pink star).
Trajectories are visualized as the robot’s body path (colored
line), the robot’s body footprint along the path (black square/
CAD model), and the camera frustum (colored triangle) if
they are perception-aware.

of the failed test. Since the plots provide initial code locations
to search for the erroneous implementations, we expect to
integrate the new perception-aware trajectory planner faster
when compared to integration without the available SiL-free
tests.

IV. DISCUSSION

Building test environments, constructing test cases, and
writing code for plots are time-consuming tasks. In plot-
driven development, we trade in immediate research progress
for building this test infrastructure. However, we argue that
this is a worthy investment as it allows to continuously repro-
duce and compare our results. Furthermore, the investment
is small, as large portions of the code that are written for the
tests can be reused in the next implementations and, most
importantly, visualization of the results will also be used to
present the research work.

The additional time invested for plot-driven development
can be adjusted to the researcher’s needs. Testing densely
is beneficial in order to quickly discover errors but doesn’t



(a) ∆c(ti)POI of POI-objective for perception-agnostic and
perception-aware trajectory planners.

(b) POI-aware and POI-agnostic trajectories generated at
tmax(∆cPOI ).

Fig. 5: (top) ∆c(ti)POI on the replayed data of the test ran
in Fig. 3b. (bottom) The trajectory generated at the time
tmax(∆cPOI) by the POI-aware planner (turquoise) has better
POI (black star) tracking than the POI-agnostic trajectory
(pink).

produce meaningful plots and comes with large development
overhead. As shown in the example in III, adding inte-
gration tests, whenever introducing new features, balances
well the tasks of supplying enough tests for debugging and
also producing meaningful plots. Additionally, by including
plots in tests, we found that we will only implement the
additional functionality needed to produce the desired plot
that demonstrates our scientific contribution.

The biggest weakness of PDD is its poor scaling to
large and long-living projects with many researchers. After
every change that effects the output plot, an expert needs to
evaluate the correctness. This trait also limits PDD in the
context of a continuous-integration pipeline. We therefore
believe, that PDD is useful to perform research and initial
development. However, when moving towards higher tech-
nology readiness levels, the plots need to be replaced by a
more rigid TDD framework.

V. CONCLUSION

Although we have the real robot and a full system simula-
tion available, we still believe that smaller test environments
are better suited to progress quickly with our research on

a perception-aware trajectory planner. We show that the
overhead of building such a test environment can be broken
into small steps, that build up to a final test including
visualization for presenting their work.

We hope that his workflow helps others to initiate their
research in active vision and to gain feedback about their
research already along the process.

ACKNOWLEDGMENT

We thank all the colleagues of the mobile-robotics team,
DLR who have helped.

REFERENCES

[1] R. Bajcsy, Y. Aloimonos, and J. K. Tsotsos, “Revisiting active
perception,” Autonomous Robots, vol. 42, no. 2, pp. 177–196,
Feb. 2018. [Online]. Available: http://link.springer.com/10.1007/
s10514-017-9615-3

[2] P. Foehn, E. Kaufmann, A. Romero, R. Penicka, S. Sun,
L. Bauersfeld, T. Laengle, G. Cioffi, Y. Song, A. Loquercio,
and D. Scaramuzza, “Agilicious: Open-source and open-hardware
agile quadrotor for vision-based flight,” Science Robotics, vol. 7,
no. 67, p. eabl6259, Jun. 2022. [Online]. Available: https:
//www.science.org/doi/10.1126/scirobotics.abl6259

[3] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “AirSim: High-Fidelity
Visual and Physical Simulation for Autonomous Vehicles,” Jul. 2017,
arXiv:1705.05065 [cs]. [Online]. Available: http://arxiv.org/abs/1705.
05065

[4] M. Sewtz, H. Lehner, Y. Fanger, J. Eberle, M. Wudenka, M. G. Muller,
T. Bodenmuller, and M. J. Schuster, “URSim - A Versatile Robot
Simulator for Extra-Terrestrial Exploration,” in 2022 IEEE Aerospace
Conference (AERO). Big Sky, MT, USA: IEEE, Mar. 2022, pp. 1–14.
[Online]. Available: https://ieeexplore.ieee.org/document/9843576/

[5] K. Beck, Test-driven development: by example, 20th ed., ser. The
Addison-Wesley signature series. Boston: Addison-Wesley, 2015.

[6] R. Bocchino, “Industry Best Practices in Robotics Software Engineer-
ing.”

[7] S. Garcı́a, D. Strüber, D. Brugali, T. Berger, and P. Pelliccione,
“Robotics software engineering: a perspective from the service
robotics domain,” in Proceedings of the 28th ACM Joint Meeting
on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. Virtual Event
USA: ACM, Nov. 2020, pp. 593–604. [Online]. Available: https:
//dl.acm.org/doi/10.1145/3368089.3409743

[8] F. Weisshardt and F. Koehler, “Automatic Testing Framework for
Benchmarking Applications,” 2016.

[9] S. Macenski, F. Martı́n, R. White, and J. G. Clavero, “The Marathon
2: A Navigation System,” arXiv:2003.00368 [cs], Jul. 2020, arXiv:
2003.00368. [Online]. Available: http://arxiv.org/abs/2003.00368

[10] M. Vayugundla, M. Kuhne, A. Wedler, and R. Triebel, “Datasets and
Benchmarking of a path planning pipeline for planetary rovers.”

[11] A. Koubaa, Ed., Robot Operating System (ROS), ser. Studies in
Computational Intelligence. Cham: Springer International Publishing,
2016, vol. 625. [Online]. Available: http://link.springer.com/10.1007/
978-3-319-26054-9

[12] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source Robot
Operating System.”

http://link.springer.com/10.1007/s10514-017-9615-3
http://link.springer.com/10.1007/s10514-017-9615-3
https://www.science.org/doi/10.1126/scirobotics.abl6259
https://www.science.org/doi/10.1126/scirobotics.abl6259
http://arxiv.org/abs/1705.05065
http://arxiv.org/abs/1705.05065
https://ieeexplore.ieee.org/document/9843576/
https://dl.acm.org/doi/10.1145/3368089.3409743
https://dl.acm.org/doi/10.1145/3368089.3409743
http://arxiv.org/abs/2003.00368
http://link.springer.com/10.1007/978-3-319-26054-9
http://link.springer.com/10.1007/978-3-319-26054-9

	Introduction
	Related Work
	Plot-driven Development
	From Toy-Examples to Real-data Test
	Comparing Active Methods on prerecorded Data using PDD
	Robotic System Integration

	Discussion
	Conclusion
	References

