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ABSTRACT

The limitations of turbulence closure models in the context of Reynolds-averaged Navier–Stokes (RANS) simulations play a significant part
in contributing to the uncertainty of computational fluid dynamics (CFD). Perturbing the spectral representation of the Reynolds stress ten-
sor within physical limits is common practice in several commercial and open-source CFD solvers, in order to obtain estimates for the episte-
mic uncertainties of RANS turbulence models. Recent research revealed that there is a need for moderating the amount of perturbed
Reynolds stress tensor to be considered due to upcoming stability issues of the solver. In this paper, we point out that the consequent com-
mon implementation can lead to unintended states of the resulting perturbed Reynolds stress tensor. The combination of eigenvector pertur-
bation and moderation factor may actually result in moderated eigenvalues, which are not linearly dependent on the originally unperturbed
and fully perturbed eigenvalues anymore. Hence, the computational implementation is no longer in accordance with the conceptual idea of
the Eigenspace Perturbation Framework. We verify the implementation of the conceptual description with respect to its self-consistency.
Adequately representing the basic concept results in formulating a computational implementation to improve self-consistency of the
Reynolds stress tensor perturbation.

VC 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0149747

I. INTRODUCTION

Industrial aerodynamic designs increasingly rely on numerical
analysis based on flow simulations using computational fluid dynam-
ics (CFD) software. Such industrial applications usually feature turbu-
lent flows. Due to its cost- and time-effective solution procedure,
Reynolds-averaged Navier–Stokes (RANS) equations are an appropri-
ate approach for design optimizations and virtual certification.
Unfortunately, the Reynolds-averaged Navier–Stokes (RANS) equa-
tions are not closed and hence require the determination of the
second-moment Reynolds stress tensor. In this context, the Reynolds
stress tensor is approximated using turbulence models. These models
make assumptions regarding the relationship between the Reynolds
stresses and available mean flow quantities, such as the mean velocity
gradients, which limit their applicability in terms of accuracy on the
one hand. On the other hand, the assumptions made in the formula-
tion of closure models inevitably lead to uncertainties as soon as their
range of validity is left. The quantification of these model-form uncer-
tainties for industrial purposes is a demanding task in general.

Several approaches seek to account for these uncertainties at dif-
ferent modeling levels.1,2 We focus on the eigenspace perturbation
framework (EPF),3,4 which estimates the predictive uncertainty due to
limitations in the turbulence model structure, namely its epistemic
uncertainty. The EPF is purely physics based and introduces a series of
perturbations to the shape, alignment, and size of the modeled
Reynolds stress ellipsoid to estimate its uncertainty. Because of its
straightforward implementation, the EPF has been used in diverse
areas of application such as mechanical engineering,5 aerospace engi-
neering,6–10 civil engineering,11,12 wind farm design,13,14 etc. The EPF
is the foundation of recent confidence-based design under uncertainty
approaches.15 There have been studies showing the potential to opti-
mize it using data driven machine learning approaches,16,17 and it has
been applied for the virtual certification of aircraft designs.18,19 The
EPF has been integrated into several open and closed source flow solv-
ers.20–23 This range of applications emphasizes the importance of the
EPF. Imperfections in the EPF can have a cascading ramification to all
these applications and fields.
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There is need for verification and validation (V&V) for such
novel methodologies. Validation focuses on the agreement of the com-
putational simulation with physical reality,24 which has been done for
the EPF in the aforementioned studies. On the other hand, verification
focuses on the correctness of the programing and computational
implementation of the conceptual model.25 For the EPF, this verifica-
tion would involve the theory behind the conceptual model and the
computational implementation. The theoretical foundations of the
Reynolds stress tensor perturbations have been analyzed in detail.26 In
this investigation, we focus on the computational implementation of
the EPF, analyzing the consistency between the envisioned conceptual
model and the actually implemented computational model.

In order to estimate the epistemic uncertainty for future design
applications with respect to turbulence closure model, we review the
current implementation of the framework in German Aerospace
Center (DLR)’s CFD solver suite TRACE. Especially, we focus on the
motivation, implementation, and effects of applying a moderation
factor f, which serves to mitigate the amount of perturbation and aid
numerical convergence of CFD solution22,23 (in some publications f
is called under-relaxation factor). The present investigation reveals a
shortcoming when combining the eigenspace perturbation of the
Reynolds stress tensor with the moderation factor, which has not yet
been addressed in the literature. On this basis, we formulate a way of
improving self-consistency of the EPF and recovering its originally
intended, physically meaningful idea in the present paper. Such self-
consistency adherence is an essential component of the verification
assessment stage of V&V27 in order to ensure agreement between
the conceptual and the computational model (numerical implemen-
tation), thus ensuring verification as outlined by AIAA CFD
Committee.28

The paper is structured as follows: Sec. II introduces the
Reynolds stress tensor’s eigenspace perturbation. We describe the fun-
damental motivation, the mathematical background, and the deduced
practical implementation of the EPF. In Sec. IIA, we present the con-
ceptual idea to apply an eigenspace decomposition of the anisotropy
tensor. On this basis, the evident choice to perturb the eigenvalues and
eigenvectors within physical limits is demonstrated from a practical
engineering perspective in Sec. II B. Propagating these limiting states
of turbulence enables a CFD practitioner to estimate the model-form
uncertainty for certain quantities of interest (QoI) with respect to the
underlying turbulence model. Finally, we point out an inconsistency in
the prevailing computational implementation of the eigenspace per-
turbation in CFD solvers and suggest an alternative self-consistent for-
mulation in Sec. II C. The uncertainty estimation for simulations of a
turbulent boundary layer serve to demonstrate the envisioned benefits
of the proposed consistent implementation of the EPF in Sec. IID.
Section III summarizes the findings of the paper and assesses their sig-
nificance for future applications.

II. REYNOLDS STRESS TENSOR PERTURBATION
TO ESTIMATE UNCERTAINTIES
A. Reynolds stress anisotropy and visualization

The symmetric, positive semi-definite Reynolds stress tensor
sij ¼ u0iu

0
j needs to be determined by turbulence models in order to

close the RANS equations. It can be decomposed into an anisotropy
tensor aij and an isotropic part,

sij ¼ k aij þ
2
3
dij

� �
; (1)

where the turbulent kinetic energy is defined as k ¼ 1
2 skk and summa-

tion over recurring indices within a product is implied. As the
Reynolds stress tensor and its symmetric anisotropic part only contain
real entries, they are diagonalizable. Thus, based on an eigenspace
decomposition, the anisotropy tensor can be expressed as

aij ¼ vinKnlvjl: (2)

The orthonormal eigenvectors form the principal coordinate system
(PCS) and can be written as a matrix vin while the traceless diagonal
matrix Knl contains the corresponding ordered eigenvalues kk with
respect to aijjPCS. Because of the definition of the anisotropy tensor in
Eq. (1), Reynolds stress and anisotropy tensor share the same eigen-
vectors while the eigenvalues of the Reynolds stress tensor are
qk ¼ kðkk þ 2=3Þ. Consequently, the eigenvalues and the eigenvectors
represent the shape and the orientation of the positive semi-definite
(3,3)-tensor and can be visualized as an ellipsoid (see Fig. 1).

Generally, the anisotropy tensor describes and measures the devia-
tion of the Reynolds stress tensor from the isotropic state, where its geo-
metric ellipsoid representation forms a perfect sphere (q1 ¼ q2 ¼ q3).
The invariants of the anisotropy tensor,

Ia ¼ tr að Þ ¼ 0;

IIa ¼ �
1
2
tr a2ð Þ ¼ k1k2 þ k1k3 þ k2k3

IIIa ¼ det að Þ ¼ k1k2k3

; (3)

can be used to visualize the tensor in a coordinate-system-invariant
way, called the Anisotropy Invariant Map (AIM),29 in Fig. 2.

Because of the physical realizability constraints of the Reynolds
stress tensor,30

saa � 0 ; saa � sbb � s2ab ; det sð Þ � 0 ; a;b ¼ 1; 2; 3; (4)

and the definition of the anisotropy tensor [see Eq. (1)], the entries of
the anisotropy tensor are bounded in the following ranges:

aij 2
� 2
3
;
4
3

� �
for i ¼ j;

�1; 1½ � for i 6¼ j:

8><
>: (5)

FIG. 1. Representation of tensor as ellipsoid. Eigenvalues qk and eigenvectors vk
are highlighted.
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The eigenspace decomposition of the anisotropy tensor in combina-
tion with tensor diagonalization [see Eq. (2)] leads to the fact that any
physically realizable Reynolds stress tensor can be mapped to exactly
one respective anisotropy tensor in its canonical form Kij

¼ diagðk1; k2; k3Þ. Applying Eq. (5) to Kij, the ordered eigenvalues,

k1 ¼ max
a

aaajPCS
� �

;

k2 ¼ max
b6¼a

abbjPCS
� �

;

k3 ¼ �k1 � k2 ¼ min
c 6¼a;b

accjPCS
� �

;

(6)

are bounded accordingly:31

k1 �
3jk2j � k2

2
; k1 �

1
3
� k2: (7)

Turbulence componentiality31 categorizes three fundamental
states (one-, two-, and three-component turbulence) based on the
number of non-zero eigenvalues of the Reynolds stress tensor qi (and
respective anisotropy tensor eigenvalues ki), presented in Table I. In
addition, axisymmetric turbulence is characterized by two eigenvalues
being equal, while an isotropic state features three identical eigenval-
ues. The corners of the AIM in Fig. 2 can be classified as the three-
component isotropic limit (3C), the two-component axisymmetric

limit (2C), and the one-component limit (1C) (see also Table I).
Moreover, due to the boundedness of the anisotropy tensor
entries (and its eigenvalues, respectively), all physically plausible states
of turbulence must lie within the area spanned by the corners of the
triangle. Furthermore, due to the boundedness of the anisotropy
tensor’ eigenvalues, a barycentric triangle can be constructed based
on the spectral theorem [32] Consequently, every physically realizable
state of the Reynolds stress tensor can be mapped onto barycentric
coordinates,

x ¼ 1
2
x1C k1 � k2ð Þ þ x2C k2 � k3ð Þ þ x3C

3
2
k3 þ 1

� �

x ¼ Qk with k1 � k2 � k3;
(8)

where Q depends on the choice of corners of the barycentric triangle.
Figure 3 shows these three limiting states of the Reynolds stress tensor,
defined by the corners of the triangle (x1C; x2C; x3C) representing the
one-component, two-component axisymmetric, and three-component
(isotropic) turbulent state. A great benefit of the Anisotropy
Barycentric Map (ABM) is the possibility to obtain a linear interpola-
tion between two points with respect to their eigenvalues. The

FIG. 2. AIM of the Reynolds stress tensor comparing second and third invariant of
respective anisotropy tensor. The corners of the triangle (1C, 2C, and 3C) represent
the componentiality of turbulence (see Table I).

TABLE I. Turbulence componentiality and limiting states of turbulence with respect to eigenvalues of the Reynolds stress tensor qi and the anisotropy tensor ki.

Componentiality Eigenvalues

States of turbulence
# qi 6¼ 0 or # ki 6¼ � 2

3 qi ki

One-component (1C) 1 q1 ¼ 2k;q2 ¼ q3 ¼ 0 k1 ¼ 4
3 ; k2 ¼ k3 ¼ � 2

3

Two-component 2 q1 þ q2 ¼ 2k;q3 ¼ 0 k1 þ k2 ¼ 2
3 ; k3 ¼ � 2

3

Two-component axisymmetric (2C) 2 q1 ¼ q2 ¼ k;q3 ¼ 0 k1 ¼ k2 ¼ 1
3 ; k3 ¼ � 2

3

Three-component 3 q1 þ q2 þ q3 ¼ 2k k1 þ k2 þ k3 ¼ 0
Three-component isotropic (3C) 3 q1 ¼ q2 ¼ q3 ¼ 2

3 k k1 ¼ k2 ¼ k3 ¼ 0

FIG. 3. ABM representing the eigenvalues of the anisotropy tensor and its effect on
the shape of the Reynolds stress tensor ellipsoid. The eigenvalue perturbation
toward the two-component limiting state of turbulence is shown schematically.
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eigenspace perturbation exploits this property as well. Hence, we will
come back to it later.

B. Perturbation of eigenspace representation

As the Reynolds stresses are expressed as functions of the mean
flow quantities for turbulence modeling, we need to consider the
nature of their relationship. Common example are the state-of-the-art
linear Eddy viscosity models (LEVMs), which assume this relationship
to be linear and introduce a turbulent (eddy) viscosity �t to approxi-
mate the Reynolds stress tensor in analogy to the viscous stresses

sij ¼ �2�t Sij �
1
3
@uk
@xk

dij

� �
þ 2
3
kdij ; (9)

where the strain-rate tensor is denoted as Sij. In the past decades,
researchers have pointed out limitations of these LEVM for flow situa-
tions, which are not covered by the calibration cases.33–36 The esti-
mated relationship between Reynolds stresses and mean rate of strain
results in the inability to account correctly for its anisotropy and con-
sequently lead to a significant degree of epistemic uncertainty. In order
to account for such epistemic uncertainties due to the model-form, the
perturbation approach suggests to modify the eigenspace (eigenvalues
and eigenvectors) of the Reynolds stress tensor within physically per-
missible limits.3,4 The EPF of the Reynolds stress tensor implemented
in TRACE creates a perturbed state of the Reynolds stress tensor which
is defined as

s�ij ¼ k a�ij þ
2
3
dij

� �
¼ k v�inK

�
nlv
�
jl þ

2
3
dij

� �
; (10)

where a�ij is the perturbed anisotropy tensor, K�nl is the perturbed
eigenvalue matrix, and v�in is the perturbed eigenvector matrix. The
turbulent kinetic k energy is left unchanged. In Secs. III B 1–IIIB 3, we
will describe the mathematical and physical foundation of forming a
perturbed eigenspace.

1. Eigenvalue perturbation

The eigenvalue perturbation utilizes the boundedness of the
eigenvalues of the anisotropy tensor and their representation in terms
of barycentric coordinates, as described in Sec. IIA. As the representa-
tion of the anisotropy tensor within the ABM enables linear interpola-
tion between a starting point x and a target point xðtÞ, the perturbation
methods creates a modified location x�, according to the following
equation:

x� ¼ x þ DB xðtÞ � xð Þ ; (11)

with the relative distance DB 2 ½0; 1�, controlling the magnitude of
eigenvalue perturbation as illustrated in Fig. 3. The starting point x is
usually determined in the RANS simulation iteration via the relation-
ship for the Reynolds stresses determined by the turbulence model,
e.g., the Boussinesq assumption for LEVM [see Eq. (9)]. Due to their
distinctive significance, the limiting states of turbulence at the corners
act typically as the target point xðtÞ 2 fx1C; x2C; x3Cg. Subsequently,
the perturbed eigenvalues k�i can be remapped by the inverse ofQ,

k� ¼ Q�1x�: (12)

2. Eigenvector perturbation

In contrast to the eigenvalues, there are no physical bounds for
the orientation of the eigenvectors of the Reynolds stress tensor, and
there is no upper limit for the turbulent kinetic energy. Thus, the fun-
damental idea of perturbing the eigenvectors is to create bounding
states for the production Pk of turbulent kinetic energy k in transport
equation based LEVM. Hereby, the budget of turbulent kinetic energy
is indirectly manipulated. The turbulent production term is defined as
the Frobenius inner product of the Reynolds stress and the strain-rate
tensor. Since both are positive semi-definite, the bounds of the
Frobenius inner product can be written in terms of their eigenvalues qi

and ri arranged in decreasing order:37

Pk ¼ �sij
@ui
@xj
¼ �sij � Sij ¼ �hs; SiF ¼ �tr sSð Þ

2 q1r3 þ q2r2 þ q3r1; q1r1 þ q2r2 þ q3r3½ � : (13)

Since the Reynolds stress and the strain rate tensor share the same
eigenvectors in LEVM [see Eq. (9)], the lower bound of the turbulent
production term can be obtained by commuting the first and third
eigenvector of the Reynolds stress tensor, whereas maximum turbulent
production is obtained by not changing the eigenvectors of the
Reynolds stress tensor,

vmax ¼ v1S v2S v3S
� �

! Pkmax ;

vmin ¼ v3S v2S v1S
� �

! Pkmin :
(14)

Note: Permuting of the eigenvectors of the Reynolds stress is equiva-
lent to changing the order of the respective eigenvalues. Both change
the alignment of the Reynolds stress ellipsoid with the principle axes
of the strain-rate tensor.

3. Implications for CFD practitioners

The eigenspace perturbation can be divided into eigenvalue and
eigenvector modifications of the Reynolds stress tensor. For practical
application purposes, each eigenvalue perturbation toward one of the
limiting states of turbulence can be combined with minimization or
maximization of the turbulent production term (eigenvector perturba-
tion). In summary, the model-form uncertainty of LEVM can be esti-
mated by six additional CFD simulations if DB < 1 and only five
perturbed simulations if DB ¼ 1 is chosen. This is because the
Reynolds stress ellipsoid is a perfect sphere when targeting for the 3C
turbulence state with DB ¼ 1 (see Fig. 3), making an eigenvector per-
turbation obsolete. As the amount of considered turbulence model
uncertainty scales with the relative perturbation strength DB, aiming
for the corners of the barycentric triangle (applying DB ¼ 1) is com-
mon practice in order to obtain a worst case estimate corresponding to
the most conservative uncertainty bounds on QoI.3,4,22,23 The analysis
of additional CFD simulations, propagating the effect of perturbed
Reynolds stress tensor, enables a CFD practitioner to quantify the
derived effect of the turbulence model perturbation on certain QoI,
e.g., the pressure field.

C. Self-consistent formulation of perturbation

The emergence of some shortcomings of the eigenspace pertur-
bation of the Reynolds stress tensor is highlighted in this section. This
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forms the foundation of rethinking of the computational formulation
the EPF. The present paper suggests an appropriate way of formulat-
ing the EPF, ensuring control over numerical stability while preserving
the conceptual model of perturbing the eigenspace of the Reynolds
stress tensor.

1. Need for moderating the perturbation strength

The need for moderating the effect of Reynolds stress tensor per-
turbation emerges, when the Reynolds stress tensor perturbation seeks
to decrease the turbulent kinetic energy budget (Pkmin and/or 3C).
These perturbations featuring overly reduced turbulent viscosity can
lead to numerical convergence issues, for example, when simulating
separated flows. To ensure convergence while still perturbing as much
as required, there is a need to moderate the effect of Reynolds stress
tensor perturbation. Recent publications introduce a moderation fac-
tor f to enable the CFD-solver to achieve fully converged, steady-state
RANS results.22,23 Consequently, the propagated perturbed Reynolds
stress tensor (entering the update of the viscous fluxes and the turbu-
lent production term) can be expressed as

s�ijf ¼ sij þ f s�ij � sij
� 	

; (15)

where f 2 ½0; 1� is the introduced moderation factor, adjusting the
total amount of perturbed anisotropy tensor to be considered. Note:
The effect of applying the moderation factor is identical to a reduction
of DB in Eq. (11) in the case of pure eigenvalue perturbation.23

2. Inconsistency when combining eigenspace
perturbation and moderation factor

Unfortunately, the unperturbed Reynolds stress tensor sij and the
perturbed one s�ij do not necessarily share the same eigenvectors.
When eigenvector perturbation is applied, the resulting moderated
Reynolds stress tensor s�ijf shows unintended behavior with respect to
its projection onto barycentric coordinates. Figure 4 presents the

perturbation trajectory when increasing f from 0 to 1 for selected
RANS data points inside the AIM toward the one-component limiting
state of turbulence. The moderated Reynolds stress tensor is calculated
based on Eq. (15) with s�ij ¼ sij1C , while sij1C is a function of K�ij1C ; v

�
i ,

and kRANS. Each location along the perturbation trajectory results
from determining the respective moderated anisotropy tensor and its
barycentric coordinates related to its eigenvalues. The perturbation
trajectory when s�ij and sij share identical eigenvectors shows the
expected linear interpolation between the respective coordinates.
However, when applying eigenvector perturbation (first and last col-
umn of v�jl are commuted), the resulting intermediate paths do not
represent the most direct connection between starting and target
point. Instead, the perturbation trajectories in Fig. 4(b) point toward
axisymmetric expansion (line between x3C and x1C) first, head toward
axisymmetric contraction (line between x3C and x2C) subsequently,
and target the one-component limit of turbulence finally.

The mathematical explanation for this observation, when com-
bining eigenvalue and eigenvector perturbation while moderating their
effects by a factor according to Eq. (15) is given thereupon. Thus, the
prerequisites for the accomplishment of linear interpolation properties
in terms of barycentric coordinates, when adding two tensors X and
Y, are addressed. Assuming X and Y are positive semi-definite (as the
Reynolds stress tensor), then these tensors are realizable,30 and their
projection onto barycentric coordinates has to lie within the barycen-
tric triangle,32 following the reasons mentioned above (see Sec. IIA). If
X and Y share identical eigenvectors (commuting matrices), their sum
X þ Y will feature the same eigenvectors, and its eigenvalues are the
sum of the individual eigenvalues of X and Y consequently (see
Appendix A). Moreover, if X and Y are positive semi-definite, their
sum X þ Y will be positive semi-definite as well (see Appendix B).
This implies that the sum of two realizable Reynolds stress tensors will
fulfill realizability constraints and will be located inside the ABM
accordingly.

The line of argument mentioned above is also true for the sum-
mation of two scaled tensors

Z ¼ X þ f Y� X½ � ¼ 1� fð ÞX þ fY ; (16)

as multiplying a tensor by a scalar does not affect the eigenvectors and
modifies the eigenvalues linearly. The individual scaling of the tensors
is chosen, such that the first invariant of Z (trðZÞ) remains identical to
X and Y (trðXÞ ¼ trðYÞ ¼ trðZÞ). Keeping in mind that X and Y rep-
resent Reynolds stress tensors, this means that the turbulent kinetic
energy remains constant. This is achieved by choosing f 2 ½0; 1�. Due
to the affine transformation, the barycentric coordinates of the aniso-
tropic part of Z are determined by xZ ¼ ð1� f ÞxX þ f xY, when xX
and xY are the initial states of the tensors X and Y in barycentric coor-
dinates (see Appendix C). Finally, if f is increased incrementally from
0 to 1, the resulting states xZ will end up forming a straight line con-
necting xX and xY, as illustrated in Fig. 5 and especially in Fig. 5(a).
For reference, Figs. 5(b) and 5(c) show the result of linear interpolation
in terms of barycentric coordinates in the classical AIM and the alter-
native Anisotropy Invariant Map.38

However, the summation of commuting matrices is the excep-
tion. Adding up two arbitrary, positive semi-definite matrices, eigen-
vector orientation is not preserved, and the resulting eigenvalues are
not just the sum of the original eigenvalues. As a consequence, their
transformation into barycentric coordinates is not located along the

FIG. 4. Comparison of perturbation trajectory for RANS channel flow data at
Res ¼ 1000 (blue dots) in barycentric coordinates. The trajectories for selected
RANS data points (sij) are created by increasing f ¼ 0…1 with and without eigen-
vector perturbation targeting the one-component limiting state of turbulence
s�ij ¼ sij1C (orange dot). (a) Without eigenvector modification (aiming for Pkmax ). (b)
Perturbation including eigenvector modification (aiming for Pkmin ).
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shortest possible path connecting the representation of the anisotropy
of the original tensors, as shown in Fig. 6. Analyzing the orientation of
the PCS of each tensor in Figs. 6(d) and 6(e) reveals the transforma-
tion of eigenspace. The representation in barycentric coordinates

shows a perturbation trajectory that connects starting and target point
via the sides of the triangle [see Fig. 6(a)]. Hence, the introduction of a
moderation factor violates the original intent of the EPF and, in addi-
tion to that, affects the plausibility of recent data-driven machine

FIG. 5. Transition from tensor A to B (defined in Appendix D) featuring identical eigenvectors by increasing f ¼ 0…1 (see Eq. (16)). The intermediate brown-colored states in
(a), (b), and (c) correspond to the states with f 2 ½0:2; 0:4; 0:6; 0:8� in (d) and (e). (a) Representation in ABM,32 (b) representation in AIM,29 (c) representation in alternative
Anisotropy Invariant Map,38 (d) Reynolds stress tensor ellipsoid, and (e) Eigenvectors of Reynolds stress tensor.
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learning approaches,16,23 relying on the interpolation property with
respect to barycentric coordinates. Moreover, the bounds of the
Frobenius inner matrix product [see Eq. (14)] can only be achieved,
if the matrices share the same eigenvectors. When applying

Reynolds stress eigenvector perturbation in combination with a
moderation factor, the resulting turbulent production indeed yields
a value within the interval of the inner product defined in Sec. II B 2
but does not reach the theoretical limits as the perturbed Reynolds

FIG. 6. Transition from tensor A to C (defined in Appendix D) featuring different eigenvector by increasing f ¼ 0…1 [see Eq. (16)]. The intermediate brown-colored states in
(a)–(c) correspond to the states with f 2 ½0:2; 0:4; 0:6; 0:8� in (d) and (e). (a) Representation in ABM,32 (b) representation in AIM,29 (c) representation in alternative Anisotropy
Invariant Map,38 (d) Reynolds stress tensor ellipsoid, and (e) Eigenvectors of Reynolds stress tensor.
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stress tensor features some different eigenvectors compared to the
strain-rate tensor.

To sum up, the concept of the EPF, which is perturbing the
eigenvalues of the Reynolds stress tensor linearly between the initial
state and a certain limiting state of turbulence, cannot be guaranteed if
a moderation factor is introduced as in current implementations.
Applying this moderation factor in combination with eigenvector per-
turbations results in an conceptually unintended state of the anisot-
ropy tensor on the one hand. On the other hand, the intended
minimization and maximization of the turbulent production term is
no longer guaranteed.

3. Proposed approach to improve self-consistency

In order to resolve the issues described in Sec. II C 2, the imple-
mentation of the EPF needs to be changed. A first step is the removal
of the entire idea of applying a moderation factor to adjust the amount
of perturbed Reynolds stress tensor according to Eq. (15). As a conse-
quence, DB in Eq. (11), which controls the amount of perturbation
toward the respective limiting state of turbulence, has to be adjusted,
in order to retain converged RANS simulations (see Sec. II C 1). This is
in contrast to the common practice of choosing DB ¼ 1:0, arguing
that there is no physical reason to restrict this value without the usage
of data-driven methods or expert knowledge on the flow configura-
tion. In other words, the perturbed Reynolds stress tensor, entering the
update of the viscous fluxes and the turbulent production term, in the
proposed self-consistent implementation is equal to Eq. (10).
Nevertheless, the fundamental idea of the individual perturbation of
eigenvalues and eigenvectors, introduced in Sec. II B 1, remains the
same. Hereby, the entire EPF in order to quantify the structural uncer-
tainties of turbulence models is formulated in a verified, physics-
constrained and self-consistent manner. Its implementation in TRACE
can be subdivided in several steps within each pseudo-time step of
steady RANS:

1. Calculate Reynolds stress tensor based on Boussinesq approxi-
mation in Eq. (9).

2. Determine respective anisotropy tensor [see Eq. (1)].
3. Decompose the anisotropy tensor in its eigenvalues and eigen-

vectors [see Eq. (2)].
4. Compute the barycentric coordinates based on eigenvalues of

the anisotropy tensor [see Eq. (8)].
5. Perturb the barycentric coordinates of the anisotropy tensor

within physical realizable limits by chosen DB [see Eq. (11)].
6. Determine perturbed eigenvalues of the anisotropy tensor with

respect to the perturbed barycentric coordinates [see Eq. (12)].
7. Perturb the eigenvectors of anisotropy/Reynolds stress tensor if

turbulent production term should be minimized [see Eq. (14)].
8. Reconstruct the perturbed Reynolds stress tensor according to

Eq. (10).
9. Update the viscous fluxes using the reconstructed perturbed

Reynolds stress tensor.
10. Update the turbulence production term using the reconstructed

perturbed Reynolds stress tensor explicitly.

Note: Different types and magnitudes of the perturbations (1C,
2C, or 3C; Pkmin or Pkmax ; chosen DB and/or f) result in different solu-
tions of the RANS equations from a mathematical point of view

regardless of the EPF formulation (non-consistent or consistent).
However, not every mathematical solution represents a physically
meaningful solution (e.g., a solution giving laminar flow in a clearly
turbulent domain, or unsteady flow in steady state conditions). Hence,
the EPF requires certain expert knowledge and engineering practice to
determine the appropriate amount of perturbation magnitude (DB in
the consistent formulation) leading to meaningful, converged RANS
solutions.

D. Application to plane turbulent channel flow

The uncertainty estimates based on the non-consistent and self-
consistent eigenspace perturbation are compared when applied to a
canonical turbulent channel flow at Res ¼ 1000. The channel flow is
homogeneous in streamwise and spanwise direction. A constant
streamwise pressure gradient @p=@x is applied to balance the skin fric-
tion at the walls. The configuration for simulating this wall-bounded
flow is sketched in Fig. 7. The mesh has a low-Reynolds resolution
(yþ � 1) at the solid walls with 100 cells up to the symmetry line in
the wall-normal direction. The two-equation Menter SST k-x turbu-
lence model,39 which belongs to the group of LEVM, is considered as
the baseline model for the present simulations. The discrepancies with
respect to barycentric coordinates of the RANS turbulence model
when compared with available Direct Numerical Simulation (DNS)
data40 are moderate in the channel center and start to increase close to
the wall due to the strong anisotropy of turbulence (see Fig. 8). Due to
the fact that the turbulence model relies on the Boussinesq assumption
Eq. (9) and that a velocity gradient in spanwise direction is missing,
the Reynolds stress tensor has at least one zero eigenvalue. Hence, the
resulting barycentric coordinates are known to be the plane-strain line
in the ABM.

The turbulence model-form uncertainty is quantified applying
the EPF. In order to demonstrate the implications of using the pro-
posed consistent formulation, a relative perturbation strength of D
¼ 0:5 is used for the consistent formulation, while D ¼ 1:0 is used for
the non-consistent formulation. Consequently, a factor of f¼ 0.5 is
applied for the non-consistent formulation to moderate the strength
for eigenvalues and eigenvector perturbation and to obtain comparable
results to the consistent formulation. The streamwise pressure

FIG. 7. Turbulent channel flow simulation. (a) Schematic sketch of a fully developed
turbulent boundary layer. (b) Mesh (every fourth line shown) and boundary condi-
tions; symmetry is enforced in spanwise direction.
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gradient, which was adjusted for the baseline simulation to match the
Reynolds number, remains constant throughout the perturbed simula-
tions. This is comparable to the procedure of Emory et al. for a similar
test case.3 The comparison of the uncertainty estimated by the EPF for
the streamwise velocity profile of the boundary layer is presented in
Fig. 9. The simulations featuring eigenvector perturbation are indi-
cated by Pkmin (leading to minimized turbulent production), while no
eigenvector permutation is applied for Pkmax [see Eq. (14)]. Overall, the
uncertainty estimate (grey shaded area) of the boundary layer profile is
identical for both formulations. On the one hand, this is because the
simulations without any eigenvector perturbation are mathematically
equivalent, leading to identical results for QoI. On the other hand,
applying eigenvector permutation for the channel flow results in lami-
narization of the boundary layer. Hence, the laminar velocity profile
driven by the selected constant streamwise pressure gradient bounds
the uncertainty estimation, regardless of EPF formulation or target
barycentric coordinate xðtÞ. Overall, the uncertainty intervals are
smaller for previous investigations of the channel flow by Emory
et al..3 To the authors’ knowledge and experience, this is because of
the fact that Emory et al. do not explicitly update the turbulent pro-
duction term based on the perturbed Reynolds stresses. Additionally,
as the perturbations for both formulations are uniform throughout the

computational domain, it is expected that by applying an appropriate
amount of perturbation strength (e.g., locally varying perturbations
with the help of machine learning), the uncertainty estimates would be
more adequate.

In terms of conceptual model verification, the proposed self-
consistent formulation guarantees to maintain agreement between the
theoretical idea of the EPF and the simulation results, which are shown
in Fig. 10. The final perturbed states of the Reynolds stress tensor
anisotropy for simulations aiming at Pkmax show the expected, identical
perturbed anisotropic states for both EPF formulations. Figure 10(a)
reveals the initial motivation for scrutinizing the consistency of the for-
mulation using a moderation factor in combination with eigenvector
perturbation as the RANS solution points for the turbulent boundary
layer do not show the intended behavior for Pkmin . If a CFD practi-
tioner runs a perturbed RANS simulation aiming for one of the cor-
ners of the barycentric triangle, it is expected that the resulting
anisotropic states show respective shifts toward that limiting state of
turbulence. The boundary layer solution points of ð1C;PkminÞ and
ð2C; PkminÞ are located at some unintended states inside the barycentric
triangle in Fig. 10(a) due to summation of two non-commuting ten-
sors. In contrast, the respective simulations using the consistent for-
mulation produces anisotropic states of the Reynolds stress tensor,

FIG. 8. Barycentric coordinates of DNS data and RANS simulation using baseline
turbulence model MenterSST k-x. Data points are colored according to their dis-
tance from the wall.

FIG. 9. Comparison of resulting uncertainty bounds for streamwise velocity profile of turbulent channel flow simulation derived by EPF. (a) Application of non-consistent formu-
lation of EPF using DB ¼ 1:0 and f¼ 0.5. (b) Application of consistent formulation of EPF using DB ¼ 0:5.

FIG. 10. Comparison of resulting barycentric coordinates of the perturbed Reynolds
stress tensors for turbulent boundary layer profiles in Fig. 9. (a) Application of non-
consistent formulation of EPF using DB ¼ 1:0 and f¼ 0.5. (b) Application of con-
sistent formulation of EPF using DB ¼ 0:5.
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which are entirely perturbed toward one of the corners of the triangle
(keeping in mind, that the unperturbed Reynolds stress tensor is repre-
sented by the plane-strain line as in Fig. 8).

Note: The self-consistent formulation of the EPF framework, pre-
sented in Sec. II C 3, enables the user to additionally perform the per-
turbed RANS simulation aiming for ð3C;PkminÞ, which was obsolete in
the non-consistent formulation using DB ¼ 1:0.

III. CONCLUSION AND OUTLOOK

The EPF, which creates perturbed states of the Reynolds stress
tensor in order to quantify the structural uncertainties of RANS turbu-
lence models, is described in detail, presenting its underlying idea and
discussing its practical implementation and usage. The present work
highlights one shortcoming in the commonly proposed implementa-
tion of this framework. Due to numerical convergence issues, research-
ers have suggested to weaken the effect of perturbed Reynolds stress
by introducing a moderation factor in previous publications. The
assessment of the common computational implementation reveals
that the basic concept of the EPF is not correctly represented in that
case. The introduction of a separate moderation factor may cause
unintended behavior and violate EPF’s self-consistency. Therefore, the
present paper presents a self-consistent way of formulating the
Reynolds stress tensor perturbation framework, as the significance of
reasonable physics-constrained Uncertainty Quantification methodol-
ogies is indisputable. This formulation has recently been implemented
in DLR’s CFD solver suite TRACE. The analysis of the results based on
the proposed eigenspace perturbation formulation when applied to
turbulent channel flow verifies its benefits with respect to the interpret-
ability of the uncertainty estimates. In the near future the framework
will be applied to quantify the uncertainties for more complex flows
for which the differences between the non-consistent and the self-
consistent formulation are expected to be greater for QoI. Moreover,
ongoing research focusing on determining the Reynolds stress tensor
perturbation by the use of data-driven machine learning practises will
benefit from verified self-consistent implementation of the framework
as well.
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APPENDIX A: PROPERTIES OF THE SUM OF TWO
TENSORS FEATURING IDENTICAL EIGENVECTORS
IN TERMS OF EIGENSPACE

Let /i be the eigenvalues of tensor X and wi be the eigenvalues
of tensor Y. Both tensors share the same eigenvectors wi. Therefore,
we know that the relationships

Xwi ¼ /iwi; i ¼ 1; 2; 3;

Ywi ¼ wiwi i ¼ 1; 2; 3
(A1)

are satisfied. The summation of X and Y leads to

X þ Yð Þwi ¼ Xwi þ Ywi i ¼ 1; 2; 3

¼ /iwi þ wiwi ½cf : Eq: ðA1Þ�
¼ /i þ wið Þwi: (A2)

Consequently, the resulting sum features identical eigenvectors as
well and its eigenvalues are the sum of the individual eigenvalues.

APPENDIX B: TRANSFERABILITY OF DEFINITENESS
RELATED TO THE SUM OF TWO POSITIVE
SEMI-DEFINITE TENSORS

Tensor X and tensor Y are positive semi-definite, which means

8u 2 Rn; uTXu � 0; uTYu � 0: (B1)

The sum of X and Y can be distributed based on the laws of tensor
multiplication

8u 2 Rn; uT X þ Yð Þu ¼ uTXuþ uTYu � 0: (B2)

Consequently, the sum of two positive semi-definite tensors is posi-
tive semi-definite as well.

APPENDIX C: INTERPOLATION PROPERTIES OF TWO
SCALED TENSOR WITH RESPECT ITS LOCATION IN
BARYCENTRIC COORDINATES

Let /1 � /2 � /3 be the eigenvalues of the anisotropic part of
the (3,3)-tensor X and w1 � w2 � w3 be the eigenvalues of the
anisotropic part of the (3,3)-tensor Y. The eigenvalues of the sum-
mation of the scaled tensors

Z ¼ 1� fð ÞX þ fY (C1)

are ri ¼ ð1� f Þ/i þ fwi. The barycentric coordinates are
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xZ ¼ x1C
1
2

r1 � r2½ � þ x2C r2 � r3½ � þ x3C
3
2
r3 þ 1

� �
(C2)

¼ x1C
1
2

1� fð Þ/1 þ fw1ð Þ � 1� fð Þ/2 þ fw2ð Þ½ �

þx2C 1� fð Þ/2 þ fw2ð Þ � 1� fð Þ/3 þ fw3ð Þ½ �

þx3C
3
2

1� fð Þ/3 þ fw3ð Þ þ 1

� �
(C3)

¼ x1C
1
2

1� fð Þ/1 þ fw1ð Þ � 1� fð Þ/2 þ fw2ð Þ½ �

þx2C 1� fð Þ/2 þ fw2ð Þ � 1� fð Þ/3 þ fw3ð Þ½ �

þx3C
3
2

1� fð Þ/3 þ fw3ð Þ þ 1� f þ f

� �
(C4)

¼ x1C
1
2

1� fð Þ /1 � /2ð Þ
� 	

þ x2C 1� fð Þ /2 � /3ð Þ
� 	

þx3C
3
2

1� fð Þ /3 þ 1ð Þ
� �

þ x1C
1
2

f w1 � w2ð Þ½ �

þx2C f w2 � w3ð Þ½ � þ x3C
3
2
f w3 þ 1ð Þ

� �
(C5)

¼ 1� fð ÞxX þ f xY: (C6)

Consequently, the projection onto barycentric coordinates preserves
the ability to interpolate linearly between two initial states in the
ABM.

APPENDIX D: EXAMPLE TENSORS USED IN THIS
PAPER

The positive semi-definite tensor A is defined as

A ¼
2 0:5 �0:5
0:5 2:5 �0:5
�0:5 �0:5 1:5

0
B@

1
CA ; (D1)

with a set of eigenvalues qiA and eigenvectors viA .
Tensor C, which is positive semi-definite as well, reads

C ¼
1 0:5 1:5

0:5 2 0

1:5 0 3

0
B@

1
CA: (D2)

The respective set of eigenvalues is qiC , and eigenvectors are viC .
Tensor B is constructed using the PCS defined by the eigenvec-

tors of A and the eigenvalues of C

B ¼ vinA

q1C 0 0

0 q2C 0

0 0 q3C

0
B@

1
CAvjlA �

2:19 0:55 �1:11
0:55 3:02 �0:83
�1:11 �0:83 0:79

0
B@

1
CA:
(D3)
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