Degradation behavior of MK35x stacks with chromium-based interconnects in steam electrolysis operation

<u>Matthias Riegraf</u>^a, Patric Szabo^a, Michael Lang^a, Rémi Costa^a, Stefan Rothe^b, Stefan Megel^b, Mihails Kusnezoff^b

^a Institute of Engineering Thermodynamics, German Aerospace Center (DLR), 70569 Stuttgart ^bFraunhofer Institute of Ceramic Technologies and Systems (IKTS), Winterbergstr. 28, 01277 Dresden

SOFC-XVIII, June 1, 2023

Knowledge for Tomorrow

DLR.de · Chart 2

Motivation and aim of the work

- Reliable long-term operation is key for wide-scale adoption of solid oxide electrolysis (SOEL)
- Clean Hydrogen Joint Undertaking targets degradation rates <0.5 %/1000 h by 2030
- Long-term data beyond 1000 h of SOEL stacks are rare in literature
- Detailed understanding of the degradation behavior of individual repeat units (RUs) is often lacking

Research goals:

- Investigation of durability behavior of stacks developed by Fraunhofer IKTS for operation times >3000 h in SOEL
- In-depth examination of degradation of individual RUs

DLR.de · Chart 3

Methodology: MK35x stack platform

- 10-cell stacks of MK35x design developed by IKTS with active area of 127 cm²
- Based on electrolyte-supported cells (ESC) with chromium-based interconnects

- Cell composition IKTSG5b:
 - LSMM' oxygen electrode
 - 165 µm thick 10Sc1CeSZ electrolyte
 - Ni/GDC fuel electrode

Electrolyte (10Sc1CeSZ) Additional layer: ScSZ Graded cathode (LSMM'/ScSZ)

Graded anode (Ni/GDC)

G5 cell


```
DLR.de · Chart 4
```

Methodology: Electrochemical characterization

- Long-term stack testing at DLR
- Operating conditions: 80 % H₂O, 20 % H₂, -0.6 A cm⁻², 75% steam conversion, oxygen side outlet temperature of 816°C
- Oven environment with constant temperature
- Before and after durability test: Electrochemical impedance spectroscopy at all individual RUs

Results: Initial stack performance

 $60\% N_2$, $40\% H_2$, 0.275 A cm⁻², 75% FU, oxygen side outlet temperature of $835^{\circ}C$

- Similar behavior at IKTS during joining and at DLR during initial characterization
- 15-30 mV difference, probably due to lower air preheater temperature at DLR
- Initial state: P = 0.28 kW, η_{el} = 53.4%

80% $\rm H_2O,$ 20 % $\rm H_2,$ -0.6 A cm^-2, 75% SC, oxygen side outlet temperature of 816°C

- Less pronounced edge effect
- Initial stack performance: P = 1.03 kW, $\eta_{el} = 92.9\%$

Results: Stack lifecycle

80 % H₂O, 20 % H₂, SC=75%, -0.6 A cm⁻²

- Voltage oscillations during first half of experiment due to instable steam supply
- Improvement of stack voltage over the experiment
- Temperature change of <1 K

Voltage degradation over time

- Inhomogeneous degradation behavior
- Improvement of most RUs led to a negative overall degradation rate
- No reliable quantification of EIS data at operating point of long-term test due to low-frequency scattering

- Degradation for nearly all RUs and temperature increase of ~2 K
- Edge effect visible despite voltage values close to thermoneutral voltage
- Degradation rate has strong dependency on the operating conditions

EIS analysis of initital SOEL stack performance

SOEL degradation analysis with EIS

- Exemplary RU4 shows ohmic resistance increase over time
- Increase of R_{ohm} most likely due to decrease in electrolyte conductivity
- Decrease of polarization resistance at ~10 Hz
- → Attribution to LSMM' oxygen electrode process based on IKTS experience
- → Activation behavior of LSM electrodes due to oxygen vacancy formation is well-known

SOEL degradation analysis with EIS

- 4942 h: Distorted EIS measurements at RU 1 & RU 2
- Considerable reduction of R_{pol} of RUs (oxygen electrode) partly compensates the ohmic resistance degradation at the EIS reference point
- This effect most likely overcompensates the ohmic resistance increase at the operating point

Degradation analysis in SOFC operation

 $i = 0.275 \text{ A cm}^{-2}$, $T_{\text{air, out}} = 835^{\circ}\text{C}$, 60% N₂, 40% H₂, FU = 75%

- Small decrease of OCV in some RUs → Negligible gas leakage
- Voltage decrease and ASR increase of all layers
- Increase of R_{ohm} and R_{pol}

Degradation analysis in SOFC operation

 $i = 0.275 \text{ A cm}^{-2}$, $T_{\text{air, out}} = 835^{\circ}\text{C}$, 60% N₂, 40% H₂, Fuel utilization = 75%

- Degradation of process at ~0.5 Hz → Change of gas conversion/additional process?
- Only small reduction of resistance in frequency range ~5 Hz
- → Major improvement of oxygen electrode process is only visible during electrolysis operation
- \rightarrow Mechanistic explanation is unclear

Summary

- 10-cell MK35x stack from IKTS shows a reduction power in SOEL: $\Delta P/P_0=-0.3 \%/1000 \text{ h} @-0.6 \text{ A cm}^2,3260 \text{ h}, T=816^{\circ}\text{C}, \text{SC}=75\%$
- Increase of ohmic resistance, decrease of LSMM' polarization resistance
- Different degradation behavior at different operating points
- Oxygen electrode activation can skew degradation rates in stack tests until up to 5000 h
- Demonstration of value of EIS analysis on stack to obtain an in-depth understanding of degradation
- Next step: Correlation with post-mortem analysis results

Thanks for your attention

Federal Ministry of Education and Research

The Federal Ministry for Education and Research (BMBF) is acknowledged for the financial support of this work within the SOC-Degradation 2.0 project under grant number 03SF0621B.