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Aircraft system identification has a five-decades-long tradition at German Aerospace Center (DLR). Over the last

two decades, the research covered various topics related to system identification of fixed- and rotary-wing aircraft,

nonconventional applications and atmospheric effects, the development of new flight-test procedures for system

identification purposes, and specific aircraft model enhancements and corresponding parameter estimation.

Comprehensive tools were developed that support this research and can be applied to a variety of different

problems and types of vehicles. The paper starts with a short description of the different system identification

methods used at DLR and the corresponding tools. The discussion of flight-test procedures and maneuver design as

well as sensor fusion and flight-path reconstruction provides information onhow to optimize the flight tests for system

identification and to arrive at a consistent flight-test database. The examples for fixed-wing aircraft provide

information on identification including abnormal conditions such as icing and interaction with atmospheric

disturbances as well as modeling of structural mechanics and loads. The identification of high-order rotorcraft

models that account for rotor and engine dynamics and even structural modes is discussed, and the identification of

rotormastmoments aswell as the identification of non-physics-basedmodels and their integration into physics-based

models are also covered. A final section shows that system identification can also be used to derive models for

gyroplanes and parachutes as well as to derive control equivalent turbulence input models and to estimate complex

wind field geometries. Thus, a broad overview of possible applications of system identification is given.

I. Introduction

A IRCRAFT and rotorcraft flight dynamics simulation models

require high levels of fidelity to be suitable as prime items in

support of life cycle practices, particularly vehicle and control design

and development, and system and trainer certification. Modern sys-

tem identificationmethods have been developed in recent years [1–3]
that provide new approaches well suited to pilot-in-the-loop fidelity

assessment and systematic techniques for updating simulation mod-

els to achieve the needed level of fidelity. A broad overview of

applying system identification to aircraft and rotorcraft was given

in the past in Refs. [4,5]. More recently, the use of system identi-

fication for improving the fidelity of rotorcraft flight simulation

models was described in Ref. [6].
At DLR, German Aerospace Center (DLR), accurate aircraft and

rotorcraft models are needed for dynamic simulation, flight control

system development, and handling qualities evaluations. These

applications demand advanced models and high-fidelity aerody-

namic databases of flight vehicles. System identification is exten-

sively and routinely used to meet these challenging demands by

generating validated models and databases from flight data. An

overview of system identification applications at DLR was given in

Ref. [7] and is continued with this paper.
During the last decades, models for several different fixed-wing

aircraft were identified. Driven by DLR’s acquisition of the Airbus A

320 research aircraft Advanced Technology Research Aircraft

(ATRA) (see Fig. 1), a corresponding simulation model for, for

example, simulator training, flight dynamics analysis, and develop-

ment of novel pilot assistance functions or innovative controller

design was developed using flight-test data from several extensive
flight-test campaigns. In cooperationwith the Brazilianmanufacturer
Embraer, models for a Phenom 300 business jet and the Embraer E
190-E2 were identified from flight-test data, including special con-
ditions like icing ormodel extensions for including structural dynam-
ics in the models. Additional system identification work was
performed for, for example, a Remos GX single-engine airplane
and different gyroplanes. The latest addition to DLR’s aircraft fleet
is a Dassault Falcon 2000 LX named In-Flight Systems and Tech-
nologies Airborne Research for which two flight-test campaigns in
2022 delivered the first data for system identification.
On the rotorcraft side, DLR operates the Active Control

Technology/Flying Helicopter Simulator (ACT/FHS) (see Fig. 2)
as a test bed for various research projects; see, for example, Refs. [8–
10]. The ACT/FHS is based on an Airbus Helicopters H135, a light,
twin-engine helicopter with a bearingless main rotor and a fenes-
tron, and features a highly modified flight control system [11].
Models of different complexity for the ACT/FHS are needed for
simulation and flight control law development.
The unique test vehicles are complemented by the Air Vehicle

Simulator (AVES) facility located in Braunschweig, which features a
fixed-base and a motion-base simulator with interchangeable Airbus
A320 and Airbus Helicopters H135 cockpits [12].
The paper starts with a short description of the system identifica-

tion methods and corresponding software tools that were developed
and are routinely used at DLR. Next, the different aspects of gen-
erating a consolidated flight-test database are discussed. The section
on fixed-wingmodels covers themodeling and identification of novel
aircraft configurations, structural dynamics, and loads as well as
specific aspects such as icing. The section on rotorcraft identification
deals with the modeling of the various rotor degrees of freedom,
engine dynamics, and generating awide-envelopemodel by combin-
ing linear models derived at different flight conditions. The applica-
tion of system identification to other types of aircraft such as
gyrocopters or parachutes, the modeling of turbulence, and the
prediction of wind fields is covered in a final section.

II. Identification Methods and Software Tools

A. Methods

Three identification methods are routinely used at DLR: 1) the
maximum likelihood (ML) output error method, 2) the frequency
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response (FR) method, 3) the optimized predictor-based subspace

identification (PBSIDopt) method. For the classical methodsML and
FR, a model structure has to be specified, which is usually derived

from physical considerations. Then, the model parameters are esti-

mated based on a given cost function. For the PBSIDoptmethod, only

the model order and two integer parameters have to be specified. The
model structure and corresponding parameters are estimated auto-

matically by the algorithm. All three methods are described in the

next subsections.

1. Maximum Likelihood Output Error Method

The system to be identified is assumed to be described by a
continuous-time state-space model,

_x�t� � f�x�t�; u�t�; θ�
y�t� � g�x�t�; u�t�; θ� (1)

where x denotes the state vector, u denotes the input vector, and y
denotes the output vector. The unknown model parameters are
denoted by θ. Measurements z of the outputs exist for N discrete

time points tk:

zk � y�tk� � v�tk�; k � 1; : : : ; N (2)

Themeasurement noise v is assumed to be characterized byGaussian

white noise with covariance matrix R.
The ML estimates of the unknown parameters θ are obtained by

minimizing the cost function

J�Θ;R� � 1

2

XN
k�1

�z�tk� − y�tk��TR−1

× �z�tk� − y�tk�� �
N

2
ln �det�R�� (3)

The optimization of Eq. (3) is carried out in two steps. In the first

step, it can be shown that for any given value of θ the ML estimate of

R is given by

R � 1

N

XN
k�1

�z�tk� − y�tk���z�tk� − y�tk��T (4)

Having obtained an estimate of R, any optimization method can be

applied to update the parameter vector θ.
For linear continuous-time state-space models

_x�t� � A�θ�x�t� � B�θ�u�t�
y�t� � C�θ�x�t� �D�θ�u�t� (5)

a frequency-domain variant of the ML methods exists where the

measured data are first transformed into the frequency domain using

a fast Fourier transform. This leads to a similar cost function as for the

time-domain variant.
More details about the time- and frequency-domain variants of the

ML method and their implementation at DLR can be found in

Refs. [1,7,13].

2. Frequency Response Method

TheMLmethod in the frequency domain is based onmatching the

Fourier transform of the output variables. In contrast, the FR method

is based on matching the frequency responses, in other words, the

ratio of the output per unit of control input as a function of control

input frequency.
For the linear state-space system from Eq. (5), the frequency

response matrix is determined as

T�s� � C�sI −A�−1B�D (6)

where I denotes the identity matrix.
The quadratic cost function to be minimized for the frequency

response method is

J � 20

Nω

XNω

k�1

wγ�k���jTm�k�jdB − jT�k�jdB�2

�wap�∡Tm�k� − ∡T�k��2� (7)

where T and Tm are a single frequency response and its measured

counterpart, Nω is the number of frequency points in the frequency

interval �ω1;ωNω�, j : : : jdB denotes the amplitude in decibels,∡� : : : �
is the phase angle in degree, and wap is the relative weight between

amplitude and phase errors. The normal convention from Ref. [14]

is wap � 0.01745.

The optional heuristic weighting function wγ is based on the

coherence between the input and the output at each frequency. It is

defined as

wγ�k� � �1.58�1 − eγ
2
xy�k���2 (8)

This coherenceweighting allows an emphasis to be placed onmatch-

ing the frequency responses in those frequency ranges with the

highest coherence and deweighting data with low coherence.
A good overview of system identification using the frequency

response method is found in Ref. [2].

3. Predictor-Based Subspace Identification Method

The PBSIDopt method identifies a linear discrete-time state-space

model,

xk�1 � Adxk � Bduk

yk � Cdxk �Dduk (9)

Fig. 1 DLR’s Airbus A 320 research aircraft ATRA.

Fig. 2 DLR’s research helicopter ACT/FHS.
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forN discrete data points k � 1 : : : N in the time domain. PBSIDopt
is, like other subspace methods, basically a two-step approach. In the
first step, the system states are reconstructed from available input/
output measurements. For this, the parameters of a high-order vector-
autoregressive model with exogenous input (ARX) model of order p
are estimated and then used to set up the extended observability
matrix of rankny ⋅ f andf is a user (integer) parameter. A subsequent

singular value decomposition of this matrix finally reconstructs the
system states. In the second step, the system matrices of a linear
discrete-time state-space model of order n are estimated from the
inputs, outputs, and reconstructed states.
In both steps, only the model orders p and n as well as the integer

parameter f have to be specified, but no model structure or initial
values are required. The model order n determines the most signifi-
cantmodel stateswhich are selected by the algorithm.Additionally,p
andf have amajor influence on the accuracy of the identifiedmodels
and their invariant characteristics like the model eigenvalues. An
approach to choose n, p, and f can be found in Ref. [15]. PBSIDopt
provides consistent estimates even when using noisy and correlated
data from closed-loop experiments. The resulting models have fully
populated system matrices and usually nonphysical states. However,
the identifiedmodel can be transformed in such a way that the first ny
state variables correspond to the output variables by using the trans-
formation described inRef. [16]. Accuracy information for themodel
parameters themselves are not available, but model accuracy metrics
for the invariants of the estimated models (such as eigenvalues or
transfer functions) based on bootstrap approaches or the asymptotic
variance can be estimated.
The PBSIDoptmethodwas introduced and described in Refs. [17–

19] and compared to other closed-loop subspace identification meth-
ods inRef. [20].More details about the PBSIDoptmethod including a
complete description and examples for combining this blackbox
method with the classical ML and FR methods can be found in
Ref. [21] or in Secs. V.D and V.E of this paper.

B. Tools

Several software tools were developed at DLR to support the
various system identification efforts.

1. FITLAB

FITLAB is an integrated software tool for data analysis, system
identification, and rotorcraft handling qualities analysis that is writ-
ten in MATLAB® and has a graphical user interface. The data
analysis part allows for data preprocessing, frequency response gen-
eration, and data visualization of both time-domain and frequency-
domain data.
The identification methods implemented in FITLAB are the ML

output error method in both time and frequency domain and the FR
method. The ML method in the time domain is available for both
linear and arbitrary nonlinear models. The FRmethod can be used to
identify polynomial transfer function models for single frequency
responses or for the identification of linear models from a set of
frequency responses. The minimization of the respective cost func-
tion is performed either with a Gauss–Newton or a simplex-based
optimizationmethod. Both optimizationvariants allow for specifying
bounds for the unknown parameters.
An optional add-on to FITLAB allows for handling qualities (HQ)

evaluation of rotorcraft. The HQ evaluation implements quantitative
criteria like, for example, bandwidth, dynamic stability, and several
coupling criteria. Furthermore, an automatic evaluation of various
mission task element maneuvers from ADS-33 [22,23] is imple-
mented. More details on FITLAB can be found in Ref. [13].

2. ESTIMA

With FITLAB becoming the standard system identification soft-
ware at DLR during the last decade, the Fortran-77 software tool
ESTIMA [24] was not further developed. Nevertheless, ESTIMA is
still available, as it consists of high-performance algorithms and is
optimized to process large-scale systems and huge amounts of mea-
sured data, which is an advantage compared to FITLAB. It includes

the required functions to solve a system identification problem in the
time domain with an equation-error or output-error method.

3. Online System Identification Tools

A fast and reliable system identification during flight test can
achieve a significant reduction of flight-test time, costs, and effort
and therefore improve the overall model development process. Fur-
thermore, if specific information about the aerodynamics and control
capabilities of a novel aircraft is already available during the flight test,
envelope expansion for further flight-test points would bemuch easier.
DLR has developed and tested two different tools based on differ-

ent methodologies for online system identification. The Rapid Aero-
dynamic Parameter Identification Tool (RAPIT) software [25] uses
the well-known Fourier transform regression method for identifica-
tion of aerodynamic model parameters, previously developed by
Morelli [26]. Initial tests during an extensive flight-test campaign
with DLR’s research aircraft ATRA show very good and reliable
results for the parameter estimates.
A secondapproachdevelopedbyDLR is an integrated identification

loop consisting of a data selection tool and a time-domain parameter
estimation tool [27]. This tool can consist of a specific implementation
of ESTIMA or FITLAB, depending on the model language
(FORTRAN, C/C++ or MATLAB®/Simulink) requirements.
Both tools further demonstrated their capabilities of successful

flight-test support during high-risk icing flights where the online
system identification results were required to continuously monitor
the test aircraft’s performance and control characteristics [28].

4. Virtual Flight-Test Data

To provide representative flight dynamics, the virtual test aircraft
(VIRTTAC) model family was created starting in 2018. The first
model, which is freely available for download on GitHub,¶ is a short-
to medium-range airliner named VIRTTAC-Castor [29]. The VIRT-
TAC models are meant to put the user virtually (through simulation)
in the position of a flight-test engineer who is confronted with a new
aircraft and performing flight tests. One possible application is the
generation of a suitable database for system identification purposes as
given in Ref. [30].

III. Generation of Consolidated Flight-Test Data

System identification is based on flight-test data from thevehicle to
bemodeled.When generating these data, care has to be taken that the
vehicle is sufficiently excited. Depending on the vehicle and the
chosen identification method, different types of excitation or maneu-
vers are suitable. Once the flight tests have been performed, data from
different sensors have to be combined, and the consistency of the
generated data has to be checked.

A. Flight-Test Procedures/Maneuver Design

For the classical ML and FR identification methods from
Secs. II.A.1 and II.A.2, special maneuvers are usually performed to
arrive at a suitable database. For time-domain identification, as
mostly used for fixed-wing applications, multistep inputs are pre-
ferred. Rotorcraft identification is mostly performed with frequency-
domain methods, and frequency sweep inputs in all controls are used
as maneuvers. All maneuvers for system identification are preferably
performed open loop to avoid correlation between the different
control surfaces. Maneuvers with dissimilar control inputs should
be used for validation purposes.

1. Design of Novel Maneuver Inputs for More Efficient System Identification

Classical maneuvers for system identification are mostly one-
surface-at-a-time inputs and need to be performed several times at
each flight condition. To overcome these restrictions, various meth-
ods for defining very information-rich multi-axis maneuvers already
exist and have proven their efficiency, for example, maneuvers based
onmultisines/sumof sines signals [3]. DLR recently developed a new

¶See https://github.com/VIRTTAC/VIRTTAC [retrieved 26 March 2023].
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designmethod based on thewavelet transform allowing the definition
of multi-axis inputs in the time-frequency domain [31,32]. The goal
of this research approach was to propose new ways to design maneu-
vers, which can, furthermore, be used to reduce flight-test time or
improve the accuracy of airplane simulation models. The proposed
method allows designing multi-axis excitation maneuvers by speci-
fying the frequency content and the corresponding timeframes when
the frequencies are excited. When flight testing an aircraft, the
dynamic characteristics are not exactly known a priori but predicted
to be close to certain frequencies. Using the proposed technique of
signal design, the aircraft can be excited with a certain frequency
bandwidth around that prediction at a certain time during the maneu-
ver. With one dedicated and relatively short maneuver, the aircraft
motion can be excited at and around all relevant frequencies in all
axes. This would reduce the need for repeating classical maneuvers
with a wide-range frequency excitation and might merge the advan-
tages of these with the multisines approach using only a certain set of
discrete frequencies.
The method’s basic idea uses the fact that a wavelet transform

yields a time-frequency representation (TFR) of a signal and that the
signal can be reconstructed from its TFR. Starting by specifying the
desired TFR, the designed input signals can be generated by an
inverse wavelet transform. Hence, the parameterization of the input
signal definition is performed by using only a few parameters to
define the correlation between time and frequency in the time-
frequency plane (TFP). An explicit explanation of the wavelet trans-
form and its applications to input signal design can be found, for
example, in Refs. [27,32,33].
An overview of themethodology is given in Fig. 3. Aircraft a priori

information can be used to select the desired frequency bands for the
signal. Heisenberg boxes in the TFP are used to represent this
information in the time/frequency domain. An inverse discrete wave-
let packet transform using a selected wavelet yields the desired signal
in the time domain, which can then be assigned to any of the control
surfaces.
As an example, an elevator signal generation is shown in Fig. 4. The

top plot gives the definition of the 32 × 16 TFP, which results in
Heisenberg boxes with a width of 2 s and a height of approximately
0.2753 Hz. The time history plot in the middle shows the resulting
signal from the inverse wavelet packet transform. The bottom plot
provides the resulting elevator signal’s frequency content. As defined,
no frequency above 2 Hz is included to ensure only exciting the
aircraft’s rigid-body dynamic modes. A much more detailed analysis
of the input signals, the corresponding model identification, and a
discussion of the results is given in Ref. [32].
All in all, the proposed methodology allows the user to design

complex signals both with and without a priori information of the

system to be identified. Moreover, only a quite restricted number of

parameters is required to define these input signals.
Another approach to multi-axis maneuver design is to use the

method proposed in Ref. [34], which uses genetic algorithms to

optimize the power spectra formulti-axismultisine inputs or to define

the switching times for multi-axis multistep inputs, based on cost

functions computed from the information matrix associated with a

known design model.

2. Generalized Binary Noise for Closed-Loop Rotorcraft System

Identification

Asmentioned previously, common rotorcraft system identification

approaches use frequency sweeps for each control input and flight

condition. Flying frequency sweeps require a trained test pilot simul-

taneously applying the required control input, stabilizing the rotor-

craft, andmaintaining a flight state near the reference trim. Therefore,

these flight tests are challenging, require extensive pilot and crew

training, and often result in very time- and cost-intensive flights but

also in excellent open-loop frequency responses. A flight control

Fig. 3 Overview of proposedmaneuver designmethod based on the idea of creating input signals with distinct frequency band excitations at predefined
times, adapted from Ref. [32].
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system can considerably ease this task (see Ref. [2], chapter 9), but
frequency sweeps from closed-loop systems with highly or fully
correlated control inputs require more-extensive postprocessing
steps to reconstruct the correct open-loop frequency [35]. Orthogonal
multisine inputs have been shown to be an alternative for multi-axis
system identification, but an a priori optimization step is required to
ensure small amplitudes [36]. Nonetheless, if a priori knowledge of
the vehicle dynamics is available, suitable chosen multisines can be
optimal test inputs.
Advanced test inputs are rarely used in industrial applications

because complex input generators and/or laborious flight tests shall
be avoided. More frequently, pseudorandom binary sequences
[(PRBS) or pseudorandom binary noise)] are applied for system
identification in open- and closed-loop operations. PRBS has an
almost white frequency spectrum and nearly evenly distributed
energy and thus a smaller average amplitude than multisine waves.
Generalized binary noise (GBN) as described in Ref. [37] is related to
PRBS. In contrast to PRBS, GBN offers an adjustable frequency
spectrum, which allows one to distribute the control energy nearly
evenly over the frequency range of interest. Therefore, the average
amplitude of such signals can be smaller in comparison to signals
consisting of a small number of frequencies [38].
GBNhas a smooth spectrum in the given frequency range and does

not require a priori optimization. It can be implemented easily in a
signal generator because only a random number generator and a
switching logic is needed. Additionally, GBN shows advantages
using a one-step-ahead prediction method like PBSIDopt; see
Sec II.A.3. Nonetheless, random noise inputs like GBN can result
in high control rates, and (randomly) pairwise signal correlations
require adequate noise generators.
In Ref. [39], an industrially attractive closed-loop system identi-

fication approach is proposed and evaluated for multi-axis GBN
excitation of the ACT/FHS rotorcraft simulation. Figure 5 shows
the simplified closed-loop system of the ACT/FHS which consists of
the feedback controller GFB, the plant model GM and two excitation
signals r1 (control system reference values, Ref) and r2 (additional
actuator controls, Ctr). Output noise is denoted as e, and the rotorcraft
actuator inputs are denoted as u.
To ensure a persistent excitation of the full frequency range of

interest, eight different GBN signals are needed for the ACT/FHS:
four control system reference values (r1, Ref) for lower frequencies
and four additive actuator signals (r2, Ctr) for mid and high frequen-
cies. The total actuator commands u � �δlon; δlat; δped; δcol� of the

ACT/FHS during a closed-loop system identification maneuver
using GBN are shown in Fig. 6. The actuator command for longi-
tudinal cyclic is denoted as δlon, lateral cyclic is denoted as δlat, pedal
(tail rotor actuator) is denoted as δped, and main rotor collective is

denoted as δcol. The resulting actuator amplitudes are small in com-
parison to conventional frequency sweeps, and all actuators are
excited simultaneously. Additionally, the rotorcraft remains near
the chosen trim point, because the flight control system is active.
In Ref. [39], different GBN frequency ranges for r1 and r2 are

investigated, and the overall experiment time as well as the signal-to-
noise ratio are compared to frequency sweeps. Accurate models of
the open-loop bare airframe dynamics of the ACT/FHS could be
identified using this closed-loop data applying the PBSIDopt system
identification method, even though these maneuvers cannot be used
for proper frequency response extraction [21].

B. Sensor Fusion and Flight-Path Reconstruction

Accurate vehicle states are needed among others for system iden-
tification and the later model validation step. In general, raw sensor

data cannot be used directly because, for example, sensor noise or
bias can corrupt the system identification results. Thus, a postflight
data processing step is required, which is often referred to as data
consistency and compatibility check and state reconstruction; see
Refs. [1,40] or [2]. Because the flown trajectory of the aircraft or
rotorcraft is estimated in this procedure, this step is also called flight-
path reconstruction (FPR) [41,42]. The aim of the FPR is to estimate
the rotatory and translatory states of the vehicle and to possibly
identify sensor models. In general, the six-degree-of-freedom rigid-
body kinematics and a nonlinear observation model, for example,
sensor models, are used to solve this state estimation problem.
For the FPRof theACT/FHS, two unscentedKalman filters (UKF)

[43] are used, because the aircraft kinematics and the observation
model are nonlinear and UKFs showed improved performance over
commonly used extended Kalman filters for highly nonlinear equa-
tions. Both UKFs are implemented as square-root unscented Kalman
Filters [44] using a scaled unscented transform to improve numerical
robustness [45]. To simplify the filter design and implementation,
rotatory, translatory, and air data measurements are fused and filtered
in two different filters: the rotatory and the FPR Kalman Filter. The
structure of the overall rotorcraft FPR is shown in Fig. 7.
In the first module Rot, the different rotatory measurements yRot

are corrected for sensormisalignment and then fused to xRot using the
rotatory UKF. For the ACT/FHS, these rotatory measurements con-
tain the rates and attitude angles from the two attitude and heading
reference systems (AHRS) of the production aircraft and from a
Honeywell inertial navigation system (INS). Separating the rotatory
from the translatory states is possible because the rotatory states do
not depend on translatory or air data measurements.
The estimated rotatoryUKF states xRot are then used in the center of

gravity module to transform the uncorrected translatory and air data
measurements yFPR;uc to the rotorcraft’s center of gravity (CG). In

addition, xRot is used as an input in the FPR module, where the CG-
corrected measurements yFPR are used as measurements for the UKF
update step. The translatory measurements comprise the translatory
accelerations (of the two AHRS and the INS), the GPS position, and
velocity (from the INS and one satellite-based augmented GPS). Air-
speed, angle of attack, and angle of sideslip are used from the pro-
duction rotorcraft air data sensors and the ACT/FHS’s noseboom. The
filter’smeasurement covariance depends on the current flight status; in
other words, the airspeed-dependent measurement covariance of the
air data sensors and the accuracy information provided by the GPS
sensors are considered. Finally, the estimated states are processed by
two separate unscented Rauch–Tung–Striebel smoothers (URTS) as
described in Ref. [46]. Thus, the estimated states are smoothed in an
optimal sense without an additional phase delay.

GFB

Ctr r2

Ref r1 yu

e

GM-

Fig. 5 Closed-loop system with excitation signals r1 and r2, from
Ref. [39].
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Fig. 6 Actuator commands during closed-loop system identification
maneuver of the ACT/FHS, adapted from Ref. [39].
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Fig. 7 Overall rotorcraft FPR module structure, from Ref. [46].
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In addition to the FPR presented previously, an online FPR is
implemented into the ACT/FHS to provide consistent data for the
flight control system. The online FPR is implemented in the same
manner except for the additional URTS smoothers. The offline and
online flight-path reconstruction of the ACT/FHS is explained in
detail in Ref. [47].

IV. Fixed-Wing Models

This section provides several descriptions of the work done at DLR
besides the classical fixed-wing simulation model identification, high-
lighting specific research results and modeling/system identification
approaches. Problems addressed herein reach from the analysis of
operational flight data to the modeling of flexible aircraft.

A. Thrust Model Identification from Operational Flight Data

Aircraft operations are mainly driven by the vehicle’s flight perfor-
mance whose optimization is key to a sustainable future of aviation
with fewer emissions. Therefore, high-quality simulation models of
the actual flight performance, in other words, drag and thrust as
functions of angle of attack, Mach number, static pressure, temper-
ature, and so on, must be available for usage within the operation
optimization process. There are several ways to obtain such models
which are based on different sources of information about the distinct
aircraft type. One very reliable source of information for these models
are large operational flight databases, which then pose a big data
problem. A smart way to solve such problems is the application of
fundamental engineering knowledge together with well-established
system identification techniques.Within these operational data, engine
thrust and aircraft aerodynamics (especially the aircraft’s drag) are
directly correlated, which poses a challenge to any attempt to deter-
mine the desired flight performance models. The main assumption for
the suggested approach is that big amounts of data allow one to
decorrelate drag and thrust if the aerodynamics do vary due to flap/
slat configuration changes and engine thrust is not dependent on these
changes. It means that similar engine thrust conditions do exist for
different aircraft configurations and consequently drag, which then
allow one to determine each part (thrust and drag) individually.
The following iterative procedurewas used to determine the lift/drag

model and the engine thrust model from the operational data. First, a
priori values for lift and drag for each flight condition and flap/slat
configuration were calculated based on an assumed aircraft aerody-
namics model (e.g., simple handbook-based formulation of aircraft
drag polar and lift curve). Second, using this assumed aircraft drag,
the required thrust to obtain a force equilibriumwas calculated for each
data point. Third, the engine thrust model was identified from the
calculated required thrust data. Next, the aircraft lift and drag were
recalculated based on measurements (inertial data and atmospheric
parameters) and the output of the identified engine thrust model, and
the parameters of the lift/drag model were estimated. If required, the
corresponding model structure was identified in this step as well.
Closing this loop allowed iterating until the aerodynamicmodel param-
eters had converged and the engine thrust model remained constant.
The thrust of a jet engine depends on several engine states and

external parameters. Hence, the model formulation must cover the
main influences to reliably predict the engine thrust within the
required flight envelope and for all relevant thrust settings. Themajor
parameters driving the jet engine thrust are given by engine fan speed
N1,Mach numberMa, barometric altitudeH, and temperature (in the
given case, temperature offset from the standard atmosphere temper-
ature ΔISA). In general, the engine thrust model is defined by

T � Tnet ⋅ fcorr�ΔISA; : : : �
� f�N1;Ma;H� ⋅ fcorr�ΔISA; : : : � ≈ Treq (10)

where the required thrustTreq can be derived using the force balance in

the aircraft longitudinal direction with the acceleration measurements
and the (a priori) aerodynamics information. The model formulation
contains two parts: the net thrust Tnet formulation f depending on the
fan speed, Mach number, and altitude and a temperature offset-

dependent correction fcorr. To obtain a suitable engine thrust model,
the maximum likelihood problem

θ̂ � argmin
θ

 XN
i�1

�zi − yi�θ��2
!

(11)

must be solved, considering the required thrust as N measurements z
and the thrust model output y. Different modeling approaches can be
applied, resulting in different model accuracies and model determina-
tion efforts. The best model accuracy even outside the given data
envelope can be achieved with a nonlinear thrust table model for
Tnet, which is able to represent the complex engine thrust behavior
with the given regressors. The table is defined by a given number of
breakpoints NBP in each dimension and the thrust results from inter-
polation between the table entries.Hence, in thegiven case, the number
of free parameters p for estimation is defined by

p � NBPN1
⋅ NBPMa

⋅ NBPH

Onemajor requirement for the engine thrust table is that it should have
a smooth shape and no significant local changes of curvature. No
discontinuous behavior of thrust with fan speed, velocity or Mach
number, and altitude or pressure should be expected. Furthermore, the
fundamental engineering knowledge about jet engines and the way
they produce thrust directly imposes the need to obtain smooth thrust
curves; a jet engine within its normal operation limits will not produce
an abrupt change of thrust due to a change of flight condition because
the thermodynamic cycle within the engine is running continuously.
As long as nomajor disturbance of this process occurs, like engine stall
or any malfunction, there must be no significant change of thrust
curvature with the used regressors. Without such assumptions, the
resulting thrust model will not be able to reasonably and reliably
predict the engine thrust. The optimization problem is reformulated as

θ̂ � argmin
θ

 XN
i�1

�zi − yi�θ��2 � kΓ�
2θk2

!
(12)

In this case, the Tikhonov regularization matrix Γ�
2 [48,49] is used to

penalize the second-order derivatives of the multidimensional thrust
table in each direction in order to smooth the table shape. The opti-
mization problem in Eq. (12) can be solved by application of the
iterative Gauss–Newton method.
As an example, Fig. 8 shows some results of the engine thrust table

evaluation after identification. The results reflect the (steady) non-
linear engine thrust behavior. These results show that fundamental
knowledge about the aircraft physics and smart application of system
identification methods allow the reliable estimation of engine thrust
models from a large database of operational flight data recordings.
Recent work on the identification of a nonlinear engine thrust

model table for a large envelope is given in Refs. [50,51], and the
reader is encouraged to consider these references for deeper insight
into the work presented briefly herein.

B. Icing

Icing can have hazardous effects on aircraft performance charac-
teristics and can be a limiting factor for the safe flight envelope. The
change of the dynamic behavior and a potential premature stall raise
the need for the pilot’s situational awareness and an adaption of his/
her control strategy. Aircraft icing again came more into focus of
research after several serious accidents and the definition of new
certification requirements for new transport aircraft for flight into
icing conditions: Appendix O of CS-25 [52] or Federal Aviation
Regulation (FAR) Part 25 [53]. These new requirements cover super-
cooled large droplet (SLD) icing conditions and complement the
existing requirements for icing conditions formulated in Appendix C
of the regulations. In 2011, DLR started to develop novel model
implementations to represent the icing effects on aircraft flight char-
acteristics within several projects. Themodel formulations consist of a
linearΔ-model approach to the already developed and identified clean
(uniced) aircraft model. An arbitrary model parameter P including a

6 Article in Advance / DEILER ETAL.

D
ow

nl
oa

de
d 

by
 D

L
R

 D
eu

ts
ch

es
 Z

en
tr

um
 f

ue
r 

L
uf

t u
nd

 R
au

m
fa

hr
t o

n 
Ju

ne
 8

, 2
02

3 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/1
.C

03
72

62
 



basic model part Pbase and an additional Δ-model part ΔPice can be

expressed as

P � �1� kP� ⋅ Pbase � dP

� Pbase � ΔPice (13)

Based on high-fidelity computational fluid dynamics simulations, an

iced model for the well-known already retired DLR research aircraft

Vereinigte Flugtechnische Werke (VFW) 614 Advanced Technolo-

gies Testing Aircraft System (ATTAS) including distributed icing

effects on wings and the tailplane was formulated, identified, and

analyzed [54,55]. Using an equation error approach, the Δ-model

parameters were estimated for different ice configurations, resulting

in a prediction of the icing-related changes in lift and drag coefficients

as given in Fig. 9.
Furthermore, joint DLR/Embraer research on aircraft icing was

established in2012andmade a contribution to someof thekey scientific

aspects related to aircraft icing, for example, aircraft operational limi-

tations and behavior with accumulated ice on various surfaces on the

example of a Phenom 300 prototype. As an outcome of this research,

various publications [55–59] present the major findings, the used

modeling approach and identification results, and the analysis of the

degrading effects of icingwith regard to certain SLD ice configurations.

During the development of the corresponding simulation models, new

model formulations were derived and identified using an output error

method in the time domain [56,57]. Figure 10 shows the lift and drag

curves for the base aircraft and five different ice configurations, which

couldbeextracted from the simulationmodels after identification.These

results clearly revealed the different aerodynamic effects of specific ice

configurations on the same aircraft, but they also show the mainly

degrading effects on flight performance. Proof-of-match plots illustrat-
ing themodel quality after identification are given inRef. [59]. Based on
the system identification results and the obtained knowledge about the
effects on aircraft icing, DLR developed a novel performance-based ice
detection methodology [60], which only relies on standard aircraft
avionics measurements and fundamental flight mechanics knowledge.

C. Structural Dynamics

The interest in accurately modeling flexible aircraft dynamics grew
with the development of very large aircraft and the great research
efforts toward the development of energy-efficient, environment-
friendly aircraft, like solar-powered ones. The first structural modes
of these configurations have lower natural frequencies than those of
more conventional aircraft. But even for conventional aircraft, the
future use of thin airfoils, high aspect ratios, and light materials will
also shift the structural modes to lower natural frequencies, which will
result in coupling with the rigid-body response. Hence, the classical
split of (nearly) independent rigid-body (six-degree-of-freedom
motion) flight mechanics and structural motion is not valid anymore.
To obtain the corresponding high-quality simulation models, DLR

started a specific research project with a high-performance glider at
the beginning of the last decade. Within this research, the applicabil-
ity of system identification techniques in the time domain to include
the effects of structural motion on an aircraft’s classical flight dynam-
ics was demonstrated. The SB 10 (Fig. 11), a high-performance
two-seater glider designed and manufactured by Akaflieg Braun-
schweig, has awingspan of 26mand an aspect ratio of 31.Besides the
classical control surfaces (elevator and rudder), thewing trailing edge
has moving surfaces divided into three sections. The inner section is
used as flaps, whereas the middle and outer portions act simulta-
neously as flaps or ailerons by symmetrical or antisymmetrical

Fig. 9 Changes of lift and drag curves for different ice cases: 10 and 20min ice accumulation at leading edge; aerodynamic model data for the VFW614
ATTAS. From Ref. [55].
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Fig. 8 Nonlinear thrust table evaluations at example conditions; example after identification from a large operational flight data set for a Pratt &
Whitney PW1100G engine on an Airbus A 320neo. From Ref. [50].
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deflection, respectively. The very high aspect ratio combinedwith the
lightweight composite structure leads to high flexibility, with the first
symmetric bending mode having a natural frequency of the order of
1 Hz. Such low frequencies allow the excitation of the structural
modes by a human pilot deflecting the aircraft’s control surfaces.
A test campaign was performed from the airport of Braunschweig,

Germany, resulting in 11 flights with a total of 11 flight hours and 72
test points. The flight data consist of manually performed system
identification maneuvers with, for example, (multi-)step inputs to
ailerons, elevator, rudder, or flaps as well as sweep inputs for a
broader frequency range of excitation.
In a data preprocessing step, additional signals like angular

accelerations and low-pass-filtered angles of attack and sideslip
were generated. The latter had to be filtered to remove the undesir-
able effects of vibrations of the wing boom. A comprehensive data
compatibility check resulted in sensor models for, for example, the

angles of attack and sideslip, including, for example, the calibration

factor, bias, and time delay. These steps provide a solid foundation

for the subsequent identification of the flexible model.
In general, the modeling approach is based on the work ofWaszak

and Schmidt [61]. The equations of motion and the inertial decou-

pling between the rigid-body (R) and structural dynamics (F) are

obtained through the use of the mean axes reference system.
The translational and rotational rigid-body equations ofmotion are

given by

m� _Vb �Ωb × Vb − Tbgg� � Fext � FR � FF (14)

Ib _Ωb �Ωb × �IbΩb� � Mext � MR �MF (15)

where Vb;Ωb are the vectors of translational speeds and rotational

rates. Ib denotes the inertia tensor, and Tbg is the transformation

matrix from geodetic to body-fixed reference system.
The dynamics equations for the Nf structural modes are given in

generalized form,

∀i∈ �1;Nf�; �ηi� 2ζiωi _ηi�ω2
i ηi �

Qi

mi

�Qi;R �Qi;F

mi

(16)

where ηi is the generalized displacement,ωi is themode frequency, ζi
is the structural damping, and mi is the generalized mass.
The external forces Fext and moments Mext driving the transla-

tional [Eq. (14)] and rotational [Eq. (15)] rigid-body equations of

motion as well as the generalized moments Qi driving the structural

equations of motion [Eq. (16)] are composed of the sum of the

aerodynamic forces, moments, or generalized moments due to the

rigid-body response (including control deflection contributions) FR,

MR, or Qi;R, respectively, and forces or moments due to the flexible

response FF,MF, or Qi;F.

The structural displacement d of an arbitrary point of the aircraft’s

structure is modeled as the sum of contributions from its normal

modes represented by the generalized displacements and the mode

shapes Φ:

d�x; y; z; t� �
X
i

Φi�x; y; z� ⋅ ηi�t� (17)

The aerodynamic forcesFR andmomentsMR are represented by a

derivative model formulation taking into account the major regres-

sors for the classical aircraft aerodynamics, for example, angle of

attack α; angle of sideslip β; true airspeed VTAS; control surface

deflections δ; or rotational rates p; q; r. The influence of the elastic
modes on the external forcesFF andmomentsMF is given through a

coefficient model of the form

C�⋅�F �
X
i

C�⋅�ηi ⋅ ηi �
X
i

C�⋅�_ηi ⋅
_ηi ⋅ l

2 ⋅ VTAS

(18)

Fig. 11 Sensor locations on the SB10 glider test aircraft: accelerometers
a; strain gauges ϵ; control surface deflections δ; airflow data α;β; �q;p;Ts;
inertial measurement unit (IMU) and GPS receiver. Adapted from

Ref. [62].

Fig. 10 Changes of lift and drag curves for different ice cases: leading-edge and runback ice (Appendix C of CS-25) and three SLD-ice configurations;
aerodynamic model data (after identification) for the Phenom 300. Adapted from Ref. [59].
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where l denotes the reference length. Note that the forces and
moments are calculated from the coefficients by multiplication with
dynamic pressure and reference area, and reference length in case of
moments.
The resulting expression for the influence of rigid-body motion

and control surface deflections on the generalized loadsQi;R is given
by a linear derivative model quite comparable to the aerodynamic
model formulation accounting for the contributions of the angle of
attack α; angle of sideslip β; control surface deflections δ; and rota-
tional rates p; q; r. The influence of modal deflections and velocities
on the generalized loadsQi;F is defined by a coefficientmodel similar

to Eq. (18).
The measurements of accelerometers ak distributed along the air-

craft structurewere used to reconstruct the elastic states and the shapes
of the structural modes. The outputs of these sensors correspond to the

sum of the accelerationsaCG at the center of gravity, the inertial effects
resulting from the distance between the sensor location and the center

of gravity rCG;k, and the effects of structural motion,

ak � aCG� _Ωb × rCG;k �Ωb × �Ωb × rCG;k��
X
i

Φ�;k
ηi �ηi (19)

withΦ�;k being a submatrix of the modal matrixΦ considering only
the node related to themeasurement position k in the three translational
directions for the considered modes i. Note that the latter entries of the

matrix are unknownand subject to the parameter estimation. The stress
at a given measurement location on the flexible structure is a linear
combination of the individual contributions of each normal mode. For
a linear stress-strain relationship, the strain behaves in the samemanner
at location k,

ϵk � ϵk0 �
X
i

ϵki ηi � ϵkT�T − Tref� (20)

where ϵk0 corresponds to the zero term or bias in the strain measure-

ment, ϵki is the effect of the ith normal modal deflection on the strain

output, and ϵkT is used to compensate the effects of air temperature
changes with Tref as an arbitrary temperature level of reference.
Using these accelerometer and strain gauge measurements in

addition to inertial and atmospheric measurements, a system identi-
fication in the time domain is performed in order to identify themodel
structure and estimate the parameters of the flexible glider simulation
model. Step by step, five different structural modes (four wing
bending and one lateral fuselage bending)were included in themodel
after identification of the rigid-body dynamics [62–64]. As an exam-
ple, Fig. 12 provides time history comparison plots of measurements
and simulation outputs after identification for the sole rigid-body and
the full flexible glider model. It is clearly visible that the inclusion of
the structural dynamics significantly enhances the model’s ability to
represent themeasurements. Hence, these results show the possibility

Fig. 12 Timehistoryplots of rigid-bodyand flexiblemodels for longitudinal 3211maneuvers (elevator and flapdeflection) at 160km/h; refer toFig. 11 for
meaning of symbols.
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of a combined rigid-body and structural dynamics model identifica-

tion in time domain (including mode shapes) with suitable measure-

ments from flight tests. The identification of such a hybrid-flexible

model for a large transport aircraft using frequency-domain identi-

fication is described in chapter 16 of Ref. [2]. Similarly, this hybrid-

flexible modeling approach has been successfully applied to the

ACT/FHS helicopter as shown in Sec. V.C.

D. Loads Monitoring

In 2014, DLR started the development of a rigid-body multipoint

loads model based on flight-test data using time-domain system

identification techniques. For this work, a Discus-2c sailplane served

as a flight-test platform: a single-seat high-performance sailplane

manufactured by Schempp-Hirth Flugzeugbau GmbH (Fig. 13). It

was equipped with a special flight-test instrumentation composed of

inertial and GPS sensors, control surface deflection sensors, a five-

hole probe nose boom, 46 strain gauge sensors, 20 fiber Bragg

gratings, and 15 three-axis accelerometers at different aircraft

locations.

There were no sensors to measure the loads directly. The loads

have to be calculated from the strain gauge and/or the fiber Bragg

grating measurements; in other words, these sensors have to be

calibrated. To generate a database for these calibrations, extensive

ground tests in a hangarwere performed [65].By placing sand bags of

known weight on various places on the aircraft’s structure, more than

500 static load cases were generated. For seven load stations, six on

the wing and one on the tail, the true loads were calculated from the

known weights and positions of the sand bags. The parameters of

the calibration equations were estimated to enable the calculation of

the structural loads (shear forceV, bendingmomentM, and torqueT)
at the seven load stations from the strain gauge and fiber Bragg

grating measurements. In Ref. [65], various practical pitfalls of the

calibration process and the issue of selecting the best combination of

sensors for the calculation of the local structural loads are discussed.

As an example of the final quality of the calibration, Fig. 14 gives the

proof of match between the calibration equation output for the shear

force at the right wing load station WR1 (0.82 m from the symmetry
plane of the aircraft) and the real applied loads for almost 300
calibration load cases.
Having the calibration equations available, the next step was to

formulate different models allowing a load calculation in simulation,
in other words, not from measurements but from physics-based
models accounting for inertial and aerodynamic forces andmoments.
As an extension of the two-point model formulation separating wing
and horizontal tail influences on aerodynamics [66], a three-point
model (left and right wing, horizontal tail) was developed and
identified [67,68]. Additionally, a so-called seven-point model that
allows the computation of local loads (shear, bending, and torsion) at
seven load stations (three on the left wing, three on the rightwing, and
one at the horizontal tail) was introduced and identified.
In a subsequent step, the Discus-2c glider was equipped with

Micro-Electro-Mechanical-System (MEMS) pressure sensors to
measure the aerodynamic loads present on the airplane’s wing during
flight. Having the calibrated results from the strainmeasurements, the
quality of the loads derived from the MEMS pressure sensor mea-
surements could be assessed during the flight test [69,70].

V. Rotorcraft Models

The vast majority of rotorcraft system identification performed at
DLR pertains to the ACT/FHSwhere models of different complexity
are needed for simulation and flight control law development. As
models are required for the whole flight envelope, dedicated flight
tests with frequency sweep andmultistep inputs (3211 or 2311) in all
controls were performed at five reference speeds (hover and 30, 60,
90, and 120 kt) and yield the database for all system identification
efforts.

A. Rotor

According to Ref. [2], models of theACT/FHS to be used for flight
control development should accurately cover the frequency range of
1–15 rad/s. But experience has shown that this frequency range is too
narrow and has to be extended at the lower end for flying with
external loads and at the upper end to avoid exciting structural modes.
The aim was thus to develop models that are accurate over the
frequency range of 0.5–30 rad/s. This means that an extended model
structure that explicitly includes the regressive flapping, coupled
inflow/coning, and regressive lead/lag states of the rotor is necessary.

1. Flapping

In state-space identification with a six-degree-of-freedom (DOF)
model, the fuselage motion is described by a fully coupled quasi-
steady model structure. The rotor is treated as an actuator disk,
comparable to control surfaces on a fixed-wing aircraft. The time

Fig. 13 DLR Discus-2c Sailplane as flight-test platform for loads data
generation.

Fig. 14 Comparisonof real and calibrated shear forcesmeasuredbya strain gauge sensorat the rightwing load stationWR1and the errorbetween them,
from Ref. [67].
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of the transient rotor response is taken into account by equivalent time
delays on the cyclic controls.
Even though the on-axis responses in pitch and roll can be

adequately described by a 6-DOF model, Fig. 15 shows that the
match in the cross-axis responses to cyclic control inputs (roll rate
due to longitudinal cyclic p∕δlon and pitch rate due to lateral cyclic
q∕δlat) is not satisfactory. Neither the amplitude nor the phase is
modeled correctly. To improve thismatch, an additional specific rotor
dynamic phenomenon, the regressive flap response, has to be
accounted for.
Rotor flapping is usually accounted for in system identification

modeling with the explicit formulation developed by Tischler et al.
(chapter 15 in Ref. [2]). This explicit formulation includes two
coupled first-order differential equations for the longitudinal and
lateral flapping angles that are triggered by the longitudinal and
lateral cyclic control inputs. Alternatively, an implicit formulation
of the flapping equations as first described in Ref. [71] can be used
where the flapping angle equations are inserted into the equations for
pitch and roll rate, resulting in pitch and roll acceleration as two
additional state variables.
InRef. [72], it is shown that the explicit and the implicit formulations

of the rotor flapping dynamics produce equivalent results. The tradeoff
between implicit and explicitmodeling of the flapping dynamics in the
context of rotor state feedback is discussed in Ref. [73].
Figure 15 shows that an 8-DOF model that accounts for the

flapping dynamics provides a much better match of the phase at
higher frequencies for the cross-axis responses. For pitch due to
lateral input, the amplitude at higher frequencies is also improved.
The model improvement by accounting for flapping in case of the
Bell 412 helicopter is demonstrated in Refs. [74,75].

2. Inflow/Coning

The vertical response to collective input at low frequencies (below
1 rad/s) is dominated by the first-order helicopter heave damping
characteristic. At mid to high frequencies (about 1–12 rad/s), the
vertical response is characterized by the coupled inflow/coning
dynamics. The inflow describes the air-mass dynamics of the lifting
rotor that cause transient rotor thrust effects, and coning is the
symmetric deflection of the rotor blades. At higher frequencies, the
response is dominated by the second-order coning dynamics with a
natural frequency of about once per revolution. The exact frequency
depends on hinge offset and flapping stiffness.
Figure 16 compares the resulting frequency response of vertical

acceleration due to collective control input az∕δcol for different
modeling approaches using numerical values of the ACT/FHS. The
first curve is based on the quasi-static model _w � Zww� Zδcolδcol. It

can be seen that the quasi-static formulation leads to flat amplitude
and phase curves at higher frequencies.
An implicit model that includes the first-order inflow equation and

accounts for coning through an equivalent time delay is derived in
Ref. [71]. The second curve in Fig. 16 is a simulation of the corre-
sponding transfer function. It shows that accounting only for inflow
and not for coning leads to a rising amplitude in the vertical response
at higher frequencies but yields no phase reduction. The third curve in
the figure illustrates that the phase drop that is caused by the coning
can approximately be accounted for if the implicit model is extended
by an equivalent time delay.
The approach most widely used for modeling the inflow/coning

dynamics and their coupling to the fuselage is the hybrid formulation
developed byTischler et al. (chapter 15 inRef. [2]). The fourth curve in
Fig. 16 is the corresponding vertical acceleration response. It can be
seen that the hybrid model with inflow and coning leads to a transfer
function zero and thus a large drop in amplitude at the rotor frequency.
All these different modeling formulations are applied to ACT/FHS

flight-test data and compared in Ref. [76]. The hybrid model pro-
vided a good match for frequencies up to 15 rad/s, which is sufficient
for many flight dynamics and control applications. However, the goal
was to extend the model validity up to 30 rad/s. Because of its
bearingless design, the rotor of the ACT/FHS has a relatively large

Fig. 15 Improvement of the cross-axis responses of a 6-DOF ACT/FHS model in hover by accounting for flapping (8 DOF).

Fig. 16 Simulated frequency responses for az∕δcol using differentmod-
els (ACT/FHS in hover), adapted from Ref. [76].
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equivalent hinge offset of 10%, but the hybrid formulation was

developed assuming small hinge offsets. Thus, the coning equation

of the hybrid model had to be extended to include the influence of

hinge offset. Furthermore, two parameters of the hybrid model had to

be estimated instead of using the theoretical predictions to finally

arrive at the match shown in Fig. 17. Details of these model exten-

sions can be found in Ref. [76].

3. Regressive Lead/Lag

Unlike for regressive flap responses to cyclic inputs, no simple

physical modeling exists for the coupled state-space equations for the

lead/lag motion. Therefore, a modal approach is usually taken, where

two closely spaced complex pole/zero pairs (dipoles) with a common

denominator are appended to the pitch and roll rate responses to account

for the effect of the regressive lead/lag; see chapter 15 in Ref. [2].

For the ACT/FHS, a slightly different approach is used where the

dipoles transform the cyclic control inputs δlon; δlat; in other words,

the dipoles are added on the input side and not on the outputs of pitch

and roll rate p, r. The reason for this is the fact that the effect of the

regressive lead/lag for theACT/FHS is not only present in the on-axis

responses (p∕δlat andq∕δlon) but is also very pronounced in the cross-
axis responses (p∕δlon and q∕δlat).
Whereas the lead/lag effect in the on-axis responses is modeled

equally well with both approaches, the left part of Fig. 18 shows that

the lead/lag effect in the cross-axis response of theACT/FHS is better

captured by the model with two dipoles at the inputs and not by the

usual formulation with dipoles at the outputs. Another advantage of

the model formulation with the dipoles at the inputs is that influences

of the lead/lag on the longitudinal and lateral accelerations that are

present in ACT/FHS data can be captured as can be seen in the right

part of the figure. A thorough discussion of the different variants of

lead/lag modeling that also includes another formulation with only

one complex dipole is found in Ref. [77].

B. Engine

After accounting for the rotor degrees of freedom of flapping,

inflow, and regressive lead/lag, the identified models of the ACT/

FHS still had deficits in the response of the yaw rate due to collective

input that were attributed to unmodeled engine dynamics.

Accounting for engine dynamics by a simple lag in the influence of

collective input on the angular rates was not sufficient. A regression

analysis of the yaw rate using measured data for rotor speed Ω and

engine torqueQ showed that torque has a profound influence on the

yawing motion, whereas no direct influence of rotor speed could be

found. Thus, torque modeling with a dynamic engine model was

needed.

First, the frequency responses for rotor speed due to collective and

pedal inputs were approximated by transfer functions. For inclusion

in the identification model, these frequency response models were

converted into a state-spacemodel and combinedwith a Taylor series

model for the torque dynamics. The parameters of this engine model

were identified for each of the five reference speeds with the ML

frequency-domain method using collective and pedal sweep maneu-

vers. The resulting engine model was simplified by fixing those

model parts that were constant over the whole flight envelope. More

details about this approach can be found in Ref. [77].

Finally, the identified engine model was coupled to the overall

model. Figure 19 shows the match in the frequency responses of yaw

rate due to pedal and collective inputs (r∕δped and r∕δcol) in hover for
the models with and without engine modeling. As expected, the yaw

rate response to collective input improves both in amplitude and in

phase. Interestingly enough, the yaw response to pedal inputs (on-

axis response) improves also.
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Fig. 17 Match in az∕δcol of the identified extended hybrid model in
hover, from Ref. [76].

Fig. 18 Match in roll rate and longitudinal acceleration due to longitudinal cyclic input for both lead/lag models (hover), adapted from Ref. [77].
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A more detailed physics-based engine model would require mea-

sured engine parameters (at least fuel flow) which are not available in

the ACT/FHS test data. Therefore, in Ref. [21], an improved engine

model was identified using the PBSIDopt method (Sec. II.A.3) and

then coupled to the physics-based helicoptermodel. The inputs for this

engine model were the four pilot controls (δlon, δlat, δcol, and δped) as
well as the vertical velocity w and yaw rate r to account for coupling
effects. The outputs were rotor speed and torque, and a model order of

n � 4 was selected.

Figure 20 shows the match for the PBSIDopt model in comparison

to theML-derivedmodel described previously. It can be seen that both

models perform comparably well for collective inputs (third column

from the left) but that the PBSIDoptmodel performs better for all other

control inputs. Thiswould be expected because theML-derivedmodel

does not account for the influence of the cyclic control inputs on rotor

speed and torque and contains no coupling to w and r.

More details on the derivation of this improved engine model and
its coupling to the helicopter model are found in Ref. [21].

C. Structural Modes

To ensure satisfactory handling and ride qualities, increasingly
higher crossover frequencies are required in the flight control sys-
tems. Flight control law design is usually conducted using linear
models that describe the rigid-body dynamics and, if required, also
rotor and/or engine dynamics. As long as the structural modes remain
well separated from the crossover frequency (by a factor of at least
10–15 [78]), notch filters are sufficient to avoid potential interaction
with the structural modes. Otherwise, the flexible modes have to be
accounted for in the models used for control system design.
At the timewhen the notch filters were designed for theACT/FHS,

excitation of the tail vertical mode had not yet been experienced for
collective inputs. The corresponding frequency was therefore only

-60

-40

-20

M
ag

ni
tu

de
, d

B

r/ ped

-80

-60

-40

-20
r/ col

-150

-100

-50
Ph

as
e,

 d
eg

-600

-400

-200

0

measured
w/o engine
with engine

100 101

Frequency, rad/s

0

0.5

1

100 101

Frequency, rad/s

0

0.5

1

C
oh

er
en

ce

Fig. 19 Improvement of yaw responses by engine modeling (ACT/FHS in hover), from Ref. [77].

Fig. 20 Time-domain comparison of physics-based (ML) and blackbox (PBSIDopt) engine model, adapted from Ref. [21].
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accounted for in the notch filters for the cyclic and not the collective

control input. This resulted in excitation of the tail vertical mode in

system identification tests with computer-generatedmultistep inputs.
Unlike the sailplane used for structural load modeling in Sec. IV.D,

the ACT/FHS is not equipped with dedicated sensors to measure

structural deformations except for strain gauges at the tail.Asmatching

the strain gauge signals was not deemed necessary, the same instru-

mentation as used in the rigid-body/rotor/engine modeling efforts was

also used for the derivation of models including flexible modes.
As the influence of tail flexibility for the ACT/FHS is most pro-

nounced in pitch rate q due to collective control input δcol, the corre-
sponding transfer function was first investigated as a single-input/

single-output (SISO) system. A first-order response was assumed for

the rigid-body part ofq∕δcol. Following the approach from chapter 16.4

of Ref. [2], one second-order system for the tail vertical modewas then

added in a partial fraction expansion

q

δcol
� Mδcol

s −Mq

� Sδcols

s2 � 2ζstrωstrs� ω2
str

(21)

where ωstr; ζstr denote the frequency and damping of the structural

mode and Sδcol is the control derivative.
For identification, this partial fraction model was augmented by a

time delay to account for unmodeled rotor dynamics. Identification

was performed using the frequency responsemethod and a frequency

range of 10–40 rad/s. Figure 21 illustrates the match of the identified

SISOmodel in the time domain for a 3211maneuver. The oscillation

in pitch acceleration _q ismodeled correctly, and the remaining error is

very small. As only a SISOmodel for pitch due to collectivewas used,

the match in the pitch rate is of course not as good as for a fully

coupled model.
It is important to note that the identification of this simple extended

model is based solely on the fuselage angular response sensors and

does not require additional flight-test measurements of the structural

response.
Assuming that the elastic displacements are small compared to the

rigid-bodymotion, the dynamics of the flexible modes can bewritten

with respect to a body-fixed mean axis system, a formulation com-

monly used in flight dynamics and control literature [78]. This means

that the matrices of the coupled rigid-body/structural modes state
equations can be partitioned as [2]

A�
�
rigid-bodystabilityderivatives aeroelasticcoupling terms

rigid-bodycoupling terms structural flexibilitymodes

�
(22)

and

B �
�

rigid-body control derivatives

structural mode control derivatives

�
(23)

and the state vector is also partitioned into rigid-body and structural
components as

x �
�
xrb
xstr

�
(24)

The rigid-body states xrb correspond to the motion of the fuselage
reference axes. The structural state vector xstr consists of the gener-
alized displacement and rate (velocity) state for each structural mode
to be considered. The number of structural modes to be included
depends on the frequency range of interest.
A fully coupled model as in Eq. (22) can only be identified when

additional sensors like strain gauges and accelerometers at different
positions throughout the flexible vehicle are available as was the case
for the flexible sailplane described in Sec. IV.D. Without such extra
instrumentation, simplifications have to be made to arrive at a model
structure where all model parameters are uncorrelated and identi-
fiable.
Dropping both the rigid-body and the aeroelastic coupling terms in

Eq. (22) leads to state equations where the rigid-body and structural
modes aredynamically decoupled.The influenceof themodal states on
the output variables in such a dynamically decoupled system is solely
described by influence coefficients in the measurement equations.
In the ACT/FHS case, the state equations of the 17th-order model

that accounts for rigid-body dynamics, rotor flapping, inflow, regres-
sive lead/lag, and engine dynamics were extended by onemodal state
for the tail flexibility. For the identification of the flexible mode, the
parameters of the 17th-order model were kept fixed, and only the
parameters of the structural modes were estimated. The identification
was performed with the ML method in the frequency domain, and a
frequency range of 10–40 rad/s was used, as the frequency range of
0.5–10 rad/s is already well covered by the 17th-order model whose
parameters remain unchanged.
Figure 22 shows the resulting match in the transfer functions from

collective control input to pitch rate and longitudinal and lateral
acceleration in comparison to the 17th-order model without added
flexible mode. It can be seen that by including the influence of tail
flexibility the match in amplitude and phase for q∕δcol is clearly
improved in the high-frequency range. Unlike for the SISO model,
the influence of tail flexibility is now also modeled in the transfer
functions ax∕δcol and az∕δcol.
Asmentioned before, the generalizedmultiple-input/multiple-out-

put (MIMO) flight dynamics model from Eq. (22) includes full two-
way dynamic coupling between the rigid-body and the elastic states.
This yields a complex identification model structure with many
associated identification parameters and considerable parameter cor-
relation and is thus not well suited to identification from flight-test
data. In many applications, although the coupling of the rigid-body
dynamics into the elastic states (rigid-body coupling) must be
included for satisfactory modeling accuracy, the dynamic coupling
of the elastic states into the rigid-body equations of motion (aero-
elastic coupling) can be assumed to be quasi-steady. If only the most
significant terms in the dynamic coupling of the rigid-body dynamics
into the elastic states are retained, this leads to a so-called hybrid
model structure, which is a one-way coupled formulation (chapter
16.4 of Ref. [2]).
When the one-way coupled equations for the hybrid model of the

ACT/FHSwere built, it was assumed that only the longitudinal states
Fig. 21 Time-domain match of the SISO model for q∕δcol with added
structural mode, from Ref. [79].
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u, w, and q have an influence on the vertical tail elastic mode.
Identification was again performed with the ML method in the
frequency domain.
Figure 23 compares the match of the 17th-order model without

flexible modes, the decoupled model, and the hybrid model. It can be
seen that by introducing the one-way coupling between the rigid-
body and the modal states the match in q∕δcol is improved even
further. In addition, the influence of the structural mode is now
extended to the cyclic control inputs δlon and δlat.
A more thorough discussion of the identification of structural

modes for the ACT/FHS can be found in Ref. [79].

D. Non-Physics-Based Models

Defining an appropriate model structure and setting the corre-
sponding initial values to identify physical rotorcraft models can be
complicated and time consuming. Even if missing dynamics can be
related to physical effects, enhancing an existing model structure
accordingly is not an easy task. If the existing models are complex,
like the ACT/FHS models, this task becomes more and more com-
plicated, as connections between different submodels have to be
accounted for and their parameters have to be chosen carefully, which

was illustrated in the previous sections. The PBSIDopt method does
not require a predefined model structure nor initial values but only

requires three integer parameters to work: model order n, past win-
dow length p, and future window length f. The resulting linear

discrete-time state-space models usually have nonphysical states,

and due to the included model reduction step, the model’s eigenval-
ues often do not have a corresponding physical mode. In this sense,

the PBSIDopt method yields blackbox models.
In this section, system identification results using the PBSIDopt

method using 60 kt ACT/FHS data are shown. The four helicopter
controls for longitudinal and lateral cyclic, pedal, and collective are

used as system identification inputs. The body-fixed airspeed com-

ponents u, v, w; the angular rates p, q, r; and the roll and pitch

attitude angles Φ and Θ of the rotorcraft are used as outputs to be

matched.
In addition to the model order n, the past window length p and the

future window length f affect the identified models, and choosing an

optimal p and f is still active research. For this reason, a parameter

variation study with respect to p, f, and n was conducted where a

huge range of suitable parameter settings was tested and evaluated.
Model ordersn between 8 and 20were investigated. The pastwindow
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length p was varied between n and 994 (the maximum number
possible for the used flight-test data), and the future window length
f was varied between n and p. In summary, between 5050 (for
n � 20) and 6261 (for n � 8) models were identified for eachmodel
order. The overall identification and validation process took about
48 h on a standard desktop computer.
An appropriate model order can be chosen based on the method’s

cost function. In this case, a model order of n � 18 was selected,
because these models include most of the dynamics in the frequency
range of interest and have about the same order as the most advanced
physics-based models of the ACT/FHS.
In Fig. 24a, the distribution of all identified model’s transfer

functions from lateral cyclic input δlat to roll rate p are shown. All
transfer functions are located between the dotted black lines showing
themaximum andminimummagnitude/phase. Themeanmagnitude/
phase is shown in solid black, and the standard deviation (std) around
the mean is depicted in shaded gray. The FR generated from the
flight-test sweeps are plotted in blue, the transfer function of the 17th-
order physical model (phy-n17) is plotted in red, and the best PBSI-
Dopt model is plotted in yellow.
Huge variations in magnitude and phase can be seen in Fig. 24a at

low frequencies. It is obvious that the choice of p and f significantly
changes the resulting model. Various models exhibit weakly damped
resonances, some of them unstable, in themidfrequency range from 4

to 9 rad/s. The variations between the identified models increase for
low and high frequencies.
In Fig. 24b, 50models with the lowest cost function are selected (50

best PBSIDopt models). The transfer function shown in yellow is the
same as in Fig. 24a. The distribution of these 50 models is very tight
and matches the measured frequency response very well for the mid-
frequency range.Nonetheless, somedeficiencies canbe found.At first,
every selected model of these 50 best shows a distinct resonance at
about 0.3 rad/s. This resonance can be assigned to the phugoid of the
ACT/FHS, but here the damping is too low. Additionally, the regres-
sive lead/lag at about 12 rad/s is overdamped, and, finally, thesemodels
do not match the measured FR for frequencies above the regressive
lead/lag. Thesemodel deficiencies are induced by the underlyingARX
model with very high p and the resulting high variance of the ARX
model. Consequently, choosing an appropriate PBSIDopt model
solely by the lowest cost function can result in limited model fidelity.
In Ref. [15], a criterion for selecting candidate models from all

identified models based on the stability of the predictor form system
matrix AK is presented. Only models with a spectral norm below a
user-defined threshold are accepted, and the best models are then
selected from the remaining valid ones. Here, the 50 candidate
models are different from the 50 best models shown in Fig. 24b.
The distribution of 50 candidatemodels that were selected using this

criterion is shown in Fig. 25 for lateral cyclic to roll rate on the left and
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collective to roll rate on the right. ComparingFig. 25awithFig. 24b, the

mentioned deficiencies vanish for the chosen candidate models. These

modelsmatch themeasuredFRverywell for thewhole frequency range

of interest. The off-axis performance of the candidate models can be

investigated in Fig. 25b. The models’ magnitude and phase reproduce

the FR accurately. The PBSIDopt models also include the structural

mode at about 35 rad/s, asmentioned in Sec. V.C,which is not included

in the 17th-order physical model. The fluctuations of the measured FR

around 1.5 rad/s are caused by very low coherence (not shown in

Fig. 25b) and are consequently not covered by the models.

The PBSIDopt method has been successfully applied to ACT/FHS

data and has shown very good model performance and applicability

[15,16,39,80,81]. Furthermore, it was compared to other rotorcraft

system identification tools and methods using data from flight tests

with the Bell 412 ASRA of the National Research Council (NRC)

Canada in Ref. [74].

E. Rotor Mast Moment Observer

Incorporating main rotor states like the tip-path-plane flapping

angles or rotor mast moments into the rotorcraft flight control laws

allows for enhanced handling and ride qualities as well as reduced

pilot workload. As measuring the rotor states in the rotating frame is

cost intensive and associated with a high technical effort, using

estimation algorithms (i.e., observers) instead of data from sensors

in the rotor system was investigated.

The main rotor measurement system of the ACT/FHS depicted in

Fig. 26 provides rotor azimuth and main rotor mast bending

moments. Data transmission between the rotating and nonrotating

frame is handled by telemetry using high-frequency antennas. Rotor

blade flapping signals are currently not measured, as the blades have
not been instrumented yet. Therefore, data-driven observers to rep-
licate the measured rotor mast moments in the rotorcraft-fixed frame
using only rigid-body measurements were designed.
Several linear models were identified that describe the response of

the rotor mast moments in pitch mc and roll ms. A physics-based
model for the mast moments was identified with theMLmethod, and
blackbox models of different complexity were identified with the
PBSIDopt method. Some of the blackbox models used all four pilot
controls as input variables, whereas reduced models using only the
two cyclic controls were also identified. More details can be found
in Ref. [81].
The most promising models were then used to design rotor mast

moment observers. The observer design process was separated into
three steps. First, the observer was designed as a steady-state Kalman
filter, which guarantees stable observer dynamics. Next, the observer
gain was tuned using flight-test data. Two different observer design
configurations are evaluated in Ref. [81]. Finally, a cross-validation
procedure was conducted on a carefully compiled data set covering
the most commonly encountered flight conditions to select the opti-
mal observer configuration.
The time-domain results of two selected optimal observers are

compared. The first observer n10cycl is designed using a tenth-order
model for the main cyclic axis of the rotorcraft and incorporates the
two cyclic controls as well as roll and pitch rate. The second observer
n12full is based on a full 12th-order model and includes all four
control inputs as well as roll, pitch and yaw rate, and vertical speed.
Figure 27a shows the measured and estimated rotor mast moments
from both observers for a section of forward flight in moderate
turbulence (rated as level 6 based on Ref. [82]). In general, the
performance of both observers is very good despite the turbulent
excitation of the rotorcraft. The estimated rotor mast moments do not
suffer from noteworthy time delays, and the short-term behavior
seems adequate. In detail, both observers exhibit comparable lateral
mast momentms estimates, while the less complex n10cycl observer
performs slightly better for the longitudinal axis mc after t � 4 s.
The measured and estimated mast moments during a coordinated

turn are compared in Fig. 27b. The measured rotor mast moments are
accurately reproduced during the first 20 s of the run. Then, the
estimated longitudinal mast moments mc slowly diverge from the
measurements as the rotorcraft starts to turn. During the turn, head-
wind becomes crosswind, which is then compensated by roll angle
and lateral cyclic as well as pedal inputs. In an analogous manner,
forward (air)speed is reduced, and longitudinal cyclic input and pitch
angle are adjusted. Hence, this maneuver violates the near-trim
validity of the underlying models and therefore cannot be covered
by the observer unless changing trim conditions are accounted for in

Fig. 26 Sensor signal processor system of ACT/FHS’s rotor measure-
ment system.
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Fig. 27 Time-domain comparison of measured and estimated rotor mast moments, from Ref. [81].
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its design. Still, the mid- and high-frequency components of the

estimated rotor mast moments match the measurements.
More details about the model identification, the observer design,

and the evaluation of the observers can be found in Ref. [81].

F. Model Stitching

Identified linear state-space models represent the dynamic response

of an aircraft for a discrete reference flight condition and configuration

and are accurate within some limited range around the reference con-

dition. These discrete point linear models are suitable for point control
systemdesign and point handling qualities analyses.However, a single,

wide-envelope model is desirable for full-mission simulation. Model

stitching combines so-called linear anchor point models and trim data

for discrete flight conditions with nonlinear elements to produce a

single, nonlinear simulation model to arrive at a wide-envelope simu-

lation. Additional nonlinear termsmay be included to cover complex or
edge-of-the-flight-envelope maneuvers, for example, autorotation. The

theoretical approachof themodel stitching technique for applications to

fixed-wing and rotary-wing aircraft is elaborated in chapter 17 of

Ref. [2]. A thorough discussion of the method and several application

examples can be found in chapters 5 and 7.7 of Ref. [6].
Model stitching is based on a set of linear state-space models at

discrete flight conditions. In the case of the stitched model for the

ACT/FHS, identified 11-DOF (16th order) models for five reference

speeds (hover and 30, 60, 90, and 120 kt) were used, which account

for blade flapping, regressive lead/lag, and mean inflow. The dimen-

sional stability and control derivatives were extracted from these

anchor point models and stored in lookup tables. Additionally, more
finely spaced trim data, which capture the variation in trim states and

controls over the full airspeed range, are needed. These trim data are

typically first fitted with splines before being stored in lookup tables.

For theACT/FHS trim curves for the roll and pitch attitudes aswell as

the stick inputs were extracted from trim flights that were conducted

in addition to the system identification flights. The trim points, which

were extracted on a fine grid to better approximate the trim gradients,
and the resulting smoothed trim curves are shown in Fig. 28.
The lookup tables are combined with the nonlinear equations of

motion and other simulation elements to yield the model stitching

simulation architecture. This means that known kinematic relation-

ships such as the transformation of the gravity force into the body-

fixed coordinate system, Euler attitudes, inertia, and helicopter mass
are included in their nonlinear form. The linearized stitched model is

identical to the original anchor point models at each of the five

operating points.
One benefit of the stitching architecture is its ability to simulate

maneuvering flight. Figure 29 shows the results obtained for a
deceleration/acceleration maneuver that covers a wide airspeed

range. As the maneuver has a duration of 2 min, a flight controller

minimizing attitude and speed errors is used to stabilize the unstable

modes such as the phugoid. The simulated control input is the sum

of the measured control and the feedback signal and therefore

deviates from the measured control input. The red dashed curves

show the simulated response when using the 60 kt anchor point

model throughout the whole maneuver. Deviations from the mea-

sured data are most pronounced when this 60 kt model is used for

small forward speeds near hover (between 50 and 80 s). The blue

curves represent the stitchedmodel. As expected, the stitchedmodel

achieves a better match of the longitudinal stick position and the

pitch attitude for this maneuvering flight data.

The development of the stitchedmodel of theACT/FHS isdescribed

in more detail in Ref. [83]. The resulting wide-envelope model is used

for flight control design and for engineering simulations at DLR. In

Ref. [84], the stitchedmodel is further improved by specially designed

input filters.

VI. Other System Identification Applications

Apart from the application to fixed-wing aircraft and rotorcraft as

described in the preceding sections, system identification was also

applied to other flight vehicles such as gyroplanes and gliding para-

chutes and was used for Control Equivalent Turbulence Input (CETI)

turbulence model extraction and wind field reconstruction from lidar

measurements.

Fig. 28 Trim data of the ACT/FHS and approximated trim curves, adapted from Ref. [6].

Fig. 29 Comparison of linear pointmodel (60 kt) and stitchedmodel for
a deceleration/acceleration maneuver, from Ref. [6].
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A. Gyroplane Model

In 2008, DLR started to develop a new simulator device for gyro-
plane flight training [85]. A gyroplane is an ultralight flight vehicle,
whose rotor is not powered directly by any mechanical device but
operates in autorotation, where the power to turn the rotor results
from a relative flow that is directed upward through the rotor disk.
Thereby, the rotor provides lift, while forward propulsion is being
provided by a propeller in pusher or tractor configuration. For this
work, DLR acquired anMTOsport from AutoGyro GmbH (Fig. 30).
The gyroplane simulation model is quite comparable to standard

airplane simulationmodels except for the fact that flight dynamics are
split into a body and a rotor part. Note that the basic flight character-
istics of a gyroplane are close to those of an airplane.
The body and rotor of the gyroplane are considered as a two-mass

system, which is connected at the rotorhead pitch and roll pivot bolts.
The rotor motion is reduced to the rotational degrees of freedom
because it is assumed that, due to the lower mass of the rotor
compared to the body mass, the translational motion of the rotor
corresponds to that of the body. The rotor aerodynamics are calcu-
lated by a blade element method, such that the individual airflow at
ten blade elements is calculated considering the rotational speed, the
vertical component of the airspeed, and the flapping motion. Total
aerodynamic force and moment coefficients of the gyroplane
fuselage (including mast) and aerodynamic surfaces are calculated
in the simulation model.
The thrust is determined depending on airspeed and propeller

speed and is calculated by a combination of beam and blade element
theory. Effects like crossflow, blade twist or rotation normal to the
driveshaft, and the inclined flow, gyroscopic effects of the propeller
and effects of the propeller wake are considered.
Eleven system identification flights were conducted in a first

campaign in 2010 [85]. In a second campaign in 2012, the measure-
ment systemwas supplementedwith a nose boom tomeasure angle of
attack and angle of sideslip. Flight tests consist ofmaneuvers to excite
the gyroplane’s special flight dynamics and steady-state flights at
various airspeeds to determine the trim values of the gyroplane states
and controls, which is necessary for a simulator model development.
Level accelerations and decelerations were executed to determine the
engine’s characteristics. Taxi tests were conducted to identify the
body drag coefficient. Additional taxi tests with pedal inputs were
used to evaluate the lateral dynamics on ground and acceleration tests
on ground with full throttle and at idle were performed to determine
the maximum and minimum thrust as a function of the airspeed.
The output-error method in time domain was applied for the

gyroplane model identification. DLR’s tool FITLAB was used to
estimate the unknown parameters of the simulation model imple-
mented in MATLAB®/Simulink. Parameters of the landing gear, the
propulsion, and the aerodynamic model (fuselage, rudder, stabilizer,
and rotor) were estimated. Table 1 provides for example a selection of
body aerodynamic parameters after system identification. As the
gyroplanes lifting surface is no wing but a rotor, the aerodynamic
model parameters of the body are referenced to the rotor disk area

instead of a reference wing. One exception is the horizontal tail
parameters, which are normalized with the horizontal tail area as
aerodynamic surface.
Regarding the results of the simulation model validation, a good

match between flight-test data and simulation data for various
maneuvers was achieved. An example of a roll doublet maneuver
is provided in Fig. 31. Furthermore, an evaluation of the gyroplane’s
characteristics during roll on ground is given in Ref. [86].

B. Modeling of Gliding Parachutes

For precision airdrop and the recovery of space capsules, autono-
mous landing systems using a steerable ram-air parachute have been
investigated at DLR from 1996 to 2005 [87–90]. More than 20 drop
and flight tests with instrumented parafoil-payload vehicles of
approximately 100 kg [named Autonomous Landing Experiment
(ALEX); see Fig. 32] have been conducted in order to test guidance,
navigation, and control algorithms and to obtain flight-test data for
system identification and model validation. Unlike other aircraft,
parachute-payload systems are highly flexible systems due to the
inflated textile canopy wing and the textile lines and harnesses that
connect the payload. The canopy deforms at the trailing edges as a
result of control inputs, and maneuvers induce relative movements
between the flexible canopy and the rigid payload.Because of the low
flight velocity of such parafoil systems, their motion is greatly
affected by the wind. In addition, the system is subject to large
accelerations during the parachute inflation phase and at the landing
impact. These untypical conditions created new challenges for instru-
mentation, modeling and system identification. Many of the results
and lessons learned are described in Ref. [91].
Because sensors and other electronic equipment had to be selected

as low-cost and robust as possible, the inaccuracies of the sensors

Fig. 30 DLR’s MTOsport gyroplane D-MTOS.

Table 1 Estimated body aerodynamic parameters
after MTOsport system identification

Parameter Value

Lift slope of horizontal stabilizer CLα;HT 5.0

Zero lift drag CD0 0.026

Angle of sideslip dependent drag CDβ 0.01

Angle of sideslip dependent side force CYβ −0.01
Roll damping Clp −0.022
Pitch damping Cmq −1.2
Weathercock stability Cnβ 0.004

Rudder control efficiency Cnζ −0.010
Yaw damping Cnr −0.026
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Fig. 31 Comparison of MTOsport flight-test data (red) and simulation
data (black) for a roll doublet at about 30 m/s.
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needed correction. This problem could only partly be solved by sensor

calibration. One problem was the temperature dependency especially

of accelerometers, gyros, and pressure sensors. Many low-cost and

MEMS sensors in the 1990s were strongly temperature sensitive and

subject to self-heating but had no integrated temperature measurement

or compensation. After collecting, resampling, and filtering the raw

data from the flight test, a flight-path reconstruction was done to

reconstruct the attitude, reduce the remaining sensor errors as much

as possible, and also extract the wind influence [90,92,93].
Four different models of the parafoil-payload system have been

developed, identified, and later used in simulations. The three-degree-

of-freedom model considers only the CG motion (sink rate, velocity,

and heading), has only four parameters, andmarks the lower end of the

possible flight mechanical models for the three-dimensional motion of

a parafoil-load configuration. Nevertheless, the model is capable of

representing some of the most important vehicle characteristics and

can be used in trajectory simulations, for example, to check guidance

and control functionalities. The four-degree-of-freedom model with

six parameters is an extension of the three-degree-of-freedom model,

taking also the roll angle into account. This model is able to simulate

the increasing sink rate during turns and reproduces also the steady

effects of symmetric edge deflection on the velocities and L∕D. In

contrast to the three-degree-of-freedom model, the reduction of for-

ward velocity during turns is better reproduced as well. Both models

are described in Ref. [92].
Because the model, for example, does not account for the distance

between center of mass and the aerodynamic reference point, its

capabilities are still very limited. Among others, some of the restric-

tions of the four-degree-of-freedom model are as follows:
1) The vehicle dynamic modes cannot be simulated.
2) Dynamic flare, caused by the load swinging forward and

increasing dynamically the angle of attack, cannot be reproduced.
3) Aerodynamic damping in the longitudinal motion and the side

force contribution to the lateral motion are neglected.
4) Nonlinear effect of the edge deflection is not considered.
The mentioned limitations have been solved by using a more

detailed six-degree-of-freedom model that treats the full parafoil-

payload system as one rigid body [94]. The aerodynamic coefficients

of the parafoil canopy were initially computed by an analytical

approach that considered the canopy as rigid wing with arc anhedral

[95], which are then also used as starting values within a system

identification [93].
Because all sensors were located in the payload, the flight-path

reconstruction revealed only the motion of the payload but did not

reflect the motion of the canopy, which is mainly responsible for the

aerodynamic characteristics of the vehicle. To capture the relative

motion, the canopy’s motion was recorded by a video camera inside

the payload during the flight and evaluated afterward by image

processing [96]. Provided that the evaluated relative motion between

canopy and load is accurate and precisely synchronized with the data

acquired in the payload, the corresponding values for the canopy can

be computed by transforming the measured motion data from the

payload to the canopy (Fig. 33). Using this reconstructed canopy

motion, reasonable results for the aerodynamic coefficients were

obtained in Refs. [93,97].

Nevertheless, the six-degree-of-freedom model still assumes a

rigid body and does not include any relative motion between para-

chute and payload. To overcome this limitation, a multibody

approach was used for modeling the parafoil-payload system [90].

In this model, the canopy, payload, suspension lines, risers, and

harnessweremodeled as rigid bodies that are connected via rotational

joints and spring-damper elements. The fullmodel now accounts also

for relative rolling, pitching, and yawing and includes a relative

shifting (or lateral displacement) mode from the parallelogramlike

deformation of the harness. The model was then separated into two

simplified models for longitudinal and for lateral motion that were

identified separately. From these results, it could be shown that the

actuator forces had a much larger influence on the relative motion

than previously expected [95,98].

However, the deformations of the canopy during flight due to

control line deflections andmaneuvers have not explicitly been taken

into account yet, or only implicitly by nonlinear control efficiencies

or untypical aerodynamic coefficients. A complete understanding of

the aerodynamics and flight dynamics of such a parafoil-payload

system is only possible by considering the coupled fluid structure in

the analysis.

Fig. 32 DLR parafoil-payload system ALEX in flight.

Fig. 33 Image fromcanopy video footage (top), payloadmotion, relative
yawing, and corrected canopy motion (bottom), from Ref. [91].
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C. CETI Turbulence Models for Rotorcraft

Empirical hover and low-speed turbulence models for rotorcraft
applications have been developed using the CETI method. The CETI
method was first proposed by the NRC [99] and then extensively
developed at the U.S. Army [100], whereby a CETI model of the UH
60 Black Hawk helicopter was successfully developed from flight
tests and validated [101].
The CETI method determines the control inputs required to gen-

erate aircraft angular and vertical rates in calm conditions that are
consistent with rates observed when flying in atmospheric turbu-
lence. The extracted CETI models are generally specific to the
helicopter that was used to collect the flight data. This has the
advantage that themodels are automatically validated for the specific
helicopter type and are thereforewell suited for control systemdesign
when addressing disturbance rejection. However, in Ref. [102], a
scaling method is presented that allows one to scale CETI models
from one helicopter to another.
The general method for ascertaining CETI models is depicted in

Fig. 34, separated into three stages; extraction, modeling, and simula-
tion. For the extraction phase, data are collected from flight in turbulent
conditions. The level of turbulence determines the intensity of the
generated CETI model. The measured aircraft responses are then fed
into an inverse aircraftmodel to obtain control inputs related to pilot and
gusts. The quality of the finalCETImodel is dependent upon the quality
of the inverse model used for the extraction process. Subtracting the
measured pilot inputs yields equivalent control input traces that corre-
spond to the response of the aircraft to the turbulence [100].As shown in
Ref. [103], time histories of the CETIs can either be extracted using a
stable inverse model of the helicopter or by an observer approach.
In the modeling step, white-noise-driven transfer functions of a

form similar to Dryden models are developed by analyzing the
spectra of the extracted control disturbances. Therefore, the PSDs
of the control equivalent inputs for each control are first generated.
Each of the PSDs is then approximated by a transfer function to
capture the turbulence characteristics of the corresponding axis. For a
standard helicopter, this modeling process yields four transfer func-
tion filters, one for each control input.
When using the CETI model for simulation, white noise is passed

through these transfer function filters to generate control equivalent
turbulence inputs. These are added to the pilot inputs, sending a
combined disturbance to the vehicle swashplate.
The CETI method was first applied at DLR using the ACT/FHS in

hover [103,104]. More recently, the use of the method was extended
to forward flight, resulting in a CETI model that covers most of the
envelope [105,106]. The extraction of the CETIs was performed
using the inverse model approach based on high-fidelity identified
models as described in Ref. [77].
The same model structure as used in the hover case was also

applied for the turbulence models in forward flight, namely,

Glon �
δlon;CETI
Wnoise

� Alon

1

�s� �U0∕Lw��
(25)

Glat �
δlat;CETI
Wnoise

� Alat

1

�s� �U0∕Lw��
(26)

Gped �
δped;CETI
Wnoise

� Aped

1

�s� �U0∕Lv��
(27)

Gcol �
δcol;CETI
Wnoise

�Acol

�s�20�U0∕Lw��
�s�fp1�U0∕Lw���s�5�U0∕Lw��

(28)

The model consists of first-order transfer functions for longi-
tudinal, lateral, and pedal inputs and a second-order transfer function
for the vertical axis (collective inputs). The transfer functions for
longitudinal and lateral control have the same denominator (depend-
ing onU0∕Lw, the quotient betweenmeanwind speed andmain rotor
scaling length) and only different amplitudes (Alon; Alat). The transfer
function for pedal inputs has the same structure but uses the tail rotor
scaling lengthLv instead ofLw. The transfer function for collective is
coupled to those for longitudinal and lateral inputs byU0∕Lw. In the
turbulence models for hover determined in Ref. [103], the factor fp1
in the transfer function for collective was set as a constant parameter,
equal to 0.63. However, this value is valid only for hover, and it was
required to vary this parameter for forward flight.
Turbulencemodels were first identified separately for the different

reference speeds (hover and 30, 60, and 90 kt). Figure 35 shows the
spectra (PSDs) and the identifiedmodel for 60 kt. The extractedCETI
data could be grouped into three distinct turbulence levels (low,
medium, and high), and the identified model describes the data well.
The individual turbulence models were identified using FITLAB

to approximate the PSDs (as frequency responses) by transfer func-
tions. The identifiedmodel parameters were then plotted as functions
of turbulence intensity and speed. To arrive at a model that can be
smoothly interpolated between the speeds, two parameters of the
30 kt models were adjusted, and the remaining model parameters for
these cases were reiterated. This provided an overall model with only
a slight degradation in model quality for these modified cases.
The corresponding results are shown in Fig. 36. It can be seen that

smooth surfaces were obtained for all parameters. The factor fp1 is
equal to 0.63 at hover and reduced with forward speed. All amplitude
parameters except for Alat increase with speed, and the amplitudes at
the highest turbulence intensity level are larger than those for the
lowest level by a factor of 2–3.
The identified models were implemented and successfully tested

through piloted simulations in the AVES motion-base platform as
described in Ref. [106].

D. Wind Field Reconstruction from Airborne Lidar Measurements

The development of more efficient aircraft is a key element in
continuing efforts to improve the sustainability of aviation. Through
the design of active load alleviation systems, the load envelope can be
shrunk, andweight savingsmight be obtained. Achieving large levels
of load alleviation for external disturbances, especially gusts, is
challenging because gust load alleviation systems have only little
time to react to gusts. Pitching commands are very effective, but the
entire aircraft has to rotate first, which is hardly possiblewith only the
lead time of in situ air data measurements on the aircraft nose. A
solution would be to measure the gusts slightly in advance. This
requires remote wind sensing technologies, like Doppler wind lidar

Fig. 34 CETI method, from Ref. [105].
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Fig. 36 Model parameters vs speed and turbulence level, from Ref. [105].

Fig. 35 PSDs and extracted turbulence model (60 kt; solid: PSD; dashed: model), from Ref. [105].
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sensors. A major issue is that these sensors only measure the relative

wind component in the direction of the laser beam (so-called line-of-

sight direction). In addition, the line-of-sight speedmeasurements are

very noisy.

An online identification process is needed to interpret the numer-

ous raw lidar speed measurements and estimate the transversal

(vertical and lateral) wind components in the vicinity of the aircraft.

Despite the noisy line-of-sight speed measurements, a good estima-

tion of the wind field is possible because of the very large number of

measurements. For example, with a laser pulse repetition frequency

of 500 Hz and nine measurements along the line-of-sight per pulse,

4500 speed measurements are obtained per second. Figure 37 illus-

trates the wind field estimation process from airborne lidar line-of-

sight speed measurements [107]. The resulting wind field model

consists of wind velocity components at evenly spaced nodes para-

meterized by a lead time τlead and a lag time τlag. Mathematically, the

wind reconstruction is a maximum likelihood problem; it determines

the wind velocities at the estimation mesh nodes which yield the

optimal fit (in the least-squares sense) to the obtained line-of-sight

speed measurements zi. Each measurement is weighted by the

inverse of its corresponding standard deviation σi to account for the
difference in noise levels of each measurement (e.g., depending on

local atmospheric conditions and measurement range). The simplest

implementation is a sole vertical wind profile as represented in

Fig. 37, but the same kind of model can be used in two or three

dimensions (both for node locations and for wind components at

each node).

Additionally, a Tikhonov regularization is included in the optimi-

zation problem to ensure a certain degree of smoothness in the

resulting estimated wind field. The matrix Γ1 penalizes the first

spatial derivative of thewind field, andΓ2 penalizes its second spatial

derivative. This regularization can also be seen (and mathematically

formulated) as a priori information on the wind field. These terms

express the fact that the very small-scale turbulence is not interesting

for load alleviation and that these small scales are unlikely to be found

in the lidar measurements, not because they are not present in the

volume of air scanned by the sensor but rather due to the sensor’s

limited spatial resolution. The scalar coefficients γ1 and γ2 enable

tuning the relativeweight between the Tikhonov regularization terms

and the least-squares criterion.
After a few transformations, the regularized optimization problem,

with two Tikhonov terms, reads

θ̂ � argmin
θ

 XN
i�1

�zi − yi�θ��2
σ2i

� γ1kΓ1θk2 � γ2kΓ2θk2
!

(29)

In this specific case, the p parameters in θ correspond to the individ-
ual wind velocity components at the model nodes. When used for a

series of nodes along the flight path, as in Fig. 37, the Tikhonov

regularizationmatricesΓ1 andΓ2 are, respectively, of sizes �p − 1� ×
p and �p − 2� × p. More detailed explanations on the wind field

estimation problem from lidar line-of-sight speed measurements, its

solution, and how this information can be used by gust load allevia-

tion controllers are given in Refs. [107–111].
Another application based on onboard lidar measurements is the

identification of wake vortices [107,112,113] shortly before encoun-

tering them with the aim of mitigating their impact [114–116]. As

pointed out in Ref. [107], the identification of wake vortices from

lidar measurements is very similar to detecting gusts and turbulence.

The parametric models of wake vortices yield a lower number of

parameters (the circulation as main parameter for the vortex strength

and geometrical parameters position and orientation, possibly defor-

mations). The relationships between the parameters and the model

outputs (predicted line-of-sight velocity measurements) is, however,

strongly nonlinear, and the identification of the vortices is therefore

more challenging than in the aforementioned gust/turbulence case.
Multiple starting values are used and different strategies have been

developed to robustify the convergence of the algorithm. Another

way to drastically improve the identification procedure is to optimize

Fig. 37 Illustration of wind estimation process: from lidar line-of-sight speedmeasurements to estimated wind field (in vertical direction), adapted from
Ref. [108].
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the set of measurements used for the identification by optimizing the
scan geometry [117,118].

VII. Conclusions

This paper provides an overview of applications of system iden-
tification at DLR in recent years.
The well-established system identification tools developed by

DLR over the years have been further improved and supplemented
by new methodologies and toolboxes, such as the identification of
blackbox models, which provide fidelity comparable to that of high-
order physics-basedmodels. The optimization of flight test is a major
task, as a reduction of the flight time required for system identifica-
tion maneuvers can reduce costs significantly. Therefore, new meth-
ods to generate specific excitation maneuvers were developed. The
model identification with the data obtained using the newly devel-
oped maneuvers showed very promising results.
Several applications of system identification on fixed-wing aircraft

have further provided very interesting and notable results. Within a
dedicated process to analyze operational flight data, an engine thrust
model was derived using a combination of fundamental engineering
knowledge, parameter estimation techniques, and big data methods.
The specific effects of airframe icing can be described and identified
with an additive Δ-model to the basic aircraft simulation. It was also
shown that, with a sufficient number of accelerometers and strain
gauges distributed over the aircraft, it is possible to identify flexible
aircraft models with the gathered data. Additionally, a specific flex-
ible sailplane model for loads monitoring was identified from flight
and on-ground static calibration data.
In rotorcraft system identification, the extension of the model

validity to higher frequencies was possible by accounting for the
rotor degrees of freedom in the models. It was also shown that
including engine dynamics further improves the model quality.
Moreover, even without additional sensor installation on the heli-
copter, the tailboom vertical bending mode could be successfully
identified. A rotor-state observer was developed using identified
models that match the measured rotor mast moments. Applying
model stitching techniques allowed merging models identified at
different reference conditions into a wide-envelope simulation envi-
ronment.
One major purpose of system identification in aeronautics is the

development of simulator models for training. Specific research on
themodeling and identification of gyroplanes faced the challenges of
their unconventional flight characteristics and resulted in a high-
quality simulation model for pilot training. Furthermore, several
gliding parachute models with different model fidelity have been
identified from flight-test data, and it was shown that several factors
are influencing the complex dynamics of the coupled parachute-
payload system.
Aside from vehicle identification, additional work was done in the

field of modeling atmospheric disturbances. CETI turbulence models
for theACT/FHS rotorcraftwere derived and successfully implemented
and tested in DLR’s AVES simulation. Using lidar line-of-sight speed
measurements, thewind field in thevicinityof an aircraftwas estimated.
This application can be used for load alleviation or to counteract wake
vortices.
The wide variety of applications presented shows that flight

vehicle system identification is a highly powerful, useful, and indis-
pensable tool.
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