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Abstract. We consider decoding of vertically homogeneous interleaved
sum-rank-metric codes with high interleaving order s, that are con-
structed by stacking s codewords of a single constituent code. We propose
a Metzner–Kapturowski-like decoding algorithm that can correct errors
of sum-rank weight t ≤ d − 2, where d is the minimum distance of the
code, if the interleaving order s ≥ t and the error matrix fulfills a cer-
tain rank condition. The proposed decoding algorithm generalizes the
Metzner–Kapturowski(-like) decoders in the Hamming metric and the
rank metric and has a computational complexity of O

(
max{n3, n2s})

operations in Fqm , where n is the length of the code. The scheme per-
forms linear-algebraic operations only and thus works for any interleaved
linear sum-rank-metric code. We show how the decoder can be used to
decode high-order interleaved codes in the skew metric. Apart from error
control, the proposed decoder allows to determine the security level of
code-based cryptosystems based on interleaved sum-rank metric codes.

1 Introduction

The development of quantum-secure cryptosystems is crucial in view of the
recent advances in the design and the realization of quantum computers. As it
is reflected in the number of submissions during the NIST’s post-quantum cryp-
tography standardization process for key encapsulation mechanisms (KEMs),
many promising candidates belong to the family of code-based systems of which
still three candidates are in the current 4th round [1]. Code-based cryptography
is mostly based on the McEliece cryptosystem [11] whose trapdoor is that the
public code can only be efficiently decoded if the secret key is known.

Variants of the McEliece cryptosystem based on interleaved codes in the
Hamming and the rank metric were proposed in [4,7,19]. Interleaving is a well-
known technique in coding theory that enhances a code’s burst-error-correction
capability. The idea is to stack a fixed number s of codewords of a constituent
code over a field Fqm in a matrix and thus to transform burst errors into errors
occurring at the same position in each codeword. Equivalently, these errors can
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be seen as symbol errors in a vector code over the extension field Fqms . There
exist list and/or probabilistic unique decoders for interleaved Reed–Solomon
(RS) codes in the Hamming metric [8] as well as for interleaved Gabidulin codes
in the rank metric [9] and for interleaved Reed–Solomon (LRS) codes in the
sum-rank metric [2].

All of the mentioned decoders are tailored to a particular code family and
explicitly exploit the code structure. In contrast, Metzner and Kapturowski pro-
posed a decoder which works for interleaved Hamming-metric codes with any
linear constituent code. The decoding algorithm only requires a high interleav-
ing order s as well as a linear-independence constraint on the error [14]. Vari-
ants of the linear-algebraic Metzner–Kapturowski algorithm were further stud-
ied in [5,6,12,13,15,21], often under the name vector-symbol decoding (VSD).
Moreover, Puchinger, Renner and Wachter-Zeh adapted the algorithm to the
rank-metric case in [18,20].

This affects the security level of McEliece variants that are based on inter-
leaved codes in the Hamming and the rank metric as soon as the interleaving
order s is too large (i.e. s ≥ t for error weight t). Cryptosystems based on
interleaved codes with small interleaving order are not affected. Their security
level can be evaluated based on information-set-decoding (ISD) algorithms (see
e.g. [16] for an adaptation of Prange’s algorithm to interleaved Hamming-metric
codes).

Contribution. We present a Metzner–Kapturowski-like decoding algorithm for
high-order interleaved sum-rank-metric codes with an arbitrary linear con-
stituent code. This gives valuable insights for the design of McEliece-like cryp-
tosystems based on interleaved codes in the sum-rank metric. The proposed
algorithm is purely linear-algebraic and can guarantee to correct errors of sum-
rank weight t ≤ d − 2 if the error matrix has full Fqm-rank t, where d is the
minimum distance of the code. The computational complexity of the algorithm
is in the order of O

(
max{n3, n2s})

operations over Fqm , where s ≥ t is the inter-
leaving order and n denotes the length of the linear constituent code. Note, that
the decoding complexity is independent of the code structure of the constituent
code since the proposed algorithm exploits properties of high-order interleaving
only. Since the sum-rank metric generalizes both the Hamming and the rank
metric, the original Metzner–Kapturowski decoder [14] as well as its rank-metric
analog [18,20] can be recovered from our proposal.

2 Preliminaries

Let q be a power of a prime and let Fq denote the finite field of order q and
Fqm an extension field of degree m. We use F

a×b
q to denote the set of all a × b

matrices over Fq and F
b
qm for the set of all row vectors of length b over Fqm .

Let b = (b1, . . . , bm) ∈ F
m
qm be a fixed (ordered) basis of Fqm over Fq. We

denote by ext(α) the column-wise expansion of an element α ∈ Fqm over Fq

(with respect to b), i.e.
ext : Fqm �→ F

m
q
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such that α = b · ext(α). This notation is extended to vectors and matrices by
applying ext(·) in an element-wise manner.

By [a : b] we denote the set of integers [a : b] := {i : a ≤ i ≤ b}. For a matrix
A of size a × b and entries Ai,j for i ∈ [1 : a] and j ∈ [1 : b], we define the
submatrix notation

A[c:d],[e:f ] :=

⎛

⎜
⎝

Ac,e . . . Ac,f

...
. . .

...
Ad,e . . . Ad,f

⎞

⎟
⎠ .

The Fqm -linear row space of a matrix A over Fqm is denoted by Rqm(A).
Its Fq-linear row space is defined as Rq(A) := Rq(ext(A)). We denote the row-
echelon form and the (right) kernel of A as REF(A) and kerr(A), respectively.

2.1 Sum-Rank-Metric Codes

Let n = (n1, . . . , n�) ∈ N
� with ni > 0 for all i ∈ [1 : �] be a length partition1

of n, i.e. n =
∑�

i=1 ni. Further let x = (x(1) |x(2) | . . . |x(�)) ∈ F
n
qm be a vector

over a finite field Fqm with x(i) ∈ F
ni
qm . For each x(i) define the rank rkq(x(i)) :=

rkq(ext(x(i))) where ext(x(i)) is a matrix in F
m×ni
q for all i ∈ [1 : �]. The sum-

rank weight of x with respect to the length partition n is defined as

wtΣR(x) :=
�∑

i=1

rkq(x(i))

and the sum-rank distance of two vectors x,y ∈ F
n
qm is defined as dΣR(x,y) :=

wtΣR(x − y). Note that the sum-rank metric equals the Hamming metric for
� = n and is equal to the rank metric for � = 1.

An Fqm-linear sum-rank-metric code C is an Fqm-subspace of F
n
qm . It has

length n (with respect to a length partition n), dimension k := dimqm(C) and
minimum (sum-rank) distance d := min{dΣR(x,y) : x,y ∈ C}. To emphasize
its parameters, we write C[n, k, d] in the following.

2.2 Interleaved Sum-Rank-Metric Codes and Channel Model

A (vertically) s-interleaved code is a direct sum of s codes of the same length n.
In this paper we consider homogeneous interleaved codes, i.e. codes obtained by
interleaving codewords of a single constituent code.

Definition 1 (Interleaved Sum-Rank-Metric Code). Let C[n, k, d] ⊆ F
n
qm

be an Fqm-linear sum-rank-metric code of length n with length partition n =
(n1, n2, . . . , n�) ∈ N

� and minimum sum-rank distance d. Then the corresponding
(homogeneous) s-interleaved code is defined as

IC[s;n, k, d] :=

⎧
⎨

⎩

⎛

⎝
c1...
cs

⎞

⎠ : cj = (c(1)j | . . . | c(�)j ) ∈ C[n, k, d]

⎫
⎬

⎭
⊆ F

s×n
qm .

1 Note that this is also known as (integer) composition into exactly � parts in combi-
natorics.
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Each codeword C ∈ IC[s;n, k, d] can be written as

C =

⎛

⎜
⎜
⎝

c
(1)
1 c

(2)
1 . . . c

(�)
1

...
...

. . .
...

c
(1)
s c

(2)
s . . . c

(�)
s

⎞

⎟
⎟
⎠ ∈ F

s×n
qm

or equivalently as
C = (C(1) | C(2) | · · · | C(�))

where

C(i) :=

⎛

⎜
⎜
⎜
⎜
⎝

c
(i)
1

c
(i)
2
...

c
(i)
s

⎞

⎟
⎟
⎟
⎟
⎠

∈ F
s×ni
qm

for all i ∈ [1 : �].
As a channel model we consider the additive sum-rank channel

Y = C + E

where
E = (E(1) |E(2) | . . . |E(�)) ∈ F

s×n
qm

with E(i) ∈ F
s×ni
qm and rkq(E(i)) = ti for all i ∈ [1 : �] is an error matrix with

wtΣR(E) =
∑�

i=1 ti = t.

3 Decoding of High-Order Interleaved Sum-Rank-Metric
Codes

In this section, we propose a Metzner–Kapturowski-like decoder for the sum-rank
metric, that is a generalization of the decoders proposed in [14,18,20]. Similar to
the Hamming- and the rank-metric case, the proposed decoder works for errors
of sum-rank weight t up to d − 2 that satisfy the following conditions:

– High-order condition: The interleaving order s ≥ t,
– Full-rank condition: Full Fqm-rank error matrices, i.e., rkqm(E) = t.

Note that the full-rank condition implies the high-order condition since the Fqm-
rank of a matrix E ∈ F

s×n
qm is at most s.

Throughout this section we consider a homogeneous s-interleaved sum-rank-
metric code IC[s;n, k, d] over a field Fqm with a constituent code C[n, k, d]
defined by a parity-check matrix

H = (H(1) |H(2) | . . . |H(�)) ∈ F
(n−k)×n
qm
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with H(i) ∈ F
(n−k)×ni

qm . The goal is to recover a codeword C ∈ IC[s;n, k, d] from
the matrix

Y = C + E ∈ F
s×n
qm

that is corrupted by an error matrix E of sum-rank weight wtΣR(E) = t assum-
ing high-order and full-rank condition.

As the Metzner–Kapturowski algorithm and its adaptation to the rank met-
ric, the presented decoding algorithm consists of two steps. The decoder first
determines the error support from the syndrome matrix S = HY �. Secondly,
erasure decoding is performed to recover the error E itself.

3.1 The Error Support

The error matrix E can be decomposed as

E = AB (1)

where A = (A(1) |A(2) | . . . |A(�)) ∈ F
s×t
qm with A(i) ∈ F

s×ti
qm and rkq(A(i)) = ti

and
B = diag (B(1), . . . ,B(�)) ∈ F

t×n
q (2)

with B(i) ∈ F
ti×ni
q and rkq(B(i)) = ti for all i ∈ [1 : �] (see [17, Lemma 10]).

The rank support of one block E(i) is defined as

suppR

(
E(i)

)
:= Rq

(
E(i)

)
= Rq

(
B(i)

)
.

The sum-rank support for the error E with sum-rank weight t is then defined as

suppΣR(E) := suppR

(
E(1)

)
× suppR

(
E(2)

)
× · · · × suppR

(
E(�)

)
(3)

= Rq

(
B(1)

)
× Rq

(
B(2)

)
× · · · × Rq

(
B(�)

)
.

The following result from [17] shows how the error matrix E can be recon-
structed from the sum-rank support and the syndrome matrix S.

Lemma 1 (Column-Erasure Decoder [17, Theorem 13]). Let t < d and
B = diag (B(1), . . . ,B(�)) ∈ F

t×n
q be a basis of the row space of the error matrix

E ∈ F
s×n
qm and S = HE� ∈ F

(n−k)×�
qm be the corresponding syndrome matrix.

Then, the error is given by E = AB with A being the unique solution of the
linear system

S = (HB�)A�

and E can be computed in O
(
(n − k)3m2

)
operations over Fq.
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3.2 Recovering the Error Support

In the following we show how to recover the sum-rank support suppΣR(E) of
the error E given the syndrome matrix

S = HY � = HE� =
�∑

i=1

H(i)(E(i))�

and the parity-check matrix H of the sum-rank-metric code IC[s;n, k, d]. Let
P ∈ F

(n−k)×(n−k)
qm with rkqm(P ) = n − k be such that PS = REF(S). Further,

let Hsub be the rows of PH corresponding to the zero rows in PS, i.e. we have

PS =
(
S′

0

)
and PH =

(
H ′

Hsub

)

where S′ and H ′ have the same number of rows. Since P performs Fqm-linear
row operations on H, the � blocks of PH are preserved, i.e. we have that

Hsub =
(
H

(1)
sub |H(2)

sub | . . . |H(�)
sub

)
.

The following lemma is a generalization of [18, Lemma 3] to the sum-rank
metric.

Lemma 2. Let H = (H(1) |H(2) | . . . |H(�)) ∈ F
(n−k)×n
qm be a parity-check

matrix of a sum-rank-metric code C and let S = HE� ∈ F
(n−k)×s
qm be the syn-

drome matrix of an error

E = (E(1) |E(2) | . . . |E(�)) ∈ F
s×n
qm

of sum-rank weight wtΣR(E) = t < n−k where E(i) ∈ F
s×ni
qm with rkq(E(i)) = ti

for all i ∈ [1 : �]. Let P ∈ F
(n−k)×(n−k)
qm be a matrix with rkqm(P ) = n − k such

that PS is in row-echelon form. Then, PS has at least n − k − t zero rows. Let
Hsub be the submatrix of PH corresponding to the zero rows in PS. Then we
have that

Rqm(Hsub) = kerr(E)qm ∩ C⊥ ⇐⇒ Rqm(Hsub) = kerr(E)qm ∩ Rqm(H) .

Proof. Since E(i) has Fq-rank ti, its Fqm -rank is at most ti for all i ∈ [1 : �].
Since t =

∑�
i=1 ti, E has at most Fqm-rank t as well. Hence, the Fqm -rank of S

is at most t and thus at least n − k − t of the n − k rows of PS are zero.
The rows of PH and therefore also the rows of Hsub are in the row space

of H, i.e. in the dual code C⊥. Since HsubE
� = 0 the rows of Hsub are in the

kernel of E. It is left to show that the rows of Hsub span the entire intersection
space. Write

PS =
(
S′

0

)
and PH =

(
H ′

Hsub

)
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where S′ and H ′ have the same number of rows and S′ has full Fqm -rank. Let
v = (v1,v2) ∈ F

n−k
qm and let

h = v ·
(

H ′

Hsub

)

be a vector in the row space of PH and in the kernel of E. Since HsubE
� = 0

we have that 0 = hE� = v1H
′E� = v1S

′. This implies that v1 = 0 since the
rows of S′ are linearly independent and thus h is in the row space of Hsub. ��

Lemma 3 shows that the kernel kerr (E)qm of the error E is connected with
the kernel of the matrix B if the Fqm-rank of the error is t, i.e. if the full-rank
condition is satisfied.

Lemma 3. Let E = (E(1) |E(2) | . . . |E(�)) ∈ F
s×n
qm be an error of sum-rank

weight wtΣR(E) = t where E(i) ∈ F
s×ni
qm with rkq(E) = ti for all i ∈ [1 : �]. If

rkqm(E) = t (full-rank condition), then

kerr(E)qm = kerr(B)qm

where B ∈ F
t×n
q is any basis for the Fq-row space of E of the form (2). Further,

it holds that
kerr(E(i))qm = kerr(B(i))qm , ∀i ∈ [1 : �].

Proof. Let E have Fqm -rank t and let E = AB be a decomposition of the error
as in (1) such that E(i) = A(i)B(i) for all i ∈ [1 : �]. Since rkqm(E) = t implies
that rkqm(A) = t, we have that kerr(A)qm = {0}. Hence, for all v ∈ F

n
qm ,

(AB)v� = 0 if and only if Bv� = 0 which is equivalent to

kerr(E)qm = kerr(AB)qm = kerr(B)qm . (4)

Assume a vector v = (v(1) |v(2) | . . . |v(�)) ∈ F
n
qm and let v(i) ∈ F

ni
qm be any

element in kerr(B(i))qm . Due to the block-diagonal structure of B (see (2)) we
have that

Bv� = 0 ⇐⇒ B(i)(v(i))� = 0, ∀i ∈ [1 : �]

which is equivalent to

v ∈ kerr(B)qm ⇐⇒ v(i) ∈ kerr(B(i))qm , ∀i ∈ [1 : �]. (5)

Combining (4) and (5) yields the result. ��
Combining Lemma 2 and Lemma 3 finally allows us to recover the sum-rank

support of E.

Theorem 1. Let E = (E(1) |E(2) | . . . |E(�)) ∈ F
s×n
qm be an error of sum-rank

weight wtΣR(E) = t ≤ d − 2 where E(i) ∈ F
s×ni
qm with rkq(E(i)) = ti for all

i ∈ [1 : �]. If s ≥ t (high-order condition) and rkqm(E) = t (full-rank condition),
then

Rq

(
E(i)

)
= kerr

(
ext(H(i)

sub)
)

q
, ∀i ∈ [1 : �]. (6)
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Proof. In the following, we prove that the Fq-row space of the extended Hsub

instead of the Fqm-row space of Hsub is equal to the Fq-kernel of B, i.e.,

Rq(ext(Hsub)) = kerr(B)q.

Recall that Rq

(
E(i)

)
= Rq

(
B(i)

)
holds for all i ∈ [1 : �] according to the

definition of the error decomposition (1). With this in mind, the statement of the
theorem is equivalent to showing kerr(B(i))q = Rq

(
ext(H(i)

sub)
)

for all i ∈ [1 : �]

since Rq

(
B(i)

)⊥
= kerr(B(i))q and kerr

(
ext(H(i)

sub)
)⊥

q
= Rq

(
ext(H(i)

sub)
)

hold.

First we show that Rq(ext(Hsub)) ⊆ kerr(B)q which, due to the block-

diagonal structure of B, implies that Rq

(
ext(H(i)

sub)
)

⊆ kerr(B(i))q for all i ∈
[1 : �]. Let v = (v(1) |v(2) | . . . |v(�)) ∈ F

n
qm with v(i) ∈ F

ni
qm for all i ∈ [1 : �]

be any element in the Fqm-linear row space of Hsub. Then, by [18, Lemma 5]
we have that each row vj for j ∈ [1 : m] of ext(v) is in Rq(ext(Hsub)) which

implies that v
(i)
j ∈ Rq

(
ext(H(i)

sub)
)

for all i ∈ [1 : �]. By Lemma 3 we have that
v ∈ kerr(B)qm , i.e. we have

Bv� = 0 ⇐⇒ B(i)(v(i))� = 0, ∀i ∈ [1 : �]

where the right-hand side follows from the block-diagonal structure of B. Since
the entries of B are from Fq, we have that

ext(Bv�) = Bext(v)� = 0 (7)

which implies that v ∈ kerr(B)q and thus Rq(ext(Hsub)) ⊆ kerr(B)q. Due to
the block-diagonal structure of B we get from (7) that

ext(B(i)(v(i))�) = B(i)ext(v(i))� = 0, ∀i ∈ [1 : �] (8)

which implies that v(i)
j ∈ kerr(B(i))q for all i ∈ [1 : �] and j ∈ [1 : m]. Therefore,

we have that Rq

(
ext(H(i)

sub)
)

⊆ kerr(B(i))q, for all i ∈ [1 : �].

Next, we show that kerr(B(i))q = Rq

(
ext(H(i)

sub)
)

for all i ∈ [1 : �] by
showing that

ri := dim
(
Rq

(
ext(H(i)

sub)
))

= ni − ti, ∀i ∈ [1 : �].

Since Rq

(
ext(H(i)

sub)
)

⊆ kerr(B(i))q we have that ri > ni − ti is not possible for
all i ∈ [1 : �].

In the following we show that r < n−t is not possible and therefore ri = ni−ti
holds for all i = [1 : �]. Let {h1, . . . ,hr} ⊆ F

n
q be a basis for Rq(ext(Hsub)) and

define

Hb =

⎛

⎜
⎜
⎜
⎝

h1

h2

...
hr

⎞

⎟
⎟
⎟
⎠

∈ F
r×n
q
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with hj = (h(1)
j |h(2)

j | . . . |h(�)
j ) ∈ F

n
q where h(i)

j ∈ Rq

(
ext(H(i)

sub)
)

for j ∈ [1 : r]
and i ∈ [1 : �]. Also define

H
(i)
b =

⎛

⎜
⎜
⎜
⎜
⎝

h
(i)
1

h
(i)
2
...

h
(i)
r

⎞

⎟
⎟
⎟
⎟
⎠

∈ F
r×ni
q , ∀i ∈ [1 : �].

By the basis-extension theorem, there exist matrices B(i)′′ ∈ F
(ni−ti)×ni
q such

that the matrices

B(i)′ :=
(

(
B(i)

)� |
(
B(i)′′

)�
)

∈ F
ni×ni
q

have Fq-rank ni for all i ∈ [1 : �].
Next define Ȟ(i) = H

(i)
b B(i)′ ∈ F

r×ni
q for all i ∈ [1 : �] and

Ȟ :=
(
Ȟ(1) | Ȟ(2) | . . . | Ȟ(�)

)
= Hb · diag

(
B(1)′, . . . ,B(�)′

)
.

Since h
(i)
1 ,h

(i)
2 , . . . ,h

(i)
r are in the right Fq-kernel of B(i) (see (8)) we have

that

Ȟ(i) =

⎛

⎜
⎜
⎝

0 . . . 0 ȟ
(i)
1,ti+1 . . . ȟ

(i)
1,ni

...
. . .

...
...

. . .
...

0 . . . 0 ȟ
(i)
r,ti+1 . . . ȟ

(i)
r,ni

⎞

⎟
⎟
⎠

for all i ∈ [1 : �] and thus Ȟ has at least t =
∑�

i=1 ti all-zero columns.
By the assumption that r < n− t it follows that ri < ni − ti holds for at least

one block. Without loss of generality assume that this holds for the �-th block,
i.e. we have r� < n� − t�. Then there exists a full-rank matrix

J =

(
It�

0

0 J̃

)

∈ F
n�×n�
q

with J̃ ∈ F
(n�−t�)×(n�−t�)
q such that the matrix

H̃ = Ȟ · diag
(
In1 , . . . , In�−1 ,J

)
(9)

has at least t + 1 all-zero columns.
Define D := diag

(
B(1)′, . . . ,B(�−1)′,B(�)′J

)
∈ F

n×n
q which has full Fq-rank

n. Then we have that H̃ = Hb · D. Since D has full Fq-rank n, the submatrix
D′ := D[1:n],I ∈ F

n×(t+1)
q has Fq-rank t + 1, where

I = [1 : t1]∪ [n1 +1 : n1 + t2]∪ [n�−2 +1 : n�−2 + t�−1]∪ [n�−1 +1 : n�−1 + t� +1]
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By (9) it follows that
hj · D′ = 0 ∈ F

t+1
q (10)

for all j ∈ [1 : r]. Since H ∈ F
(n−k)×n
qm is a parity-check matrix of an [n, k, d] code

it has at most d−1 Fqm-linearly dependent columns (see [17, Lemma 12]). Since
by assumption t+1 ≤ d−1 and rkq(D′) = t+1 we have that rkqm(HD′) = t+1.
Thus, there exists a vector g ∈ Rqm(H) such that

gD′ = (0, g′
t+1) ∈ F

t+1
qm

with g′
t+1 �= 0. Since the first t positions of gD′ are equal to zero we have that

g ∈ Rqm(Hsub). Expanding the vector gD′ over Fq gives

ext(g)D′ =

⎛

⎜
⎜
⎜
⎝

0 g′
1,t+1

0 g′
2,t+1

...
...

0 g′
m,t+1

⎞

⎟
⎟
⎟
⎠

∈ F
m×(t+1)
q

where ext(g′
t+1) = (g′

1,t+1, g
′
2,t+1, . . . , g

′
m,t+1)

� ∈ F
m×1
q . Since g′

t+1 �= 0 there
exists at least one row with index ι in ext(g′

t+1) such that g′
ι,t+1 �= 0. Let gι be

the row in ext(g) for which gιD
′ is not all-zero. This leads to a contradiction

according to (10). Thus r < n − t is not possible and leaves r = n − t and
therefore also ri = ni − ti for all i ∈ [1 : �] as the only valid option. ��

3.3 A Metzner–Kapturowski-Like Decoding Algorithm

Using Theorem 1 we can formulate an efficient decoding algorithm for high-
order interleaved sum-rank-metric codes. The algorithm is given in Algorithm 1
and proceeds similar to the Metzner–Kapturowski(-like) decoding algorithms for
Hamming- or rank-metric codes. As soon as Hsub is computed from the syndrome
matrix S, the rank support of each block can be recovered independently using
the results from Theorem 1. This corresponds to finding a matrix B(i) with
rkq(B(i)) = ti such that ext(H(i)

sub)(B
(i))� = 0 for all i ∈ [1 : �] (see (6)).

Theorem 2. Let C be a codeword of a homogeneous s-interleaved sum-rank-
metric code IC[s;n, k, d] of minimum sum-rank distance d. Furthermore, let E ∈
F

s×n
qm be an error matrix of sum-rank weight wtΣR(E) = t ≤ d − 2 that fulfills

t ≤ s (high-order condition) and rkqm(E) = t ( full-rank condition). Then C
can be uniquely recovered from the received word Y = C +E using Algorithm 1
in a time complexity equivalent to

O
(
max{n3, n2s})

operations in Fqm .
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Algorithm 1: Decoding High-Order Interleaved Sum-Rank-Metric Codes
Input : Parity-check matrix H, Received word Y

Output: Transmitted codeword C

1 S ← HY � ∈ F
(n−k)×s
qm

2 Compute P ∈ F
(n−k)×(n−k)
qm s.t. PS = REF(S)

3 Hsub =
(
H

(1)
sub |H(2)

sub | . . . |H(�)
sub

)
← (PH)[t+1:n−k],[1:n] ∈ F

(n−t−k)×n
qm

4 for i = 1, . . . , � do

5 Compute B(i) ∈ F
ti×ni
q s.t. ext(H(i)

sub)(B
(i))� = 0 and rkq(B(i)) = ti

6 B ← diag(B(1),B(2), . . . ,B(�)) ∈ F
t×n
q

7 Compute A ∈ F
s×t
qm s.t. (HB�)A� = S

8 C ← Y − AB ∈ F
s×n
qm

9 return C

Proof. By Lemma 1 the error matrix E can be decomposed into E = AB.
Algorithm 1 first determines a basis of the error support suppΣR(E) and then
performs erasure decoding to obtain A. The matrix B is computed by trans-
forming S into row-echelon form using a transformation matrix P (see Line 2).
In Line 3, Hsub is obtained by choosing the last n − k − t rows of PH. Then
using Theorem 1 for each block (see Line 5) we find a matrix B(i) whose rows
form a basis for kerr

(
ext(H(i)

sub)
)

q
and therefore a basis for suppR(E(i)) for all

i ∈ [1 : �]. The matrix B is the block-diagonal matrix formed by B(i) (cf. (2)
and see Line 6). Finally, A can be computed from B and H using Lemma 1
in Line 7. Hence, Algorithm 1 returns the transmitted codeword in Line 9. The
complexities of the lines in the algorithm are as follows:

– Line 1: The syndrome matrix S = HY � can be computed in at most O
(
n2s

)

operations in Fqm .
– Line 2: The transformation of [S | I] into row-echelon form requires

O
(
(n − k)2(s + n − k)

) ⊆ O
(
max{n3, n2s})

operations in Fqm .
– Line 3: The product (PH)[t+1:n−k],[1:n] can be computed requiring at most

O(n(n − k − t)(n − k)) ⊆ O
(
n3

)
operations in Fqm .

– Line 5: The transformation of [ext(H(i)
sub)

� | I�]� into column-echelon form
requires O

(
n2

i ((n − k − t)m + ni)
)

operations in Fq per block. Overall we get

O
(∑�

i=1 n2
i ((n − k − t)m + ni)

)
⊆ O

(
n3m

)
operations in Fq since we have

that O
(∑�

i=1 n2
i

)
⊆ O

(
n2

)
.
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– Line 7: According to Lemma 1, this step can be done in O
(
(n − k)3m2

)

operations over Fq.
– Line 8: The product AB = (A(1)B(1) |A(2)B(2) | . . . |A(�)B(�)) can be com-

puted in
∑�

i=1 O(stini) ⊆ O
(
sn2

)
and the difference of Y − AB can be

computed in O(sn) operations in Fqm .

The complexities for Line 5 and Line 7 are given for operations in Fq. The
number of Fq-operations of both steps together is in O

(
n3m2

)
and their execu-

tion complexity can be bounded by O
(
n3

)
operations in Fqm (see [3]).

Thus, Algorithm 1 requires O
(
max{n3, n2s})

operations in Fqm and
O

(
n3m2

)
operations in Fq. ��

Note that the complexity of Algorithm 1 is not affected by the decoding com-
plexity of the underlying constituent code since a generic code with no structure
is assumed.

Example 1. Let Fqm = F52 with the primitive polynomial x2 + 4x + 2 and the
primitive element α be given. Further let IC[s;n, k, d] be an interleaved sum-
rank-metric code of length n with n = (2, 2, 2), k = 2, d = 5, � = 3 and s = 3,
defined by a generator matrix

G =
(

α4 α7 α21 α4 α3 α5

α20 α11 α10 α21 α17 α3

)

and a parity-check matrix

H =

⎛

⎜
⎜
⎝

1 0 0 0 α8 α19

0 1 0 0 α5 α12

0 0 1 0 α17 α
0 0 0 1 α22 α18

⎞

⎟
⎟
⎠ .

Suppose that the codeword

C =

⎛

⎝
α20 α22 1 α6 α11 α10

α23 α7 α4 0 α17 α9

α15 1 α22 α12 α22 α10

⎞

⎠ ∈ IC[s;n, k, d]

is corrupted by the error

E =

⎛

⎝
α19 α α6 α9 0 0
α17 α23 α10 α7 0 0
α2 α8 α15 α6 0 0

⎞

⎠

with wtΣR(E) = rkqm(E) = t = 3 and t1 = 1, t2 = 2 and t3 = 0. The resulting
received matrix is

Y =

⎛

⎝
α17 α8 α18 α16 α11 α10

α11 α3 α22 α7 α17 α9

α7 α4 α23 1 α22 α10

⎞

⎠ .
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First the syndrome matrix is computed as

S = HY � =

⎛

⎜
⎜
⎝

α19 α17 α2

α α23 α8

α6 α10 α15

α9 α7 α6

⎞

⎟
⎟
⎠

and then P

P =

⎛

⎜
⎜
⎝

0 α2 α6 α8

0 α4 α20 α15

0 α23 0 α3

1 α6 0 0

⎞

⎟
⎟
⎠ =⇒ PS =

⎛

⎜
⎜
⎝

1 0 0
0 1 0
0 0 1
0 0 0

⎞

⎟
⎟
⎠

with rkqm(P ) = 4. The last n − k − t = 1 rows of

PH =

⎛

⎜
⎜
⎝

0 α2 α6 α8 α13 α7

0 α4 α20 α15 α22 α16

0 α23 0 α3 α11 1
1 α6 0 0 α18 α16

⎞

⎟
⎟
⎠

gives us Hsub = (1 α6 | 0 0 |α18 α16). We expand every block of Hsub over F5

and get

ext(H(1)
sub) =

(
1 2
0 0

)
, ext(H(2)

sub) =
(

0 0
0 0

)
and ext(H(3)

sub) =
(

3 3
0 3

)
.

We observe that the second block H
(2)
sub is zero which corresponds to a full-

rank error. Next we compute a basis for each of the right kernels of ext(H(1)
sub),

ext(H(2)
sub), and ext(H(3)

sub) which gives us

B(1) =
(
1 2

)
, B(2) =

(
1 0
0 1

)
, B(3) = (),

where B(3) is empty since ext(H(3)
sub) has full rank. The matrix B is then given

by

B = diag(B(1),B(2),B(3)) =

⎛

⎝
1 2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎞

⎠.

Solving for A

HB�A� = S
⎛

⎜
⎜
⎝

1 0 0
α6 0 0
0 1 0
0 0 1

⎞

⎟
⎟
⎠A� =

⎛

⎜
⎜
⎝

α19 α17 α2

α α23 α8

α6 α10 α15

α9 α7 α6

⎞

⎟
⎟
⎠
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gives

A� =

⎛

⎝
α19 α17 α2

α6 α10 α15

α9 α7 α6

⎞

⎠ ⇒ Ê = AB =

⎛

⎝
α19 α α6 α9 0 0
α17 α23 α10 α7 0 0
α2 α8 α15 α6 0 0

⎞

⎠

and Ê = E. Finally, the codeword C can be recovered as C = Y − Ê.

4 Implications for Decoding High-Order Interleaved
Skew-Metric Codes

The skew metric is closely related to the sum-rank metric and was first considered
in [10]. In particular, there exists an isometry between the sum-rank metric and
the skew metric for most code parameters (see [10, Theorem 3]).

We show in this section how an interleaved skew-metric code can be con-
structed from a high-order interleaved sum-rank-metric code. This enables us to
apply the presented decoder to the obtained high-order interleaved skew-metric
codes and correct errors of a fixed skew weight.

The mentioned isometry can be described and applied to the interleaved con-
text as follows: Let us consider vectors from F

n
qm , where n satisfies the constraints

in [10, Theorem 2]. By [10, Theorem 3], there exists an invertible diagonal matrix
D ∈ F

n×n
qm such that

wtΣR(xD) = wtskew(x), ∀x ∈ F
n
qm , (11)

where for the definition of the skew weight wtskew(·) see [10, Definition 9]. The
skew metric for interleaved matrices has been considered in [2]. Namely, the
extension of (11) to F

s×n
qm , we get (see [2])

wtΣR(XD) = wtskew(X), ∀X ∈ F
s×n
qm . (12)

Now consider a linear s-interleaved sum-rank-metric code IC[s;n, k, d] with
parity-check matrix H. Then by (12) the code

ICskew[s;n, k, d] :=
{
CD−1 : C ∈ IC[s;n, k, d]

}

is an s-interleaved skew-metric code with minimum skew distance d. Observe
that the parity-check matrix of the constituent skew-metric code Cskew[n, k, d]
of ICskew[s;n, k, d] is given by Hskew = HD.

Let us now study a decoding problem related to the obtained skew-metric
code. Consider a matrix Y = C + E where C ∈ ICskew[s;n, k, d] and E is an
error matrix with wtskew(E) = t. Then (12) implies that we have

Ỹ := (C + E)D = C̃ + Ẽ

where C̃ ∈ IC[s;n, k, d] and wtΣR(E) = t. Hence, using the isometry from [10,
Theorem 3] we can map the decoding problem in the skew metric to the sum-rank
metric and vice versa (see also [2]).
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In particular, this allows us to use Algorithm 1 to solve the posed decoding
problem in the skew metric. The steps to decode a high-order interleaved skew-
metric code ICskew[s;n, k, d] with parity-check matrix Hskew (whose parameters
comply with [10, Theorem 2]) can be summarized as follows:

1. Compute the transformed received matrix Ỹ := (C + E)D = C̃ + Ẽ where
C ∈ ICskew[s;n, k, d] and wtskew(E) = t.

2. Apply Algorithm 1 to Ỹ . If rkqm(Ẽ) = t, which is equivalent to rkqm(E) = t,
the algorithm recovers C̃ ∈ IC[s;n, k, d].

3. Recover C ∈ ICskew[s;n, k, d] as C = C̃D−1.

Since the first and the third step both require O(sn) operations in Fqm ,
the overall complexity is dominated by the complexity of Algorithm 1, that is
O

(
max{n3, n2s})

operations in Fqm .

5 Comparison of Metzner-Kapturowski-Like Decoders
in the Hamming, Rank and Sum-Rank Metric

The decoder presented in Algorithm 1 is a generalization of the Metzner–Kaptu-
rowski decoder for the Hamming metric [14] and the Metzner–Kapturowski-like
decoder for the rank metric [18]. In this section we illustrate how the proposed
decoder works in three different metrics: 1.) Hamming metric, 2.) Rank metric
and 3.) Sum-rank metric. Note that the Hamming and the rank metric are both
special cases of the sum-rank metric. We also show the analogy of the different
definitions of the error support for all three cases.

The support for the Hamming-metric case is defined as

suppH(E) := {j : j-th column of E is non-zero}.

In the Hamming metric an error matrix E with tH errors can be decomposed
into E = AB, where the rows of B are the unit vectors corresponding to the
tH error positions. This means the support of the error matrix is given by the
union of the supports of the rows Bi of B (∀i ∈ [1 : tH ]), hence

suppH(E) =
tH⋃

i=1

suppH(Bi).

If the condition for the Metzner–Kapturowski decoder is fulfilled (full-rank con-
dition), then the zero columns in Hsub indicate the error positions and thus give
rise to the error support, i.e. we have that

suppH(E) = [1 : n] \
n−k−tH⋃

i=1

suppH(Hsub,i)

where Hsub,i is the i-th row of Hsub. Figure 1 illustrates how the error support
suppH(E) can be recovered from Hsub.
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The rank-metric case is similar, except for a different notion for the error
support. Again, the error E with rkq(E) = tR can be decomposed as E = AB.
Then the rank support suppR(E) of E equals the row space of ext(B), which
is spanned by the union of all rows of ext(Bi) with Bi being the i-th row of B.
This means the support of E is given by

suppR(E) =
⊕tR

i=1
suppR(Bi)

with
⊕

being the addition of vector spaces, which means the span of the union of
the considered spaces. If the condition on the error matrix (full-rank condition)
is fulfilled, the rank support of E is given by the kernel of ext(Hsub) [20]. As
illustrated in Fig. 2 the row space of ext(Hsub) can be computed by obtaining
the span of the union of spaces suppR(Hsub,i), where Hsub,i is the i-th row of
Hsub. Finally, the support of E is given by

suppR(E) =
(⊕n−k−tR

i=1
suppR(Hsub,i)

)⊥
.

For the sum-rank metric we get from (3) that

suppΣR(E) = suppR (B(1)) × suppR (B(2)) × · · · × suppR (B(�))

=
(⊕n−k−t1

i=1
suppR(B(1)

1 )
)

× · · · ×
(⊕n−k−t�

i=1
suppR(B(�)

� )
)

.

According to Theorem 1 we have that

suppΣR(E) =
(⊕n−k−t1

i=1
suppR(H(1)

sub,1)
)⊥

× . . .

· · · ×
(⊕n−k−t�

i=1
suppR(H(�)

sub,�)
)⊥

.

The relation between the error matrix E, the matrix Hsub and the error supports
for the Hamming metric, rank metric and sum-rank metric are illustrated in
Fig. 1, Fig. 2 and Fig. 3, respectively.
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error positions

E = =

A

·

B

1
1

1
1

error positions

Hsub =

all-zero columns in error positions

⇒ suppH(E) =
tH⋃

i=1
suppH(Bi) =

= [1 : n] \
n−k−tH⋃

i=1
suppH(Hsub,i)

Fig. 1. Illustration of the error support for the Hamming-metric case with E ∈ F
s×n
qm ,

A ∈ F
s×tH
qm , B ∈ F

tH×n
q and Hsub ∈ F

(n−k−tH)×n
qm . Bi is the i-th row of B and Hsub,i

the i-th row of Hsub.

E = = Fq

A

·

B

Hsub =

Hsub,1

...
Hsub,n−k−t

�→ ext(Hsub) =

generating set of
suppR(Hsub,1)

...
generating set of

suppR(Hsub,n−k−t)

Fig. 2. Illustration of the error support for the rank-metric case with E ∈ F
s×n
qm ,

A ∈ F
s×tR
qm , B ∈ F

tR×n
q and Hsub ∈ F

(n−k−tR)×n
qm . Bi is the i-th row of B and Hsub,i

the i-th row of Hsub.
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blocks with rank errors

E(1) · · · E(�)

E = =

A

·

B

A(1)· · ·A(�)

B(i)

blocks with rank errors

Hsub =

H
(1)
sub

· · · H
(�)
sub

all-zero blocks at positions of full-rank errors

�→ H
(i)
sub =

∀i ∈ [1 : �]

H
(i)
sub,1

...
H

(i)
sub,n−k−t

Fig. 3. Illustration of the error support for the sum-rank-metric case with E ∈ F
s×n
qm ,

A ∈ F
s×tΣR
qm , B ∈ F

tΣR×n
q and Hsub ∈ F

(n−k−tΣR)×n
qm . Bi is the i-th row of B and

Hsub,i the i-th row of Hsub.

6 Conclusion

We studied the decoding of homogeneous s-interleaved sum-rank-metric codes
that are obtained by vertically stacking s codewords of the same arbitrary linear
constituent code C over Fqm . The proposed Metzner–Kapturowski-like decoder
for the sum-rank metric relies on linear-algebraic operations only and has a
complexity of O

(
max{n3, n2s})

operations in Fqm , where n denotes the length of
C. The decoder works for any linear constituent code and therefore the decoding
complexity is not affected by the decoding complexity of the constituent code.
The proposed Metzner–Kapturowski-like decoder can guarantee to correct error
matrices E ∈ F

s×n
qm of sum-rank weight t ≤ d − 2, where d is the minimum

distance of C, if E has full Fqm -rank t, which implies the high-order condition
s ≥ t.

As the sum-rank metric generalizes both, the Hamming metric and the rank
metric, Metzner and Kapturowski’s decoder in the Hamming metric and its
analog in the rank metric are both recovered as special cases from our proposal.
Moreover, we showed how the presented algorithm can be used to solve the
decoding problem of some high-order interleaved skew-metric codes.

Since the decoding process is independent of any structural knowledge about
the constituent code, this result has a high impact on the design and the security-
level estimation of new code-based cryptosystems in the sum-rank metric. In fact,
if high-order interleaved codes are e.g. used in a classical McEliece-like scheme,
any error of sum-rank weight t ≤ d−2 with full Fqm-rank t can be decoded with-
out knowledge of the private key. This directly renders this approach insecure
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and shows that the consequences of the presented results need to be carefully
considered for the design of quantum-resistant public-key systems.

We conclude the paper by giving some further research directions: The pro-
posed decoder is capable of decoding an error correctly as long as it satisfies
the full-rank condition and has sum-rank weight at most d − 2, where d denotes
the minimum distance of the constituent code. Similar to Haslach and Vinck’s
work [6] in the Hamming metric, it could be interesting to abandon the full-
rank condition and study a decoder that can also handle linearly dependent
errors. Another approach, that has already been pursued in the Hamming and
the rank metric [15,18], is to allow error weights exceeding d− 2 and investigate
probabilistic decoding.

Moreover, an extension of the decoder to heterogeneous interleaved codes
(cp. [18] for the rank-metric case) and the development of a more general decod-
ing framework for high-order interleaved skew-metric codes can be investigated.
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