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Abstract

Planning and control for autonomous vehicles usually are hierarchically
separated. However, increasing performance demands and operating in highly
dynamic environments requires a frequent re-evaluation of the planning and
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and reliability. We propose an integrated hierarchical predictive control and
planning approach to tackle this challenge. The planner and controller are
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increase flexibility and feasibility, the planner can choose different low-layer
controller modes for increased flexibility and performance instead of using a
single controller with a large safety margin for collision avoidance under uncer-
tainty. Planning is based on simplified system dynamics and safety, yet flexible
operation is ensured by constraint tightening based on a mixed-integer lin-
ear programming formulation. A cyclic horizon tube-based model predictive
controller guarantees constraint satisfaction for different control modes and dis-
turbances. Examples of different modes are slow-speed movement with high
precision and fast-speed movements with large uncertainty bounds. Allowing
for different control modes reduces conservatism, while the hierarchical decom-
position of the problem reduces the computational cost and enables real-time
implementation. We derive conditions for recursive feasibility to ensure con-
straint satisfaction and obstacle avoidance to guarantee safety and compatibility
between the layers and modes. Simulation results illustrate the efficiency and
applicability of the proposed hierarchical strategy.
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1 | INTRODUCTION

Autonomous vehicles, including drones, mobile robots, and autonomous transportation systems, are becoming more
prevalent in a wide array of applications such as geo-surveillance, agricultural tasks, logistics, and search and rescue
operations.* These vehicles are frequently tasked with navigating from a starting point to a destination while avoiding
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obstacles in dynamically changing environments, as illustrated in Figure 1. Ensuring safe operation, such as collision
avoidance, under all circumstances for autonomous vehicles in dynamic environments is a challenging task.3> Com-
monly, this problem is addressed using a hierarchical approach, where planning is performed once or repeatedly on a
slower time scale, providing a reference or path for a lower-layer control system that operates on a faster time scale. This
control system counteracts disturbances, model uncertainties, and reacts to rapid environmental changes, as depicted in
Figure 2A.513

Numerous planning strategies for autonomous vehicles have been proposed, as outlined in References 1,14-16 and
their referenced works. These strategies are based on search methods or reformulations of the problem as a mathematical
optimization problem. However, most of them do not explicitly account for detailed vehicle dynamics, environmental
conditions, or disturbances.

To counteract significant uncertainties, such as changing environmental conditions or dynamic environments, fre-
quent replanning and tight integration of control and planning are necessary. Recent research has explored various
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FIGURE 1 Planning and control for autonomous vehicles in environments with uncertainty and dynamic changes, such as moving
obstacles or wind, present unique challenges.
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(A) Typical decomposition of planning and control in a high- (B) Safe planning by constraint tightening/constraint back-off
level planning and a low level tracking/path following task. considering a single, fixed tracking control mode.

FIGURE 2 (A)Hierarchical separation of the planning and control layers; (B) safe planning with a single tracking control mode.
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approaches to address these challenges. For example, a multi-rate hierarchical method® features three control layers
operating at different sampling times and uses moving horizon formulation in the planning layer, while barrier func-
tions in the tracking layer ensure obstacle avoidance and constraint satisfaction. Co-designing the planner and control’
allows consideration of vehicle dynamics and kinematic constraints. A multi-layer framework'® employs a low-fidelity
optimization-based reference planner and a low-level controller that tracks the planned trajectory with an error bound.
Other approaches include a two-layer moving horizon framework!? and a stable hierarchical control scheme!® that
guarantees overall stability using an inner loop reference model and contracted constraint sets.

We propose an integrated hierarchical planning and control approach that reduces conservatism while maintain-
ing computational feasibility. Both planner and controller rely on the repeated solution of moving horizon optimal
control problems. Specifically, both layers utilize robust model predictive control (MPC)!7-2! formulations. The key
concept is that the planning and lower-layer tracking controller agree on “contracts” (safety corridors), ensuring consis-
tency and compatibility between layers. This agreement guarantees constraint satisfaction, such as collision avoidance,
even in the presence of disturbances. To enhance flexibility and decrease conservatism, the planner can select differ-
ent operating modes corresponding to various accuracies achievable by the lower-layer controller in closed-loop. In
contrast, existing hierarchical formulations typically employ a single, conservative tracking controller mode, compare
Figure 2.

One example of such modes includes slow-speed movement with high precision and fast-speed movement with large
uncertainty bounds, compare Figure 3B. As illustrated in Figure 3B, the two control modes enable the planner to provide
a collision-free path by switching online between different velocity ranges and corresponding controller parametrization.

We propose a moving horizon formulation based on a simplified system model for the planning layer, resulting
in an efficiently solvable mixed-integer linear programming (MILP). The tracking control for the vehicle is achieved
by a high sampling frequency operated cyclic horizon MPC.??2 Despite disturbances, the tracking controller provides
safety bounds for each operation mode. We derive conditions for recursive feasibility to ensure constraint satisfaction
and obstacle avoidance. Simulation results demonstrate the efficiency and applicability of the proposed hierarchical
strategy. Different modes reduce conservatism, while the hierarchical decomposition of the control problem decreases
computational burden and enables real-time implementation with provided guarantees.

The results expand on the work presented in Reference 23, addressing less conservative conditions and formulations.
The overall approach is evaluated considering a quadcopter operating in a 3D environment.

The main contributions of this work are threefold:
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(A) Proposed moving horizon planning and control approach (B) Reduced conservatism due to different tracking controller
allowing for multiple control modes. operation regions/modes.

FIGURE 3 Proposed hierarchical planning and control scheme with multiple tracking controller operation modes.
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1. First, we present a planning approach operating on a moving horizon, which accommodates different tracking
controller modes. We demonstrate how to formulate the resulting optimization problem as an efficiently solvable
MILP.

2. Second, we develop a lower-layer cyclic horizon tube-based MPC controller, which provides safety bounds. In
conjunction with the planning layer, the tube-based controller ensures constraint satisfaction and collision avoidance.

3. We furthermore present conditions that guarantee repeated feasibility and solvability of the presented approach under
uncertainties.

4. Finally, we showcase our approach, considering a quadcopter operating in a 3D environment.

The remainder of the paper is organized as follows. Section 2 introduces the problem setup. Section 3 outlines
the hierarchical planning and control scheme, where Section 3.1 details the MILP moving horizon planning problem.
Section 3.2 elaborates on the lower-layer cyclic horizon tube MPC, and Section 3.3 discusses the switching between oper-
ating modes. Section 4 presents the simulation example and results for a quadcopter, while Section 5 summarizes our
findings, conclusions, and future directions.

Notation For two given sets X, Y c R", the Minkowski set sum @ and the Minkowski set difference © are defined by:
XPY2{x+yxeX,yeY},XOY 2 {x|x® Y C X}. We use rem to denote the remainder function of the Euclidean
division, 1 denotes a column vector with 1 in each entry, and ||x||é =xTQx.

2 | PROBLEM FORMULATION

We consider the control of an autonomous vehicle, which should move (drive, fly, etc.) from a starting point, x(0), to a goal,
Xgoal, While avoiding obstacles and satisfying constraints despite uncertainties and disturbances, see Figure 1. We assume
that the vehicle dynamics are subject to unknown but bounded additive disturbances and that they are governed by

x(k + 1) = Ax(k) + Bu(k) + w(k), (1a)
(k) = Cx(k), (1b)
xk) e X, uk)eU. (1¢)

Here x(k) € R" is the vehicle’s state, u(k) € R™ is the applied control input, and y(k) € RP is the output, while w(k) is an
unknown, but bounded disturbance. The state x(k) and the input u(k) need to satisfy constraints: they are restricted to
the sets X and U, which are both closed and convex. We assume that the goal state x4 is a steady state of the dynamics
(1a) with zero input under no disturbances, for simplicity, that is, Xgoa1 = AXgoal-

Obstacle avoidance: Beside the constraints (1c) on the state x(k) and input u(k) of the autonomous vehicle, we want
to achieve obstacle avoidance, which we formulate in terms of the output y(k) (e.g., the position). We assume that there
are H obstacles and that each obstacle is modeled as a bounded set of the form O, = {y|E/y < fz}, where E, € RI->P
and f, € R%*1, So, O is the interior of a convex, compact polytope. In the most simple case (box obstacles) E, = [I — I].
Consequently, to avoid that the vehicle “collides” with the obstacles we require that:

)’(k) g@’ ©= {Efy(k) <ff7 = 17 ’H}’ (2)

where O is the collection of all H obstacles. Clearly, the set of admissible output/position y(k) ¢ O, defined in (2), is
nonconvex, but contains its boundaries. One can also formulate it as

V¢ € {1, ,H}, da € {1, ,qf} . Efay(k) fo,a» (3)

where E, , and f, denote the ath row of E, and f,, respectively. This formulation allows to use an MILP framework with
the so-called big-M approach, which enables handling the obstacles systematically, see Section 3.3.

Disturbance bounds and operating regions/modes: The disturbance w(k), and its bounds, may depend in parts also on the
vehicle’s state x(k) and/or the applied control input u(k). This might, for example, be due to model uncertainties, which
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are captured as disturbances. For example, if the vehicle is operated at a lower speed, then the (worst case) disturbance
might be smaller than at high speed.

To enhance the operational capabilities of the system, we aim to explore different uncertainty bounds for various oper-
ating modes, such as flying slowly or quickly. Specifically, we consider N,, distinct operating modes (operating regions),
each with its own disturbance bound. In detail, we assume that:

Assumption 1 (operating modes dependent disturbance bounds). There are N,, operating modes defined
by the state set X; C X and input sets U; C U and an uncertainty bound W;, where i = 1, ... , N,, such that

x(k) € X; and uk) € U; = wk) e W;.

We assume that the sets X;, U; are convex and closed polytopes and W; is a convex and compact polytope,
which contains the origin.

For example if we consider a vehicle with two modes: a quick movement of the vehicle (mode 1) and a slower, but
more accurate movement (mode 2), this results in X; D X, (larger admissible state space/faster movements possible), and
W, > W, (larger uncertainty)".

3 | ROBUST HIERARCHICAL MOVING HORIZON PLANNING AND
CONTROL

We focus on a hierarchical two-layer planning and control decomposition as depicted in Figure 3A, to achieve safe and
collision-free motion of the autonomous vehicle to the goal. Both layers utilize (robust) MPC formulations for constraint
satisfaction under uncertainties.

To provide guarantees despite the hierarchical decomposition of the problem in a planning and control layer, we utilize
the concept of “contracts”, inspired by References 24-26. Loosely speaking, a contract specifies the achievable precision in
terms of a bound on the disturbance the lower-layer tracking controller can achieve for a specific operating region/mode
i—a particular set of states and inputs. In the proposed approach, the moving horizon planner provides a reference path
and selects the operating region the controller should operate in. To calculate a safe passage—satisfy the constraints (1c)
and avoid all obstacles (3)—the planner takes the uncertainty bounds corresponding to the different operating modes
directly into account.

In detail, the upper-layer planner calculates the reference based on a model with simplified dynamics of the form

xp(kp +1)= Apxp(kp) + Bpup(kp), @)

where k, is the planning time index. The generated reference path and measurements of the vehicle’s state are used by
the lower-layer controller to calculate the control input u(k), see Figure 2. The lower-layer control loop aims to efficiently
counteract the disturbances, to ensure that the vehicle follows the planned reference with a specified accuracy, to satisfy
the contract, and to guarantee constraint satisfaction. As the obstacles are handled by the planner, the tracking controller
does not need to consider them, which enables a fast and efficient implementation as non-convex constraints are avoided.

We assume that the planning operates on a slower time scale than the controls, that is, only every M (> 1) time steps.
So we have

M-1
k=k,-M, A,=A", B,=)AB (5)
i=0

We assume that the real dynamics (1a) and the “planning dynamics” (4) satisfy:

Assumption 2 (Controllability of the planning and control dynamics). The pairs (A, B) and (A4p, By) are
controllable.

The interaction between the planner and the lower-layer controller is based on the concept of contracts. Basically, if
the planner determines the reference by taking certain additional restrictions into account, then the lower-layer controller
can bound the tracking error, that is, the difference between the real state x ((kp +1)-M ) and the corresponding planning
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FIGURE 4 Different horizons for each planning and control problems. For planning problem: N is prediction horizon, k, is time
index, and x, is planned state. For the low-level control problem: M is the maximum prediction horizon, while L denotes a shrinking
horizon to guarantee repeated feasibility. Furthermore, k is the time index, and x is actual state.

state x,(k, + 1) at the next time instant by
x ((kp +1)- M) = xp(kp + 1) € Zs, (6)

fori=1, ... ,N,. Here the sets Z; are convex, compact polytopes and N,, is the number of the operating modes. We refer
for the exact definition of the sets 7Z; to Section 3.2 and (15).

The lower-layer controller can guarantee the constraints, if x € X; and u € U, that is, that the state and the input are
inside for the operation mode i, see Assumption 1. Additionally, constraints due to the obstacle avoidance requirements
and the different sampling times need to be satisfied, which are introduced in a second step.

We assume that the contracts—the operating modes—are designed offline and known by both control layers. They
depend on the design of the low-layer controller and the operation mode i, that is, the (partly) selectable uncertainty
bound W; on the disturbance w.

Summarizing: Utilizing the idea of contracts—different operating modes—enables the planner to utilize and take
the capability of the low-layer control loop into account for the computation of the reference. Consequently, the planner
calculates and sends to the low-layer controller a reference and selects via the choice of the operation mode i (and thus the
set Z;) the maximum allowed tracking discrepancy. In other words, the reference planner can switch between different
operation modes in order to improve the performance, as illustrated in Figure 3B.

Moreover, we use different prediction horizons and sampling times for each planning and control problem, see
Figure 4. In detail, we use the planning horizon N, the time index k,, a shrinking prediction horizon Ly, and the fast time
index k for the lower-level control problem.

3.1 | Upper-layer: Moving horizon reference planning

The reference planner should guarantee constraint satisfaction, including obstacle avoidance, despite the presence of
disturbances and uncertainties in combination with a suitably designed lower-layer control loop, compare to Figure 3A.
The key idea is to incorporate the concept of contracts—different operating modes—into mathematical programming
based on moving horizon planning schemes.?27-3
To do so, the reference planning problem P (x(kpM )) is formulated on a moving horizon as an optimization problem:

in Jp (1) {up}) (7a)

S.t.
i€l ... ,Ny} (7b)
x(kpM) — xp(kp k) € Zi, (70)
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vje (0, ...,N-1}: Xp(kp +J + 11kp) = Apxp(ky + jlkp) + Bpup(ky + jlkp), (7d)
vjie{o,...,N—-1}: X, (kp +jlkp) € X; © Zy, (7e)
vje{o, .. ,N—-1}: up(k, +jlkp) € U; © KZj, (7f)
vje{o,..,N—-1}: Cxy(ky +jlky) & O @ (-C)Z;, (78)
Vj€{0, ... . N=1} 1 (xp(kp +jlkp), up(kp + jlkp)) € I, (7h)

xp(k, + N1k,) € X/ (7)

Here N denotes the planning horizon, i the operation mode, and (k, + j|k,) corresponds to the prediction of a value at
time k, +j made at time k,. The sets I; and XJ; are introduced to impose constraints on the inter-sample behavior and
the terminal state and are discussed below. The constraint (7c) represent an initial constraint at the beginning of the
planning time k,. Equation (7d) represents the vehicle dynamics used by the planning layer. While the constraints (7e,7f)
are the tightened state and input constraints, where K is a control gain, which is discussed later in detail. For the output
constraints (7g) the constraint tightening corresponds to an enlargement of the obstacles, see Figure 3B.

To allow for an efficient reformulation of (7) as an MILP, compare Section 3.3, we consider the following cost function
for the planning problem, assuming that the goal state is fixed and a steady state.

kp+N—1

Jp ({xp}, {up}) = ”xgoal _xp(kp + Nl + Z ax”xgoal _xp(j)”oo + au”up(j)”oo-
Jj=k,

The stage cost penalizing the state x, and control input u, with different weights (e, > 0, a, > 0), respectively. The
terminal cost penalizes the vehicle’s distance at the end of the planning horizon to the goal Xy

The inter-sample constraints (7h) and the terminal constraint (7i) depend on the operation mode i and are non-convex.
We make the following assumption with respect to the inter-sample constraints (7h).

Assumption 3 (inter-sample constraints). The inter-sample constraints (7h) determined by the sets I; are
such that, if (x,,u,) € I;, thenfor# =1, ... ,M — 1 it holds

-1
A%, + Y A"Bu, € X; © Z;, (8a)
m=0
-1
c <Af X, + ZAmBup> ¢ 0@ (-C)Z. (8b)
m=0

This assumption guarantees that the lower-layer/tracking control loop, operating at the faster time scale, can always
satisfy the constraints. Note that the constraints (7e) and (7g) on the state x, and the output Cx, of the planning dynamics
(4) alone usually do not guarantee that the constraints between two consecutive planning time indices are satisfied as
illustrated in Figure 5.

A straightforward choice is to choose [; directly as (8) with # =1, ... ,M — 1, which can lead to a large number of
constraints and thus might increase the computational effort. Note that depending on the actual dynamics (4) certain
constraints in (7h) might be redundant and thus also the overall optimization (7) and can be removed without chang-
ing the solution of the optimization problem, for example, using physical insight into the system dynamics or with the
procedure presented in Reference 31.

For the terminal sets Xi we assume that they are positive invariant sets of (4) satisfying all constraints:

Assumption 4 (terminal sets and terminal control laws). The terminal control laws K{ (xp) and the terminal
sets X{ are such that x, € X{ implies:

BSUSO17 SUOWILLOD dAIER.1D) 3|qed! dde au Ag pauseob s apie YO ‘B8N JOS3|N1 10y Are1q1T BUIUO AB]I UO (SUORIPUOD-PLR-SLURIALIY"AB| 1M AsIq U1 |UO//SANL) SUORIPUOD PUe SWS L 34} 835 *[£202/90/02] U0 Afiq1T8UIUO AB|IM “UBWBD Z}OYWRH " Ul Hued Wwrey "N-3n7 4 Wnauez yasia Aq 8089°U/200T 0T/I0p/wod A8 imArelq1puluo//Sdny Wwo.y papeojumod ‘0 ‘6€2T660T



* L wiLEY

KOGEL ET AL.

xp(kp + 1) @ Zi

obstacle ()

- Axp(kv) + Buy, (k) @ Z;
xp(kp) D Z;
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FIGURE 5 [Illustration of inter-sample behavior. Planning without inter-sample constraints (left) in planning problem (7) leads to
possible collision with obstacle (top, left) and/or constraint violation (bottom, left). With inter-sample constraints obstacle is successfully
passed (top, right) and constraints are satisfied (bottom, right).

Apx, +Byx] (0gp) € X/, (92)
X, € X, 0%, (9b)

k! (xp) € U; © KZ, (%)

(xp,x{ (xp)) el, (9d)
Cx, & 0@ (—C)Z. (%)

Clearly, the terminal sets X{ are non-convex due to the presence of the inter-sample constraints (9d) and the obstacle

avoidance condition (9e). A possible choice are admissible, nominal steady states x, = Ayx, + BpK{ (xp) for the terminal
control sets and the corresponding inputs as terminal control laws. For autonomous vehicles, these are basically all points
where the vehicle can stop its motion safely. These points can also be determined for systems with complex dynamics,
such as unmanned aerial vehicles. Note that the terminal control laws K‘lf (xp) are fictitious and never implemented. In
Appendix B we discuss how such a set can be calculated.

The upper-layer planning algorithm solves the optimization problem P (x(kpM )) (7). Based on the optimal solution
it sends to the lower-layer controller the chosen operation mode i* and an inter-sampled reference

Xref(kpM) =x;(kp|kp), (10a)
j-1

Xret(kpM + j) =AIx} (k| kp) + ZA'"Bu;(kp|kp), j=1,...,M. (10b)
m=0

Clearly, (x; (kplkp), u;(kplkp)) € I; together with the obstacle avoidance constraint (7g) implies that the reference
satisfies
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eref(kpM +J) $ @ @ (_C)Zl’ J = O’ 7M7 (11)

which means that the planned reference x.¢ robustly avoids obstacles, that is, it satisfies the condition (2).
Using the idea of contracts between both layers, we can guarantee the following.

Proposition 1. (Recursive feasibility of the upper layer planning) Let Assumptions 1-4 hold and assume that
the lower-layer controller guarantees the contract (6) for the reference (10). If the planning optimization problem
P (x(kpM)) (7) is feasible, then the planning problem P (x((k, + 1)M)) is also feasible at the next replanning
instant.

Proof. The key idea for the proof is that the upper-layer planning MPC (in combination with the contracts)
corresponds to a tube-based MPC using robust invariant sets, compare References 17, 19, 21. We denote the
optimal solution of P (x(kpM )) by xl’,* (kplkp), ..., u;(kplkp), ..., i*. Let us consider the following guess as
solution for the optimization problem P (x((kp + 1)M))

i=ir,
Vi€ {1, ... .N} : xp(kp +jlkp + 1) = x5 (kp + jlkp),
Xp(kp + N + 1]k, + 1) = Apx¥ (ky + NIkp) + B! (x5 (kp + Nlkp)) ,
Vme (1, ... .N =1} : uy(ky + mlk, + 1) = u; (ky + mlk;),
up(ky + Nlky + 1) = &/ (3% (kp + N1ky)) .

Note that this guess is based on the previous solution, the selected operation mode i* and the ter-
minal control law K{ . We need to verify that this guess is feasible (but it might be possibly sub-
optimal) for the optimization problem P (x((kp + 1)M)). Using the contract (6), that is, the guaran-
tee on the lower-layer control loop, we have that x((kp+1)M) —xp(kp + 1|k, + 1) € Z;, that is, (7¢)
holds for P (x((kp + 1)M)). The above initial guess satisfies the constraints (7d), (7e)-(7h) for 1 <j <
N —1 for the optimization problem P (x(kpM)), thus also the similar constraints for P (x((kp + 1)M)).
Finally, using the conditions on the terminal sets and terminal control laws in Assumption 4 imply
that also the remaining constraints of P (x((kp + l)M)), that is, (7d)-(7h) with j=N —1 and (7i) are
satisfied. [

Remark 1 (Planning without feedback). In (7), the initial constraint (7c) provides a feedback between the
planning state x, and the real state x for all k;,. One can only enforce the constraint (7c) at the initial time
(ky = 0) and replace it by the simpler equality constraint x; (k, + 1|k,) = x,(k, + 1]k, + 1) for k, > 0. This
would remove the feedback from the plant to the upper-layer planner. This has the advantage that it avoids
the need to wait for plant feedback for the planning and thus could enable computationally less restrictive
planning, but it would also decrease the control performance.

The optimization problem P (7) is non-convex, but it can be reformulated as an MILP, which can be efficiently solved,
see Section 3.3.

3.2 | Lower-layer: Cyclic horizon robust model predictive tracking control

The lower-layer controller tracks the generated reference based on the (faster) dynamics of the real system and needs to
guarantee the contracts (6). Also at the lower-layer we use the concept of robust tube-based MPC,'7:12! but we rely on
growing tubes?® instead of tubes based on robust positive invariance?! as in the upper-layer.

The proposed tube-based MPC of the lower-layer is based on a nominal prediction dynamics (nominal state z, nominal
input v), which starts from the real state x(k) at the current time k:

zZ(k +j + 11k) = Az(k + jlk) + Bv(k + j|k), (12a)

z(klk) = x(k). (12b)
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10 Wl LEY KOGEL ET AL.

The effect of disturbances w(k + j) onto the closed loop is taken into account using a fictitious, auxiliary control law of
the form

u(k +jlk) = vk + jlk) + K (x(k + j) — z(k + j|k)) . (13)

The control gain K in this affine feedback is chosen such that A + BK is Schur stable. The auxiliary control law is utilized to
determine sets to bound the difference e(k + j|k) = x(k + j) — z(k + j|k) between the real system state x and the predictions
z made using (12). In detail, for the ith operation mode the error bounds satisfy e(k + j|k) € E;(j) where

Ei(i +1)=A+ BK)El(]) e WwW;, Ei(O) = {0}. (14)

Note that the size of the sets [E; monotonically increases with j, that is, E;(j) C E;(j + 1). However, for any j > 0 we have
that E;(j) C Z;, where Z,; is the (minimum) robust positive invariant set, compare Reference 19, satisfying:

7Z: 2 (A+BK)Z:; ® W,. (15)

In the lower-layer MPC, we predict until the next planning instant utilizing a cyclic horizon Ly = M — rem(k, M), see
Reference 22. For the case that k is a multiple of M, we have L, = M. Otherwise, L is smaller than M, but k + L is a
multiple of M. Consequently, the horizon shrinks between two planning instants and is increased at the next planning
instant again to length M.

The lower-layer MPC predicts and optimizes nominal state and input sequences

z(k) = {z(kl|k), ... ,z(k + Ly|k)}, v(k) = {v(kl|k), ... ,v(k + Ly — 1|k)}, (16)

based on the nominal dynamics (12) and subject to satisfaction of the constraints

Vje {0, ... . Ly—1)}: 2k +jlk) € X; © Ei(j), (17a)
Vje{o,.. . Li—-1}: v(k +jlk) € U; © KE(), (17b)
vje{o,...,Ly—1} : C (zk +jlk) — xret(k + ) € C(Z; © Ei(j)), (17¢)

2k + Li|k) — Xee(k + Li) € Z; © Ei(Ly). (17d)

Note that these constraints include the convex state and input constraints (1c). In contrast, the non-convex obstacle
avoidance constraints are taken into account using the concept of contracts. Basically, the lower-layer controller needs
to enforce the guaranteed accuracy with respect to the output (condition (17c)) or even the full state at the end of the
prediction (condition (17d)). Note that, the constraints (12), (17) are convex.

The lower-layer MPC penalizes the deviation error from the reference x,.r and utilizes the convex cost function

k+L; -1

Je(@(0,v(0) = Y Ixeet() = 2GHOIZ + WG + etk + L) — 2k + Lel K1, (18)
Jj=k

where the matrices Q € R™", P € R™", and R € R™™ are positive definite and represent the weighting for the

inter-sample states, the final state and the inputs, respectively. Note that the objective of the lower-layer controller is to

guarantee the satisfaction of the constraints (17), so the weightings Q, R, and P do not need to satisfy additional conditions.
The applied control input u(k) = v*(k|k) is given by solving the optimization problem L (x(k), {Xrt}, i, k)

min J; (z(k),v(k)) s.t.(12), (17). (19)
z(k),v(k)

This optimization problem depends on the current state available at the lower-layer as well as the reference and the opera-
tion mode determined by the upper-layer planner. The resulting optimization problem is a convex quadratic program (QP)
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and has, in addition, a special structure, which allows its efficient solution, even on computationally limited hardware,
see for example, References 32 and 33.
For the lower-layer, we can derive the following properties assuming that the upper-layer reference is chosen suitably.

Proposition 2. (Constraint satisfaction and obstacle avoidance) Let Assumptions 1 and 3 hold and assume
that the reference X, is given by (10) and satisfies (11). If the lower-layer MPC problem L (x(k), {Xref}, 6 k) (19)is
feasible, then the constraints (1c) are satisfied: x(k) € X; C X and u(k) € U; C U and the obstacles are avoided,
that is, (3) holds.

Proof. Combining (12), (13) and (17) we have that z*(k|k) = x(k), v*(k|k) = u(k) and Cz*(k|k) = y(k).
Together with E;(0) = {0} and Assumption 1 this implies that the state and input constraints (1c) are satis-
fied. (17c) together with (14) yield that y(k) — Cxf(k) € CZ;. Combined with (7g) (11) this implies that the
avoidance constraint y, ¢ O (3) holds. n

Note that if the upper-layer planner provides the reference x..¢ (10), then also (11) holds.

Proposition 3. (Recursive feasibility of the overall control scheme) Let Assumptions 1-4 hold. If the planning
problem (7) is feasible for x(0), then the optimization problems (7), (19) remain feasible for the closed loop system
consisting of the upper-layer moving horizon planner (7), (10), the lower-layer controller (19) and the uncertain
plant dynamics (1).

Proof. The proof consists of three parts: first it is shown that feasibility of the planning problem P (x(kpM )) @)
implies feasibility of the low-layer optimization problem (19) £ (x(kpM), {Xret}, 1%, kpM ) Afterwards we
verify that feasibility of £ (x(k), {xrf},i,k) (19) implies: if k+ 1 is not a multiple of M, feasibility of
L (x(k+ 1), {xrer},i,k+1) (19) (part 2) and otherwise feasibility of the planning problem P (x(k + 1))
(7) (part 3).

(1) If P(x(k,M) (7) is feasible, then the following (suboptimal) input trajectory and state sequence for the
lower-layer problem £ (x(k,M), {Xcet}, i*, koM )

z(klk) =x(k)
v(k + jlk) =uy (ky|kp) + K(z(k + jlk) — Xeet(k + jlk)), j=0, ... ,M-1,
z(k +j + 1|k) =Az(k + jlk) + Bv(k + jlk), j=0, ... ,M—1,

satisfies all constraints of (19) due to the inter-sample constraints I; and the consistent constraint tightening
utilized at both layers, that is, the definition of E; and Z;, see (14) and (15) and that £; C 7Z,;.

(2) In the case that k + 1 is not a multiple of M, that is, no planning takes place, the horizon L; shrinks.
Due to the design of the set E;(j) (14) a feasible nominal state trajectory z(k + 1) and a nominal input tra-
jectory v(k + 1) for L (x(k + 1), {xf}, i, k + 1), satisfying (12) and (17), can be obtained from the solution of
L (x(k), {xref}, i, k):

z2(k 4+ jlk 4+ 1) =z*(k + jlk) + (A + BKY'w(k),
vk +jlk + 1) =v*(k + jlk) + K(A + BKY 'w(k).

(3) Finally, if k + 1 is a multiple of M, that is, the planning problem is solved at k + 1, then feasibility of
L (x(k), {xref}, i, k), in particular (17d) implies that x(k + 1) — Xyef(k + 1) € Z;+. This together with Proposition 1
yields that the planning problem (7) is feasible at k + 1. u

Remark 2 (adaption of sets). We assume that state and input constraints {X;, U;} and the tubes/contracts
{E;, Z;} are determined offline. The proposed approach can in principle be extended to allow an adaption of
these sets. This could be useful for example to consider the influence of varying weather conditions. We do
not consider such an extension in this work.

Remark 3 (relaxing condition (17c)). In the optimization problem (19) the difference between the
real/predicted output yy/zx and its reference Cx,¢(k) is restricted to the set C(Z; & E;), compare to (17c). This
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restriction is used to enable guarantees on the obstacle avoidance constraints (2). However, if the vehicle posi-
tion/output (or /certain directions of it) is at time instant k far away from an obstacle, then this restriction can
be conservative. In principle, it is possible to relax these constraints by generating online based on the solu-
tion of the upper-layer less conservative output constraints of the form: Cz(k + j|k) € Y; © CE;, which have
to be satisfied.

Remark 4 (More general tube scheme). We use a basic tube scheme with a single gain K and focused on linear
dynamics. One could use a more general scheme with multiple gains, see Reference 34, or a more complex
tube control law, see for example, References 35 and 36. Also, an extension to nonlinear lower-layer dynamics
is in principle possible using for example, References 37 and 38.

3.3 | MILP solution of the planning problem

In the following, we discuss how the non-convex optimization problem 7 (7) can be reformulated using the big-M
method®? into an MILP. Note that P (7) is non-convex due to two reasons: firstly, due to the operation mode i, and
secondly the non-convex obstacles avoidance constraints (3) result in the non-convex constraints (7f)-(7i).

Scheduling of operation modes: In the proposed hierarchical scheme the operating modes of the vehicle given in the
form of different constraint sets X; and U; directly influences the uncertainty bounds w € W;, see Assumption 1. The
lower-layer controller guarantees constraint satisfaction and guarantees bounds on the tracking error in form of a set Z;,
which depends on the operation mode. So, the sets appearing in the initial constraint (7c) and the tightened state/input
constraints (7e), (7f) are of the form

Zi = {x|Fix <G}, Vie{l,...,Ny},
Xi©Zi = {x|Fix< G}, Vie{l,...,Ny},
Ui ©KZ; = {ulFfu < G/}, Vie({l,...,Ny}.

As result, this contract provides the planner an extra degree of freedom to reduce the planning conservatism by switching
between different operating modes of the lower-layer controller.
We use the so called big-M method to formulate the mode scheduling as:

FA(x —Xp) <G° + Myig (1 —dp)1, Vie {1, ... Ny},
Fix <G¥ + Myig (1 —d)1, Vie (1, ..., Ny},
Flu <G* + Myg(1—d)1, Vi€ {1, ..., Ny},

N,
Zdl‘ =1.
i=1

Here we use a large positive number My to deactivate the constraints of the ith mode by relaxing its constraints using
the binary decision variable d;. The last constraint guarantees that exactly one mode is active in the planning.

Obstacle avoidance constraints: For each mode, the tracking error set Z; is used to enlarge boundaries of the obstacles O,
compare (7). The enlarged, non-convex avoidance constraints (3) can be rewritten/over-approximated by

Vj=0,....N-1,V,/=1... ,H:3a€l, ....,q st EroCxp(ky +jlkp) > f: .

In this case one can enforce this constraint for the active mode i by using additional binary variables b; ,() by requiring
forj=0,..., N—landZ =1 ... ,H that

4
Ef,acxp(kp +J|kp) Zf;,a - Mbigbif,a(j% Zblf’a(j) < qf - di~ (20)
a=1

Here we impose an extra constraint to ensure that at least one active constraint for mode i, where q° is number of faces
of each obstacle. Loosely speaking, the planner can choose different low-layer controller modes i to adjust the obstacle
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boundary f;’a by changing the operation modes. This is illustrated in Figure 8B considering that the operation modes
corresponds to different velocities.

In a similar fashion, this can be done for the obstacle avoidance conditions arising in the terminal sets. Also the
inter-sample constraint (8) feature obstacle avoidance conditions. In principle they can also be handled using binary
variables, which increases the computational complexity.

Another way to handle the obstacle avoidance conditions in the inter-sample constraints (8b) is to use the same binary
variables as in (20) also for the outputs at the inter-sample instants

A-1
E; o CA* Xy (ky +jlkp) + Y A™Bup(ky +jlkp)) > fL = Miighl, (), 4=1, ... ,M = 1.

m=0

This means in a nutshell that the planning output Cx,(k, + j|k,) and the inter-sample outputs have to lay on the same
side of the enlarged obstacle.

The overall control algorithm is illustrated in Algorithm 1. Observe that, in the algorithm, solving the planning
problem at planning time instants and determining the lower-level control (19) can be computationally challenging.
However, this issue can be addressed using delay compensation techniques, as discussed in Reference 39.

Algorithm 1. Overall control algorithm

fork=0,1,...do
Measure state x;
if k is a multiple of M then
Solve planning problem P(x(k)) (7) and calculate reference xs (10)
Send reference {x,} and selected mode i* to lower level controller
end if
Determine optimal input sequence v(k)* from lower level problem £ (x(k), {Xeet}, i¥, k) (19)
Apply input u(k) = v(k|k)*

end for

4 | UNMANNED AERIAL VEHICLE EXAMPLE

We consider a quadcopter that should fly from a starting point to a goal point without hitting obstacles, compare
Figure 6.

!

goal

[
W5 S)
Pz - 1
p [

B
Earth fram@y

start

(.
Ulon U,

FIGURE 6 Illustration of the quadcopter state, forces, and moments described in the earth (p,, py, p, 0, @, ¢) and body frame. The
considered inputs are the lateral and longitudinal moments are provided by the four rotors resulting in the forces F;.
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150 N, =15, v, unconstrained

FIGURE 7 Disturbance free closed-loop simulation results for a single MPC controller mode.

120 goal 0
— 45 _________________________________
100 &
S 0
=}
80 L | S AP beocece e e
E & 0
B .J L] @ T e
u | L
3
® S —4H5bk==---- de e e m (I de e e m [ o
20 0 20 40 60 80 100
stact 0 0 60 80 100 120 Time 3]
Px[m]

(B) Selected operation mode, input, and speed profile
(A) 3D and top down view.

FIGURE 8 (A) Using two operating modes allows the quadcopter to reach the goal on a direct way. The two operating modes are fast
(blue sets) and slow (red sets). (B) The reference planner switches between the two operation modes slow/fast (variable d; ), resulting in
different velocity constraints and uncertainty bounds, leading to different constraint back-offs (blue and red sets around the obstacles and the
vehicle trajectories).

A linearized model, as presented in Reference 40 based on a nonlinear dynamic model is used, compare
Appendix A. The states of the quadcopter are roll and pitch angles (¢, 6), roll and pitch rates (wy, wy), 3D position
(Px, Py, P7), and 3D velocities (vy, vy, V). The linearized model has three inputs: ujon = 0, Uias = ¢ and ua; = T.. The input
and states are constrained to:

—1.5 m/s Vy, Vy, Vg 1.5 m/s
—rxf4rad|<| ¢, 0, |<|x/4rad]. (21)
—r /4 rad ¢be, O, /4 rad

The model is discretized with a sampling time of T, = 0.5 s for the planning problem and T; = 0.05 s, that is, M =
10, for the cyclic horizon MPC controller (5). YALMIP* is used to implement and formulate the planning and control

85U8017 SUOLULIOD BAITER.D 3|1 (dde 8up Aq paueA0b B2 DO NIE YO (88N JO S3IN1 104 ARIQIT BUIIUO AB]IM UO (SUORIPUOO-PUR-SULBYW0D™ A8 1M AReJd 1 pU1UO//SANY) SUORIPUOD PUE SIS L U3 885 *[£202/90/02] U0 AR1q178uliuo AB)IM “uBWeD Z}OYWRH " Ul Myed wrey "N-4n 4 WniweZ yosia Aq 8089'2U4/200T 0T/I0pAL0D A3 ARIqIjeul|uo//Sdiy w01 popeojumod ‘0 ‘6EZTE60T



KOGEL ET AL. W] LEY 15

150
125
‘g 100
:N 75
50
25

)
~
£
~
IS
120 goal
o0
100 <
8
80 3
% 60 o0
< ® ﬁ
40 k|
3
20
Time [s]
20 40 60 80 100 120

start
Px[m]

(B) Selected operation mode, input, and speed profile
(A) 3D and top down view.

FIGURE 9 (A)Strong wind disturbance case: the reference planner allows to reach the goal and avoid obstacles despite strong wind
disturbance. (B) The reference planner switches between the two operation modes, resulting in different velocity constraints and uncertainty
bounds.

problems, exploiting Gurobi*? for the solution of the optimization problems. The required sets are calculated via the MPT
toolbox.*3

Figure 7 shows simulations for the case that only a single low layer control mode is used.

As can be seen, for a small planning horizon of N = 15 no path around the obstacle can be found. Only an increase
of the planning horizon to N = 30, or the removal of the vertical velocity constraint on v, allows the controlled vehicle
to reach the goal. Note that in all cases no collisions occur. The (maximum) computation times to solve the plan-
ning problem are T¢om = 0.4s for N = 15, and Teom = 60s for N = 30, which is well above the desired re-planning time
of 0.5 s".

Figure 8 shows simulation results using two operation modes for the low-layer MPC controller. They correspond to
a fast operation mode, given by —1.5m/s < (vy, v,) < 1.5m/s and a slow operation mode given by —1.0m/s < (vx, vy) <
1.0 m/s. The fast operation mode corresponds to a large uncertainty set, while slow operation mode leads to a smaller
uncertainty bound W, and thus smaller sets [E, and 7Z,.

Figure 9 shows simulation results for large wind disturbances, which are not considered in the controller explicitly.
As can be seen, the hierarchical control strategy is able to achieve the goal, while avoiding the obstacles and satisfying
the input constraints.

Summarizing, introducing additional control modes allows avoiding conservative behavior while satisfying con-
straints and being computationally feasible.

5 | CONCLUSIONS AND OUTLOOK

We propose a tightly integrated hierarchical predictive control and planning approach. Both planner and controller repeat-
edly solve moving horizon optimal control problems. The upper- and lower-layer exploit different “contracts” (guaranteed
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uncertainty bounds), that is, the planner can choose another low-layer controller modes instead of using a fixed safety
corridor to capture the controller capabilities. For example, the planner can choose slow-speed movement with high
precision or a fast speed with large uncertainty bounds.

The planning reference is determined by solving a moving horizon optimization problem considering a simpli-
fied model. It exploits constraints tightening, which represents the lower-layer tracking capabilities in the form of
the precision contracts. The resulting planning algorithm can be reformulated as an MILP, allowing for efficient and
reliable solutions. The low-layer tube-based MPC controller utilizes a cyclic horizon and results in a convex opti-
mization problem. It guarantees constraint satisfaction and the desired tracking accuracy for the different modes.
Moreover, it operates at a faster time scale. We derived conditions that ensure compatibility between the plan-
ning and control layers to guarantee recursive feasibility and ensure the satisfaction of constraints and obstacle
avoidance.

Simulation results demonstrated the efficiency and applicability of the proposed hierarchical strategy. First, the con-
tract option provides significant advantages, for example, it leads to a less conservative solution. Moreover, the hierarchical
decomposition of the challenging vehicle control/planning problem leads to a decrease in the computational cost. It allows
the implementation of robust control on-board while providing guarantees.

Possible extensions are the consideration of ellipsoidal tube MPC methods.** In this case, the lower controller online
sends the tube parameterization to the upper layer. Therefore, the planner can predict a possible uncertainty evaluation
over the planning horizon.

We also aim to experimentally evaluate the approach, implementing the upper-layer planner and the lower-layer MPC
controller on computationally limited systems.
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APPENDIX A. QUADCOPTER MODEL

The quadcopter states and inputs are represented in two different coordinate systems, for example, earth and body fixed
frame, see Figure 6. The resulting nonlinear dynamics are given by Reference 40:

m1 of [V W x m;V F
t13%x3 + t — i (Al)
0 I[ W W x IW T
where m; and I are the mass and inertia matrix, V and W are the linear and angular velocities expressed in the body-fixed

frame. F and T are the applied forces and moments. The model is linearized assuming decoupling of the translational
and the attitude dynamics,* leading to

X3p = AspX3p + B3plUsp, (A2a)

¥3p = C3pXsp + Diplisp, (A2b)

Ag, 0 0 By, 0 0

b T T L TAT T S . _ _ : -

with: x3p = [xlon X, xalt] , Usp = [ulon u, ualt] ,Asp = [ 8 A(l)a[ AOM , B3p = g B(l)at BOlt .The corresponding longitu-
al

al

dinal, lateral and vertical sub-dynamics are given by:

Xion = AlonXion + Blonlion, (A3a)

Xiat = AlatXiat + Blatliat, (A3b)

Xait = AaitXait + BaitUait (A3c)
01 0 0 0

with the matrices Ao, = l% _gx _Og (1) ] , Bion = [bg] ,where the longitudinal state is Xjon = [px Vx 0 wy]T, with
Ty 0 "y x

the input uin = 0.. The lateral state is X = [p, vy ¢wy]T, with the input uj, = ¢p. and the matrices Ap =

01 o0 0 0
lg I ﬁ (1) ] , Blat = [8] . Finally, the matrices for vertical (altitude) dynamics are given by A = [8 _ﬂz] ,

(=X}

0 —aq, -a
wy,d> Wy, Wy y

Ba: = [l?z ] ,with thevertical state x, = [p,v;]", and the input is uy = T.. The overall UAV states are the roll and

pitch angles (¢, 8), roll and pitch rates (wy, w,), the positions (px, py, p;), and the velocities (vx,v),V,). The parameters

Axs Ays Ags Qo 0, Q. » Qs A, » by, by, b; can be found in Reference 40.
APPENDIX B. SUITABLE TERMINAL SET

In the following, we present one method to determine the terminal sets X{ satisfying Assumption 4. Inspired by
the works,* the terminal state x, are composed of two parts: a steady state X, for input i, and a state X, inside
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an invariant set X/,l
Xp =Xp + Xp, X, =AX, + Bilp, X, € X{ (Bla)

The artificial terminal control law takes the form K{ (xp) = ity + Kgy_cp. Note that X, and i, are a steady state of a nominal
version of the fast dynamics ((1a) with zero w(k)) and thus also the nominal planning dynamics (4)).

The set g{ is assumed to be positive invariant: (4, + BpKﬁ)g C X{ One can bound the inter-sample behavior for
states X, starting inside this set using a set Hj

-1
VXp eX’;, Ve =1,... M-1 :A’“”J_cp+ ZAmKia_cp eX{@Hi.

m=0

Both sets are assumed to be convex, compact polytopes. The conditions (Bla) together with
%,eX,07%:6 X o H, it, € U; ©KZ; © Kf,f?)d: (B1b)
Cp ¢ 0 & (—OZ & (—OX; @ (—OH, (Blc)
allow us to formulate the terminal sets X{ as
X/ = (%,,X, s.t. (B1) holds.} (B2)

One can easily show that the calculated terminal sets X’: satisfy Assumption 4. The nonconvex obstacle avoidance con-

straint (B1c) appears and can be handled in a similar fashion as in (7). Here we assume that the set X{ is fixed and its size
is determined and tuned offline. In principle one can relax this conditions similarly as in Reference 46 using a scaling of
this set or the ideas of Reference 45.

Note that one can determine the required sets X{ and Hj; using YALMIP* and the MPT toolbox.*
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