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Abstract—In this paper we address the problem of decoding
linearized Reed–Solomon (LRS) codes beyond their unique de-
coding radius. We analyze the complexity in order to evaluate if
the considered problem is of cryptographic relevance, i.e., can be
used to design cryptosystems that are computationally hard to
break. We show that our proposed algorithm improves over other
generic algorithms that do not take into account the underlying
code structure.

I. INTRODUCTION

The sum-rank metric is a generalization of both, the Ham-

ming and the rank metric, and was first introduced for space-

time codes in [1]. Since then, several code constructions and

decoders have been proposed for the sum-rank metric [2]–[9].

Linearized Reed–Solomon (LRS) codes were later introduced

by Martínez-Peñas which include Reed–Solomon codes and

Gabidulin codes as special cases [10]. LRS codes are of

interest for applications such as multishot network coding [7],

[11], locally repairable codes [10], space-time codes [1], and

code-based quantum-resistant cryptography [12].

It is well-known that the problem of decoding beyond

the unique decoding radius, specifically maximum-likelihood

decoding, is a difficult problem w.r.t. the complexity. For the

Hamming metric, many works have investigated the hardness

of this problem [13]–[15]. List decoding is another method

to decode beyond the unique decoding radius and the com-

plexity depends on the list size. Bounds on the list size for

LRS codes are given in [16] and it was shown that some

families of LRS codes cannot be decoded beyond the unique

decoding radius. The exponential complexity of list decoding

makes it a potentially useful tool for cryptography. Before

designing cryptosystems based on the list decoding problem

in the sum-rank metric, its computational complexity must

be carefully studied and analyzed. For the rank metric the

problem of decoding beyond the unique decoding radius was

addressed in [17] for Gabidulin codes. Known structural

attacks for McEliece-like cryptosystem in the Hamming and

Rank metric [18]–[20] have been generalized to the sum-rank

metric [21]. This raises the question if the sum-rank metric

can be adapted to other cryptosystems that are based on the

hardness of decoding beyond the unique decoding radius, such

as [22]–[24].

This work was supported by the German Research Council (DFG) as an
ANR-DFG project under Grant no. WA 3907/9-1.

In this paper we propose an algorithm which generalizes the

one from [17] to LRS codes (in the sum-rank metric). Note

that the work factor, i.e., the computational complexity of the

algorithm, derived in [17] can be used to assess the security

level of cryptosystems like [22]–[24]. Thus, the work factors

derived in this paper might be used to assess the security

level of similar cryptosystems in the sum-rank metric. The

main idea of the algorithm is to randomly guess parts of

the error by introducing so-called erasures and trade errors

with erasures. This allows to apply an error-erasure decoder

(e.g., [25]) to decode successfully if enough errors were traded

with erasures. We analyze the probability of this event for a

specific distribution of guessed erasures. The gain comes from

the fact, that erasures weigh less than errors with respect to

the decoding capability of an LRS code.

Additionally, we demonstrate a method to find the optimal

distribution of erasures. We show that the proposed algorithm

which exploits the structure of the underlying LRS code

improves over the generic decoding algorithm, introduced

in [12], in terms of expected computational complexity.

II. PRELIMINARIES

A. Notation

For a prime power q and a positive integer m, let Fq denote

a finite field of order q and Fqm its extension field of extension

degree m. Let b = (b1, . . . , bm) ∈ F
m
qm be a fixed (ordered)

basis of Fqm over Fq. We denote by ext(α) the column-

wise expansion of an element α ∈ Fqm over Fq w.r.t. to

the basis b s.t. α = b · ext(α). This notation is extended

to vectors and matrices by applying ext(·) in an element-wise

manner s.t. ext : Fn
qm 7→ F

m×n
q . For a vector x ∈ F

n
qm we

define rkq(x) := rkq(ext(x)). The Fq-linear row space of a

matrix B ∈ F
m×n
q is denoted as Rq(B) and the Grassmanian

Gq(V , i) of an Fq-vector space V is the set of all i-dimensional

subspaces of V . We use the notation a
$
← A to denote an

element a drawn uniformly at random from a set A.

B. Sum-Rank Weight and Linearized Reed–Solomon Codes

Let x = (x1, . . . , xℓ) ∈ F
n
qm be a vector, that is parti-

tioned into blocks x(i) ∈ F
ni

qm w.r.t. to a length partition
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n = (n1, . . . , nℓ) ∈ N
ℓ. The sum-rank weight of x w.r.t. to

the length partition n is then defined as

wt
(n)
ΣR(x) :=

ℓ
∑

i=1

rkq(x
(i)).

The sum-rank distance of two vectors x,y ∈ F
n
qm is then

defined by the sum-rank weight d
(n)
ΣR(x,y) := wt

(n)
ΣR(x− y).

LRS codes [6] are a special class of sum-rank-metric codes

which are maximum sum-rank distance (MSRD). This means

that the minimum sum-rank distance is n − k + 1 where n
is the code length and k is the code dimension. Hence, LRS

codes can uniquely decode errors of weight up to τ :=
⌊

d−1
2

⌋

.

Throughout this paper we consider LRS codes of length n,

with length partition n and dimension k over Fqm which we

denote as CLRS. Note that LRS codes are restricted to ℓ ≤ q−1
and ni ≤ m for all i = 1, . . . , ℓ (see [6]).

C. Channel Model

Let c ∈ CLRS and let c be corrupted by an error e of sum-

rank weight w, i.e., the received word is y = c+ e.

Any error e = (e(1) | . . . | e(ℓ)) ∈ F
n
qm with wt

(n)
ΣR(e) = w

can be decomposed into a vector-matrix product as

e = aB (1)

with a := (a(1) | . . . |a(ℓ)) and B := diag(B(1), . . . ,B(ℓ))
and with a(i) ∈ F

wi

qm and B ∈ F
wi×ni
q s.t. rkq(a

(i)) =

rkq(B
(i)) = wi and w =

∑ℓ

i=1 wi for all i = 1, . . . , ℓ. It

follows that e(i) = a(i)B(i) for i = 1, . . . , ℓ and we have that

the entries of a(i) form a basis of the column space of e(i)

and the rows of B(i) form a basis of its row space.

The error e can be further decomposed into a sum of three

types of error vectors, namely eF , eR and eC s.t.

e = eF + eR + eC

with wt
(n)
ΣR(eF ) = t, wt

(n)
ΣR(eR) = ρ and wt

(n)
ΣR(eC) = γ,

respectively [25]. Each of the three vectors can then be

decomposed again as in (1), with aF , BF , aR, BR and aC ,

BC , respectively. Assuming neither aF nor BF are known,

the term aFBF is called full rank errors. If aR is known

but BR is unknown, the vector aRBR is called row erasures

and assuming aC is unknown but BC is known the product

aCBC is called column erasures.

An efficient algorithm for LRS codes has been proposed

in [25] that is able to correct a combination of full rank errors,

row erasures and column erasures up to

2t+ γ + ρ ≤ n− k (2)

with a complexity of O
(

n2
)

operations over Fqm . We denote

by DEC(y,aR,BC) such an error-erasure decoder that takes

as input the received word y = c+e, and a basis aR of parts

of the column spaces (row erasures) and a basis BC for parts

of the row spaces (column erasures) of the error e and outputs

a valid codeword ĉ if (2) is fulfilled or returns ∅ else.

Definition 1 (Row and Column Support) Let e ∈ F
n
qm be

of sum-rank weight w.

• Row Support: The row support of e is defined as

ER := E
(1)
R × E

(2)
R × · · · × E

(ℓ)
R ,

where E
(i)
R ⊆ F

ni
q is the Fq-row space of B(i) ∈ F

wi×ni
q

and thus of e(i) as in (1) for all i = 1, . . . , ℓ.
• Column Support: The column support of e is defined as

EC := E
(1)
C × E

(2)
C × · · · × E

(ℓ)
C ,

where E
(i)
C ⊆ F

m
q is the column space of ext (a(i)) ∈

F
m×wi
q and thus of ext (e(i)) as in (1) for all i = 1, . . . , ℓ.

Assume E to be either a row or column support of the error.

We denote by dimΣ(E) the sum dimension of an error support:

dimΣ(E) :=

ℓ
∑

i=1

dim(E(i)).

The intersection of two supports E1 and E2 is defined as

E1 ∩ E2 := E
(1)
1 ∩ E

(1)
2 × · · · × E

(ℓ)
1 ∩ E

(ℓ)
2 .

D. Combinatorics

Definition 2 (Weight Composition) Let w, ℓ and µ be non-

negative integers s.t. w ≤ ℓµ. We define the set

Tw,ℓ,µ =

{

w ∈ {0, . . . , µ}ℓ :
ℓ

∑

i=1

wi = w

}

,

which contains all possible weight compositions of a vector

consisting of ℓ blocks and sum-rank weight w. This notion is

also known in combinatorics as weak integer composition.

Definition 3 Let µ be a positive integer and 0 ≤ s ≤ ℓµ. For

s ∈ Ts,ℓ,µ, we define the set of all supports as

Ξµ(s) :=
{

F1 × · · · × Fℓ : Fi ⊆ F
µ
q s.t. dim(Fi) = si

}

.

The number of all matrices in F
a×b
q with Fq-rank j is

NMq(a, b, j) :=

[

a

j

]

q

·

j−1
∏

i=0

(qb − qi)

where
[

a
j

]

q
is the Gaussian binomial coefficient defined as

[

a

j

]

q

:=

j
∏

i=1

qa−j+i − 1

qi − 1
.

Let n ∈ N
ℓ be a length partition and let µ and w be non-

negative integers s.t. w ≤ ℓµ, we denote by NSRq(m,n, j)
the number of vectors in F

n
qm of sum-rank weight exactly j.

It is easy to see that we have

NSRq(m,n, j) =
∑

w∈Tw,ℓ,µ

ℓ
∏

i=1

NMq(m,ni, wi).



Note that there are efficient ways to compute NSRq(m,n, j)
(cf. [12]).

III. GENERIC DECODING

A generic sum-rank-metric decoding (SRMD) algorithm is

an algorithm solving Problem 1.

Problem 1 (Search-SRMD)

• Instance: Linear sum-rank metric code C ⊆ F
n
qm , y ∈

F
n
qm and an integer t > 0.

• Objective: Find a codeword c ∈ C, s.t. wt
(n)
ΣR(y−c) ≤ t.

For t ≤ τ =
⌊

d−1
2

⌋

at most one solution to Problem 1

exists. In general, for decoding beyond the unique decoding

radius there might be many solutions to Problem 1 but for our

consideration, and as stated in Problem 1, it is sufficient to find

one of them. A generic decoder for sum-rank metric codes for

Problem 1 with t ≤ τ is presented in [12] and several bounds

on the computational complexity of the proposed algorithm

are given. We denote the lower and upper bound on the

work factor of [12] for solving Problem 1 as W̃
(LB)
gen and

W̃
(UB)
gen , respectively. Note that in contrast to [12] we consider

a constant complexity of a single iteration for the lower bound.

Problem 2 (Search-LRS)

• Instance: Linearized Reed–Solomon code CLRS ⊆ F
n
qm ,

y ∈ F
n
qm and an integer t > 0.

• Objective: Find c ∈ CLRS, s.t. wt
(n)
ΣR(y − c) ≤ t.

Problem 2 is a special instance of Problem 1, where the linear

code is an LRS code. Currently, the generic decoder from [12]

has the smallest known complexity to solve Problem 2. In

this paper we show how to reduce the complexity of solving

Problem 2 compared to the generic decoder for errors with

weight w = wt
(n)
ΣR(y−c), s.t. w > τ . In particular, we assume

that the excess of the error over the unique decoding radius τ
is larger than zero, i.e. w − τ > 0.

IV. RANDOMIZED DECODING

The proposed approach is a generalization of the random-

ized decoding algorithm presented in [17] from Gabidulin

codes (rank metric) to LRS codes (sum-rank metric). In

the considered problem we assume an error e of weight

wt
(n)
ΣR(e) = w > τ with row support ER and column

support EC . The main idea is to guess parts of the error

support. This is done by first drawing a weight composition

u = (u1, . . . , uℓ) ∈ N
ℓ of the guessed error support, according

to a probability mass function (PMF) pu and then a guessed

support is drawn uniformly at random from Ξµ(u). This

means, that for each block a row and/or column space is

guessed independently with dimension ui for i = 1, . . . , ℓ. If

the sum of the dimensions of the intersections of the guessed

spaces with the spaces of the actual error is large enough (that

means enough errors were traded for erasures) an error-erasure

decoder can decode successfully.

In [17] for Gabidulin codes it was shown, that the algorithm

cannot be improved by guessing a combination of row spaces

and column spaces. Therefore, we restrict to guessing only

parts of the row support. Let U with u := dimΣ(U) be the

guessed row support then γ = u and ρ = 0. The corresponding

weight composition of U is u. For simplicity, we restrict to

the case of LRS codes with constant block sizes, that means

that n1 = n2 = · · · = nℓ and we denote η = n/ℓ for all

i = 1, . . . , ℓ. In this case the maximum rank of a single block

is at most µ := min{η,m}. The adaptation to variable block

sizes is straightforward. The proposed algorithm for guessing

only row spaces is presented in Algorithm 1.

In this section we analyze an upper bound on the expected

number of operations over Fqm of Algorithm 1 which solves

Problem 2. Further, we show a method how to evaluate this

bound without knowing the actual distribution pu. A lower

bound on the expected number of operations Fqm is given in

Section IV-B. Finally, we present a method to compute the

optimal distribution pu that minimizes the worst-case number

of iterations of the proposed algorithm.

Algorithm 1: Randomized LRS Decoder

Input : Parameters q,m, k,n, ℓ, w, u

Received word y ∈ F
n
qm

LRS error-erasure decoder DEC(·, ·, ·)

Output: ĉ ∈ F
n
qm : wt

(n)
ΣR(y − ĉ) ≤ w

1 µ← min{η,m}

2 while True do

3 Draw u ∈ Tu,ℓ,µ according to the distribution pu

4 U
$
← Ξµ(u)

5 for j = 1, . . . , ℓ do

6 B(j) ← full-rank matrix in F
uj×η
q s.t

Rq

(

B(j)
)

= Uj with dim(Uj) = uj

7 B = diag(B(i), . . . ,B(ℓ))

8 ĉ← DEC(y,0,B)

9 if ĉ 6= ∅ and wt
(n)
ΣR(y − ĉ) ≤ w then

10 return ĉ

A. Upper Bound on the Work Factor of the Algorithm

Define by ǫ the sum dimension of the guessed error support

U and the actual error support E , i.e. ǫ := dimΣ(U ∩E). This

means if ǫ is large enough, we trade errors for erasures and

the decoding condition for an error-erasure decoder such as

in [25] is 2(w− ǫ)+ u ≤ n− k which implies that we should

have

ǫ ≥

⌈

w +
u− (n− k)

2

⌉

.



Lemma 1 [17, Lemma 1] Let the error space E(i) of the i-
th component of the error support E with dim(E(i)) = wi

and ui, the dimension of the i-th component U (i) of the

guessed support be given. Choose U (i) uniformly at random

from Gq(Fµ
q , ui) for all i = 1, . . . , ℓ. Then, the conditional

probability p
(i)
wi,ui(j) := Pr[dim(Ei ∩ Ui) = j|E(i), ui], that

the intersection of E(i) and U (i) is exactly j is

p(i)wi,ui
(j) :=

[

µ−wi

ui−j

]

q

[

wi

j

]

q
q(wi−j)(ui−j)

[

µ
ui

]

q

.

Lemma 2 Let µ be a non-negative integer. For a fixed error

e ∈ F
n
qm and given the weight composition u = (ui, . . . , uℓ)

of the guessed space U with dim(U) = u, choose U uniformly

at random from Ξµ(u). Further let Sj be the event that

dimΣ(E ∩ U) = j. The probability of Sj conditioned on e

and u is then

Pr[Sj |e,u] =

(

ℓ

⊛
i=1

p(i)wi,ui

)

(j)

with
(

ℓ

⊛
i=1

p(i)wi,ui

)

(j) :=
(

p(1)w1,u1
⊛ · · ·⊛ p(ℓ)wℓ,uℓ

)

(j)

being the ℓ-fold discrete convolution of the PMFs p
(i)
wi,ui

evaluated at j for all i = 1, . . . , ℓ.

Proof: Given the error e with weight composition w and

given the weight composition u of the guessed support, let

Vi be a random variable that corresponds to the rank of the

intersection of the i-th guessed space U (i) with the i-th actual

error space E(i) for i = 1, . . . , ℓ. By Lemma 1 we have that

p
(i)
wi,ui(j) is the PMF of that event, i.e.

Pr[Vi = j|e,u] = p(i)wi,ui
(j).

Since we are interested in the sum of random variables, i.e.

V =
∑ℓ

i=1 Vi the resulting PMF is given by the ℓ-fold discrete

convolution of the PMFs of the random variables Vi for i =
1, . . . , ℓ. Thus

Pr[V = j|e,u] =

(

ℓ

⊛
i=1

p(i)wi,ui

)

(j)

with

(

p(1)w1,u1 ⊛ p(2)w2,u2

)

(j) :=

∞
∑

r=−∞

p(1)w1,u1
(r) p(2)w2,u1

(j − r).

Finally we have that Sj is the event that V = j and this proves

the claim.

For a given weight composition w ∈ Tw,ℓ,µ of the error

vector e, each block e(i) is drawn uniformly at random for

i = 1, . . . , ℓ and we have that Pr[Sj|e,u] = Pr[Sj |w,u] for

any non-negative integer j.
For further analysis we consider the worst-case expected

number of iterations of Algorithm 1 until an appropriate

guessed error support U is drawn s.t. the error-erasure de-

coder can successfully decode. For given weight compositions

w ∈ Tw,ℓ,µ and u ∈ Tu,ℓ,µ of the actual error and the guessed

spaces, respectively, we define

ϕµ(u,w) :=

min[u,w]
∑

j=⌈w+u−(n−k)
2 ⌉

Pr[Sj |u,w]

and for a given PMF pu of u we have

ϕµ,u(w) :=
∑

u∈Tu,ℓ,µ

pu ϕµ(u,w). (3)

The worst-case probability ϕµ,u(w) that maximizes the num-

ber of iterations over all possible weight compositions w is

ϕµ,u(w) := min
w∈Tw,ℓ,µ

ϕµ,u(w) (4)

which implies that

max
w∈Tw,ℓ,µ

E[#iterations] = ϕµ,u(w)
−1
. (5)

Theorem 1 Let y = c + e with c ∈ CLRS and w =
wt

(n)
ΣR(e) > τ . Then, Algorithm 1 with input y returns

ĉ ∈ CLRS s.t. wt
(n)
ΣR(y − ĉ) = w and the expected number

of operations over Fqm to output ĉ ∈ CLRS for u = dimΣ (U)
is at most

W
(UB)
RD =

n2ℓu

ϕµ,u(w)
(6)

with ϕµ,u(w) as in (4).

Proof: Drawing from the distribution pu in Line 3 draws

from the set Tu,ℓ,µ which according to the bound introduced

in [12] has cardinality at most |Tu,ℓ,µ| ≤
(

ℓ+u−1
ℓ−1

)

. For a fixed

u, this means that the set size |Tu,ℓ,µ| is in O(ℓu). One iteration

of Algorithm 1 (Line 8) costs O
(

n2
)

operations over Fqm

(see [25]). This means in total we have a complexity of n2ℓu

for a single iteration in Algorithm 1. Since we have that y =

c + e with wt
(n)
ΣR(e) = w we know that there is at least one

valid codeword s.t. wt
(n)
ΣR(y− ĉ) ≤ w and since ϕµ,u(w) is by

definition the smallest probability over all w for the algorithm

to succeed, we have that the expected number of iterations is

at most W
(UB)
RD as in (6).

In order to evaluate W
(UB)
RD , the PMF pu must be known for

u ∈ Tu,ℓ,µ. Theorem 2 gives a lower and upper bound on

W
(UB)
RD which both do not depend on pu.

Theorem 2 Let the same conditions hold as in Theorem 1

The work factor W
(UB)
RD on the expected complexity can then

be bounded from below and above as follows:

W̃
(LB)
RD ≤W

(UB)
RD ≤ W̃

(UB)
RD

with

W̃
(LB)
RD = n2ℓu ·

Qµ,w,u

|Tw,ℓ,µ|

and

W̃
(UB)
RD = n2ℓu ·Qµ,w,u



where

Qµ,w,u :=
∑

w∈Tw,ℓ,µ

1

max
u∈Tu,ℓ,µ

ϕµ(u,w)
.

Proof: First, define

û = ξµ,u(w) := argmax
u∈Tu,ℓ,µ

ϕµ(u,w)

i.e. ξµ,u(w) returns the weight composition û that maximizes

ϕµ(u,w) for a given w over all u ∈ Tu,ℓ,µ. We have that

ϕµ(ξµ,u(w),w) = max
u∈Tu,ℓ,µ

ϕµ(u,w). (7)

Consider, that instead of choosing a vector u ∈ Tu,ℓ,µ directly,

we draw a vector w ∈ Tw,ℓ,µ at random according to a

designed probability distribution, defined as

p̃w :=
1

ϕµ(ξµ,u(w),w)
·Q−1

µ,w,u.

Denote by p̃u the resulting probability distribution of u, for a

fixed error we. By (3) we have that

ϕµ,u(we) =
∑

u∈Tu,ℓ,µ

p̃u ϕµ(u,we)

=
∑

w∈Tw,ℓ,µ

p̃w ϕµ(ξµ(w, u),we)

≥ p̃we
ϕµ(ξµ(we, u),we)

= Q−1
µ,w,u.

The value of Qµ,w,u does not depend on we anymore and

thus holds for all ϕµ,u(we) with any we ∈ Tw,ℓ,µ and

therefore ϕµ,u(w) ≥ Q−1
µ,w,u. Considering the same costs of

one iteration in Algorithm 1 as in Theorem 1 proves the upper

bound. By (7) and assuming that we is the weight composition

of the worst-case error vector that minimizes (4) we have that

ϕµ,u(w) = ϕµ,u(we)

=
∑

w∈Tw,ℓ,µ
p̃w ϕµ(ξµ(w, u),we)

≤
∑

w∈Tw,ℓ,µ
p̃w ϕµ(ξµ(w, u),w)

=
∑

w∈Tw,ℓ,µ
Q−1

µ,w,u = |Tw,ℓ,µ|Q−1
µ,w,u,

which proves the claim for the lower bound.

B. Lower Bound on the Work Factor of the Algorithm

In the previous section we obtained an upper bound on the

worst-case number of iterations needed for Algorithm 1 to

output a valid codeword ĉ ∈ CLRS s.t. wt
(n)
ΣR(y − ĉ) = w

where we assumed y = c+ e ∈ F
n
qm with wt

(n)
ΣR(e) = w. In

this setting, there is at least one codeword in distance w around

the received word y. Neither Problem 1 nor Problem 2 make

any assumptions on the received word y. Since the decoder

is limited to a maximum radius w, in general there can be

potentially many more solutions to our decoding problem or

none at all. In this section we consider a lower bound on the

number of iterations needed for Algorithm 1 to output a valid

codeword ĉ ∈ CLRS s.t. wt
(n)
ΣR(y − ĉ) ≤ w and we assume

that y is drawn uniformly at random from F
n
qm .

Theorem 3 Let y be uniformly drawn at random from F
n
qm .

Then the average work factor of Algorithm 1 to output ĉ ∈
CLRS s.t. wt

(n)
ΣR(y − ĉ) ≤ w is at least

W
(LB)
RD =

n2ℓu
∑w

j=0 Ājϕ̂µ,u(j)

with

Āj := qm(k−n) NSR(m,n, j) (16)

and

ϕ̂µ,u(w) := max
w∈Tw,ℓ,µ

ϕµ,u(w). (17)

Proof: Let Ĉ be the set of codewords that have rank

distance at most w from the received word, i.e.,

Ĉ :=
{

c ∈ CLRS : wt
(n)
ΣR(y − c) ≤ w

}

= {ĉ1, . . . , ĉN}.

Further, let Xi be the event that the error-erasure decoder

outputs ĉi for any i = 1, . . . , N and let

Aj := {ĉi ∈ Ĉ : wt
(n)
ΣR(y − ĉi) = j}.

The probability of success over all y ∈ F
n
qm is

∑

y∈F
n
qm

py Pr

[

N
⋃

i=1

Xi|y

]

≤
∑

y∈F
n
qm

py

N
∑

i=1

Pr[Xi|y]

with py = |Fn
qm |

−1 = q−mn. Denote with ψ(·) the function

that returns the error weight composition w ∈ N
ℓ of a given

error vector e ∈ F
n
qm s.t. w = ψ(e). We then have that

∑

y∈F
n
qm

N
∑

i=1

py Pr[Xi|y] =
∑

y∈F
n
qm

N
∑

i=1

py ϕµ,u(ψ(y − ĉi))

≤
∑

y∈F
n
qm

N
∑

i=1

pyϕ̂µ,u(wt
(n)
ΣR(y − ĉi)).

Since ϕ̂µ,u(wt
(n)
ΣR(y − ĉi)) with ϕ̂µ,u(·) as defined in (17) is

the same for all ĉi ∈ Awt
(n)
ΣR

(y−ĉi)
we have that

∑

y∈F
n
qm

N
∑

i=1

py Pr[Xi|y] =
∑

y∈F
n
qm

w
∑

i=0

py · |Ai| · ϕ̂µ,u(i).

For the last step, we have that on average it holds that
∑

y∈F
n
qm
py|Ai| = Āi with Āi as in (16) and thus

∑

y∈F
n
qm

py Pr

[

N
⋃

i=1

Xi|y

]

≤
w
∑

i=0

ϕ̂µ,u(i)Āi.

The bound for the work factor then follows by considering the

complexity of a single iteration divided by the probability of

success.

C. Finding the Optimal Drawing Distribution

Similar to [12], the problem of minimizing (5) over all

distributions pu on Tu,ℓ,µ can be formulated as a linear



program and solved numerically for small parameters ℓ, µ
and u.

Theorem 4 Let Nu = |Tu,ℓ,µ| and Nw = |Tw,ℓ,µ| and

fix arbitrary orders u1, . . . ,uNu
and w1, . . . ,wNw

of all

elements in Tu,ℓ,µ and Tw,ℓ,µ, respectively. Further, let

c = (0, 0, . . . , 0, 1)
⊤ ∈ R

(Nu+1)×1

b = (0, 0, . . . , 0, 1,−1)⊤ ∈ R
(Nw+2)×1

and

A =















−ϕµ(u1,w1) . . . −ϕµ(uNu
,w1) 1

...
. . .

...
...

−ϕµ(u1,wNw
) · · · −ϕµ(uNu

,wNw
) 1

1 . . . 1 0
−1 . . . −1 0















with A ∈ R
(Nw+2)×(Nu+1). If x = (x1, . . . , xNu+1) with

x ∈ R
(Nu+1)×1 is a solution to the linear program

• Maximize c⊤x

• subject to Ax ≤ b and x ≥ 0,

then p̃u = xi, for all i = 1, . . . , Nu, is a distribution that

minimizes (5) and we have

xNu+1 = max
pu

ϕµ,u(w) (20)

with ϕµ,u(w) as defined in (4) and pu = (pu1 , . . . , puNu
)

with pu ∈ [0, 1]
Nu s.t.

∑Nu

i=1 pui
= 1.

Proof: Let p̃ui
= xi then the last two rows of A and the

last two entries of b correspond to
∑Nu

i=1 p̃ui
= 1. Together

with x ≥ 0, we get that p̃ui
is a valid PMF. The first Nw

rows of A correspond to the constraints

Nu
∑

i=1

p̃ui
ϕµ(ui,wj) ≥ xNu+1 ∀j = 1, . . . , Nw.

Since xNu+1 is the maximal positive value for which this

constraint is fulfilled for all j = 1, . . . , Nw and all solutions

p̃ui
, we have

xNu+1 = max
pu

{

min
j=1,...,Nw

{

Nu
∑

i=1

pui
ϕµ(ui,wj)

}}

which is equivalent to (20) due to the definitions in (4) and (3).

The worst-case complexity using the PMF p̃u obtained via the

linear program is then given by

W
(UB)
opt :=

n2ℓu

xNu+1

where n2ℓu is the approximate cost of a single iteration in

Algorithm 1 as stated in Theorem 1 and xNu+1
−1 is the worst-

case number of iterations using p̃u as stated in Theorem 4.

V. NUMERICAL RESULTS

In this section we evaluate the tightness of the bounds on

the work factor of Algorithm 1 given in Section IV. Figure 1

shows the comparison of the bounds on the worst-case number

of operations over Fqm for both the generic decoder from [12]

and the proposed algorithm with the assumption, that the

received word y is y = c+e with an error e s.t. wt
(n)
ΣR(e) = w.

We also give the upper bound W
(UB)
opt w.r.t. the worst-case

number of iterations derived from the optimal distribution,

discussed in Section IV-B. We observe that the bounds as given

in Theorem 2 which can be computed without any knowledge

of the distribution pu of the weight composition u of the

guessed supports U are relatively tight and the work factor for

the optimal distribution W
(UB)
opt lies in between those bounds.

Further, we back up the correctness of the lower bound

for the scenario that y
$
← F

n
qm by simulations. The lower

bound and the simulation is shown in Figure 2 for small

code parameters of q = 11, n = 10 and k = 5. The

simulations were performed using the error-erasure decoder

for LRS codes from [25] and running for a maximum samples

size of 107 vectors y drawn uniformly at random from F
n
qm .

For reference we also depict the upper bound W
(UB)
opt for

the optimal distribution obtained from the linear program

discussed in Section IV-B as well.
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Fig. 1. For LRS codes with parameters q = 2
4, n = 40, k = 20, and

m = η = n/ℓ, with errors of weight w = 12 we compare the bounds for
the generic decoder proposed in [12] for s = 20 and the bounds given in
Theorem 2 with u = 4 for Algorithm 1.
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Fig. 2. Simulation results of Algorithm 1 for LRS codes with small parameters
q = 11, n = 10, k = 5, and m = η = n/ℓ, with errors of weight w = 4

with u = 3 for different values of ℓ.



VI. CONCLUSION

We presented a randomized decoding algorithm for LRS

codes that can correct errors beyond the unique decoding

radius and analyzed its theoretical expected complexity. We

showed that the algorithm improves upon the generic de-

coding approach from [12] by exploiting the structure of

the underlying LRS code. The problem of decoding LRS

codes beyond their unique decoding radius has exponential

complexity and thus it can be of interest to analyze future

code-based cryptosystems in the sum-rank metric that are

based on the hardness of decoding beyond the unique decoding

radius. Future work will include a more detailed analysis of

the bounds on the expected complexity of the algorithm as

well as complexity analysis of the evaluation of the bounds.
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