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Abstract

This master thesis proposes a method of creating probabilistic irradiance predictions for

intra-hour situations by combining two ensemble prediction methods.

These ensembles consist of historic measurements, which are chosen by similarity of

the environmental situation and prediction results from machine-learning (ML) models,

performing best with similar weather situations as the given data point. Hence the so ac-

cumulated data is processed by a natural-gradient-boost (NGB) model [13] to estimate a

deterministic prediction, as well as an confidence interval. Since the location and width

of such an interval is supposed to help estimating future irradiance values including un-

certainty.

The probabilistic predictions, generated by the NGB approach, generate superior results

compared to the base ensembles by the continous ranked probability score (CRPS) as well

as the mean-absolute-error (MAE). Mentionable is that the performance of the proposed

method increases, by higher forecast horizon of 15 and 20 minutes with respect to the

reference ensemble. This consists of an accumulation from an analog-ensemble [2] and

an prediction-ensemble by a dynamic selection [11] process.
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1. Introduction

1. Introduction

1.1. Motivation

In recent years an increasing trend in mounted photovoltaic (PV) power plants can be ob-

served in figure 1.1 [15]. According to that, a steadily raise of the power-generation-mix

share, figure 1.2, is achieved as well.

Figure 1.1.: Installed PV-netto-power in 2022 compared to previous years [15]
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1. Introduction

Figure 1.2.: Annual share of photovoltaic outcome within the power mix of Germany [14]

This change leads to a higher use of renewable energies that is necessary to reach the goal

of reducing the carbon-dioxide footprint [12]. As a downside on the higher share, the

energy outcome from PV-plants is more variable, in comparison to fossil power-plants.

This is caused by changing weather and atmospheric conditions [24]. Confronted by

those circumstances energy providers have to stabilize the network by adding or removing

short-response-systems like gas turbines or pumped storage power stations [45].

To hit those problems, various efforts are made to predict the expected irradiation for a

specific forecast-horizon, chapter 3 So by knowledge of future irradiance the composition

of energy-sources for a stable network might be achieved more precisely [12].

1.2. Task and Limitations

Therefore the goal of this thesis is to create an ML-based model to forecast the irradiance

within a time interval of 5, 10, 15 and 20 minutes in the future. Used information for

this task are the environmental conditions of the current situation and past hour. But as a

prediction is always defective in a way, as the quote ”All models are wrong, but some are

useful” from George E.P.Box [9] implies. The goal is to create a probabilistic prediction

for a certain confidence, to have an idea about the forecast-variability to be expected.

In order to create such an probabilistic interval, the approach of an ensemble-model, sec-
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1. Introduction

tion 2.2.2, is chosen. The outcome of this kind of model is a certain number of forecasts,

which can be interpreted as a distribution to estimate a confidence interval [34]. As a

measure of quality, the model has to perform better than a reference model in respect to

selected evaluation metrics, section 6.1. Therefore the specific goals are listed

in table 1.1.

Table 1.1.: Goals for the generated system
Type Goal
Overall prediction process-time less than a minute

Single predictions Skill-score, section 6.1, greater than zero
from dynamic selection

Probabilistic prediction Outperforming the reference model, section 4.3

by error metrics of chapter 6.1

But even after the performance evaluation, an absolute superiority of a model can not be

determined. The major reason therefore is the dependency of a model to the amount of

input-features and the properties of training data [23]. Therefore as the models perfor-

mance is just evaluated by the dataset on hand, chapter 4.1, the exact result is only valid

for the given circumstances. Hereby in different climatic regions, the composition of in-

put variable values does not necessarily results in similar relation to the target value.

Hence all results achieved in this thesis, are with respect to the tuned models and used

data. Consequently different training data may result in deviation of performance on met-

rics, section 6.1.
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2. Methodology and Fundamentals

2. Methodology and Fundamentals

2.1. Irradiance Forecasting

2.1.1. Solar Irradiance

After arguing the specific reason and goals of this thesis, the fundamentals for the project

are presented within this chapter.

So to create PV irradiance predictions, input features like environmental measurements

and a corresponding target value are necessary to estimate a relation model [23]. Within

this project the solar irradiance is chosen as independent value, representative as a gener-

alized measure to the power outcome of a PV-system. The total solar irradiance, emitted

by the sun, is measured by a set of three different variables, table 2.1. Those are the most

meaningful to the PV-power-generation [46]:

Table 2.1.: Irradiance types in W
m2

Name Description

Direct normal irradiance (DNI) Share of irradiance perpendicular
to a specified surface

Diffuse horizontal irradiance (DHI) Scattered part of the
whole visible sky without, DNI

Global horizontal irradiance (GHI) Geometric sum of the direct
and diffuse horizontal

components [46]

A common way of measuring those values is in use of a pyranometer, image 2.1. Within

this device a sensor converts the irradiance to small voltage outcomes. The measured pa-

rameter hereby is defined by the type of pyranometer and installation position [46].

4



2. Methodology and Fundamentals

Figure 2.1.: Pyranometer next to a PV plant [26]

There are two common types of sensors [46]:

• Thermoelectric, a black coated semi-

conductor, which converts the irradi-

ance to a measurable heat within a

bandwidth of 300 nanometer (nm) to

3000 nm and a response-time from

1sec to 30sec

• Photoelectric, a optical sensor with

common bandwidth of 350 nm to 1100

nm and high response-time within mil-

liseconds

2.1.2. Clear-sky-irradiance (CSIR) Model

The irradiance can not be only measured by sensors, as discussed in section 2.1.1, or

derived via a PV systems. For the case of estimating irradiance in clear-sky conditions,

physical models with respect to sun position, terrestrial location and air-mass are used

[48]. Simple models on this topic are mainly based on geometric calculations for ex-

traterrestrial irradiance [38]. Relevant air-mass, passed within the layers of atmosphere

is defined as persistent, so those kind of models needs to be calibrated on a dedicated

location.

More complex models, considering also environmental parameters such as temperature,

air pressure, relative humidity and aerosol content. A common used example is the In-

eichen Perez mode. As during their studies within different model on several locations,

the linke turbidity shows high influence on the model accuracy [22]. For computational

calculation this model is available, implemented in software libraries as pysolar [50].

2.1.3. Deterministic versus Probabilistic Forecasts

As mentioned in section 1.1, not only irradiance for clear-sky conditions, but estimation

on real weather, like overcast or misty conditions, are desirable. So forecasting methods

for a certain point of time up front are necessary. Those can be achieved by using the

input data of weather related sensors within prediction models. There are two common

types of prediction results. First the deterministic forecasting, where a relation between

the selected input features and a target feature is used to predict the most likely result

[19].

The second method, probabilistic forecasting, not only returns a most likely result, but

a probability measure to the forecast-target-value. Those distributions can be generated

by a model itself, where the values of input features can be set in relation to an expected

5



2. Methodology and Fundamentals

model error [47]. Alternatively to that approach, a confidence interval to a prediction can

be calculated by the result of many parallel predictions on the same origin. As a conse-

quence,a parametric distribution can be assumed on those individual forecasts [34].

Aside of the by ensemble predictions, exist the more specific prediction interval (PI).

Those PI considers the information of input condition variance, to quantify a single pre-

dictions uncertainty [6]. As main difference between confidence interval and PI is that a

confidence interval quantifies the population of an estimated variable, where the PI esti-

mates the uncertainty of an single observation, estimated from the population [6]. Taking

this into account a PI results in an wider interval, as it includes the confidence interval

of the result, as well as the output variance in general. A common used method for PI

estimation is the Boostrap Method. In this approach a single neuronal network is trained

by a number of data subsets to estimate the models variance. Hence a model error can be

calculated by the prediction variation of all model instances to the target [25].

2.1.4. Simple-smart-persistence (SSP)

An example for deterministic forecasting is the SSP method [21], where the future state

of irradiance is determined to depend on the clear-sky-model and clear-sky-index (CSI).

This method assumes that all relevant parameters, such as cloud coverage, temperature or

composition of air-mass are persistent over time. Therefore formula 2.2 consists of two

parts. First, formula 2.1, the CSI denoted as Kt(t), as factor of measured irradiance Imes(t)

to CSIR Ics(t), section 2.1.2, calculated for the time of measurement. In the second part

of formula 2.2, the actual prediction takes place. In that case the calculated CSI Kt(t),

is used as a factor of correction to the future CSIR Ics(t + h). As by local climatic and

weather deviations, with respect to the estimated CSIR may be observed, correction factor

C is used to minimize the error by comparison to measured clear-sky-conditions. C serves

also to adapt the SSP method by use of direct PV systems and their efficiency factor. This

method is a common benchmark to ML models [32] [10]. Since the computing effort for

ML models pays off only, by generating better prediction than SSP.

Kt(t) =
Imes(t)
Ics(t)

(2.1)

SP(t,h) =C ∗Kt(t)∗ Ics(t +h) (2.2)

While SSP is, as the name indicates quite simple, more complex derivatives of this

method are developed as well. A more sophisticate approach is presented within a pub-

lication by Kumler and Xie [28], which decomposes the GHI value to two components.

6



2. Methodology and Fundamentals

The first part is extraterrestrial solar radiation. Secondly cloud albedo and cloud fraction

are extracted with respect to the extraterrestrial radiation from the measured GHI. Those

values are estimated by the assumption of persistence via an exponential moving average

to generate predictions within an forecast-horizon up to 60 minutes.

2.1.5. Numerical weather prediction (NWP) Model

Even more physical basics are used to predict future weather conditions, by NWP models.

Those models are build on mathematical equations, which depend on different physical

laws, e.g. fluid-dynamics and thermodynamics [31]. Therefore a certain terrestrial area is

mapped to a grid with nodes and connections, displayed in figure 2.2 [43].

By considering those points with respec-

tive environmental data and the differ-

ence to their neighbors, complex de-

pendencies can be derived. In use of

fluid-dynamics and thermodynamics laws,

this dependency is used to estimate fu-

ture conditions. Based on those geo-

physical processes, forecast within min-

utes or climate-change over years can

be predicted [31]. To name an exam-

ple, the used NWP ICOsahedral Nonhy-

drostatic (ICON) [43] by the Deutscher

Wetterdienst (DWD) is constructed by a

triangular-grid with a node distance of

13km. All input parameters, by the net-

work, are subdivided by their location

(Atmosphere,sur f ace,sea, lake, ice)

Figure 2.2.: Triangle-grid of ICON [43]

2.1.6. Image based Prediction

In comparison to a physic based model, image processing forecast approaches rely on the

camera-visible weather situation. Hence not only the measured irradiance in comparison

to the estimation of a clear-sky-model provides information about the actual cloud situa-

tion. In this case the more detailed position of cloud-fragments or brightness can be used

to predict the behavior and thereby the overcast-rate and irradiance for future situations

[37].

7



2. Methodology and Fundamentals

Figure 2.3.: Cloud motion vectors by tracking cloud movement [5]

This method generates more detailed information of weather and cloud development, but

is limited to the field of view. Hence a cluster of stations would be needed to cover a

wider area by cloud-shadow-maps, crucial for short-time irradiance forecasting [4].

2.1.7. ML Approach

Alternatively to physic based models and image processing algorithms, the machine learn-

ing approach relies on the relation of input features to a target value [19]. Where these fea-

tures may include environmental sensor data, NWP-data [29] or also information gathered

by image processing [37]. The target can be a single parameter, for example the power of

a PV-system [32] or two parameters, like limits for the interval of possible outcome value

[36].

2.2. ML Basics

2.2.1. ML Types

Since previously in section 2.1.7 mentioned, a ML prediction can be performed by using

various different methods [19]. A way to categorize ML approaches, is by the training

procedure. One group is the supervised training, which provides input feature along with

a corresponding result. Hence the model is trained to estimate the underlying relation of

those values, which is the case in most regression models [23].

In contrary, by the unsupervised approach a model just receives the input data, where the

property and distribution of values or categories are used to classify by just providing the

number of classes [23].

Reinforcement learning is compared to the supervised learning not training by comparing

8



2. Methodology and Fundamentals

the inputs to a result, but creating a prediction which is penalized or rewarded by a loss

function. This method is used in situation, where a direct result is not available, but the

prediction impact is measurable [23].

For the estimation of continuous numbers, for instance power outcome in relation to ir-

radiance and temperature, a regression approach with supervised learning needs to be

chosen. In contrary to a classification model, the regression is not only designed to decide

between cases, but estimate a floating point value [19].

2.2.2. Ensemble-learning Methods

A more specific way of prediction-generation by machine-learning is the ensemble-learning

method. Many simple models are trained on the same dataset. Thus not only one result

is achieved, but as many as used models. This approach is also called ”wisdom of the

crowd” [19]. Those results can then be handled by a hard voter as the ensembles me-

dian to get the final result. Alternatively a soft voter can be used, as Blending, with an

additional trained model on the individual predictions and target results [19].

2.2.3. Optimization

Training an ML-model, is meant to optimize the specific parameters to reach a minimal

prediction error. A boundary condition to this goal is, that the relation of input to tar-

get should not be learned by heart, what is called Overfitting. In detail, the performance

on the known training-set is increasing, but stagnating on unknown data. So the models

shows bad generalization ability [19]. In contrary Underfitting is the effect of not training

sufficient enough, so the prediction error is higher than necessary. Alternatively the model

may not be capable of creating the relation of input and result by complexity or dimension

[23].

In any case, for model training a loss function is required, which quantifies the prediction

error while training a model. A common used example are the squared-error-loss or the

mean-squared-error (MSE) [23].

Based on those fundamentals depending on the type of ML approach, the loss function

differs to optimize all model parameters. Therefore an iterative parameter-optimization

tactic is the gradient descent. The gradient descent works iterative, after random initial-

ization of the model parameters with a first evaluation of the prediction error according to

the loss-function [23]. So the goal for each iteration is to minimize the error by adjusting

the weights.

9



2. Methodology and Fundamentals

A crucial parameter in this ap-

proach is the step size, denoted

as α , for each iteration. By a to

small α , the progress for each

step is very little or the function

can get stuck in a local minimum,

figure 2.4 with parameter vector

θ . When setting α to big, the

function may step over the minima

and is also not converging to the

best result.
Figure 2.4.: Example of not reaching the global minima

[19]

2.2.4. ML Examples

2.2.4.1. Linear regression (LR)

To name some common individual- and ensemble-models with relation to the project:

One quite simple method is predicting the target by a linear function of all input features,

the so called LR. Hereby the parameters have to be trained with the dataset are the spe-

cific weights. A common method is fitting by use of the least squares method [1], or

approaching the optimal weights with a gradient descent approach [23]. As loss function,

the average squared error or mean squared error are commonly used [23].

2.2.4.2. Support-vector-machine (SVM)

A more advanced approach than the linear regression is a SVM. Within this method all

input features are non-linear-transformed into a higher dimension (kerneltrick) to fit hy-

perplanes and reach the best fitting linear solution for the prediction, displayed in figure

2.5. So the prediction result is defined, by the support-vector correspondence in the trans-

formed space.

Hereby the transformation function can be chosen either to use a linear, polynomial or a

radial basis function, depending on the properties and number of input features [23].

Figure 2.5.: Working principle of a simple SVM with one input feature [35]

10



2. Methodology and Fundamentals

For the loss-function a gradient descent algorithm can be utilized, similar to the linear

regression. As a consequence, the best number and position of support vectors can be

approximated, depending on the used transformation-type and dimension [23]. But com-

pared to the linear regression, by feature-transformation, the SVM is computationally

demanding.

2.2.4.3. K-nearest-neighbor (KNN)

Compared to the SVM, the KNN method, is based on an quite simple idea. The prediction

is formed on the result of k data-points which approximates best the relation of input

values to the target. While fitting the number, denoted as k, and feature-values for the

stored data-points are chosen by converging the lowest prediction error. So in the act of

passing a new data point to the function, a number of closest neighbors with respect to the

input feature value are considered for estimating the resulting prediction [23]. Deviating

to other approaches, like SVM or linear regression, KNN prediction, is based on real data

points of the training set. Therefore the time, needed for fitting the parameters is much

lower, than more complex functions e.g SVM. A disadvantage, which has to be mentioned

is that the stored data points and consequently a possible exploit of the training data is

feasible [23].

2.2.4.4. Decision Trees

An additional approach is the decision tree method, which is not based on weights or

stored data as previously mentioned methods. Here, the prediction is generated by a

flowchart-like path of decisions. The estimation of a target depends on the state of input

parameters [23]. Based on that decisions are made which approach the resulting predic-

tion value by every decision, figure 2.6.

Figure 2.6.: Simple example for a regression task, using a decision tree [19]
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2. Methodology and Fundamentals

To grow a tree implies the generation process of a tree-structure by adding decision nodes.

Such nodes are generated while training the model. In the process the goal for a new

decision is to separate the given data, based on a input-feature measure. So formula 2.5

result j minimizes by best separation of data m to subset mle f t and mright . A weighting

factor to these separations is the MAE, by formula 2.4with formula 2.3. Here the averaged

target values, denoted by ŷnode are compared to the decision related outcome value yi.

Those two error metrics calculate for each subset the average-target offset to the node

prediction [19].

ŷnode =
1

mnode
∑

i∈node
yi (2.3)

MSEnode = ∑
i∈node

(ŷnode − y(i))2 (2.4)

j =
mle f t

m
MSEle f t +

mright

m
MSEright (2.5)

In case of complex situations these trees may become big while optimizing for the best

performance on the training set, which can result in large computation time in correlation

to available resources [23].

2.2.4.5. Random forest (RF)

One ensemble method, section 2.2.2, of the decision-tree-approach is RF by use of bagging-

method [19]. Hereby the procedure is to train several small decision trees with subsets

of the given training data. For a final deterministic result, these predictions are accumu-

lated by the mode or average. An advantage of this approach is the reduction of bias and

variance, caused by the data-splitting and model aggregation [19]. Also the training pro-

cedure can be processed in parallel. Therefore a lower amount of time can be expected,

than by training a single decision tree for the same task [19].

2.2.4.6. Boosting Method

As mentioned in the previous chapter 2.2.2, RF creates an ensemble with parallel per-

forming models. In an opposite way, the Boosting method aligns all individual learner

instances. Herby the goal is to create an iterative prediction. So the first module in

the boosting-method creates a prediction. Afterwards the following instance is trying to

minimize the forecast error of the first module. For that, each model is corrected by its

predecessor [19]. An adaption of Boosting is the Gradient Boosting, which uses a gradi-
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ent descent algorithm, section 2.2.3, scoring metric.

This gradient descent method can also be used within Riemannian structure of the param-

eter space [3], denoted by Amari and Douglas [3] as Natural Gradient. This approach

results in better convergence behavior, referenced to the basic gradient descent method.

Additionally the proposed NGB approach of Amari and Douglas [3] is utilizing a se-

lected base learner model to estimate the parameters of a given distribution with respect

to a scoring rule as displayed in figure 2.7. In this flow-chart, x denotes the input-vector,

and y the predicted distribution parameters.

Figure 2.7.: NGB process components with

About the boosting method in general needs to be mentioned, that high computational

cost are to expect, as parallelization is not feasible.

2.2.4.7. Multi-layer perceptron (MLP)

Compared to other methods, a MLP is designed by the method as a human brain is work-

ing on processing information. It consists of nodes as neurons and weighted connections

[23] , figure 2.8.

Figure 2.8.: Simple MLP for classification of three classes with bias nodes and activation function
[19]

13



2. Methodology and Fundamentals

Hereby two inputs x1 x2 and a bias factor is feeding a Hidden Layer via weighted connec-

tions. These layers consist of a defined amount of nodes. Formula 2.6 shows the resulting

equation for a neuron in the hidden-layer. The activation function in this example, 2.8

is the rectivied linear units (ReLu), formula 2.7. But it can be selected from different

functions (Tanh, Step, Logit, Softmax, ReLu) [19] with respect to the given task.

n = ReLu(w1 ∗bias+w2 ∗X1 +w3 ∗X2) (2.6)

ReLu(x) =

0, i f x < 0

x, i f x >= 0
(2.7)

With such circumstances a complex relation of input parameters to an output can be

created. Depending on the task, this output can be a classification result, a value for a

regressions or multiple values like for an upper and lower bound estimation [33]

The training of a network in this ML-method is the optimization of all weights in-between

the neurons in order to evolve a relation of input features to the output. This can be

achieved by using the backpropagation algorithm [44].

Ergo after a random initialization of all weights, a first prediction iteration is processed.

Later by the resulting prediction error, the backpropagation algorithm calculates the influ-

ence of each neuron on the prediction error. This is accomplished by iteratively processing

the error contribution for each layer, until reaching the input layer [19]. Consequently the

error gradient across all connection weights can be measured with the condition that all

activation functions are continuous and differentiable [19]. The finalization of the training

step is an update of all weights with respect to the error gradient.
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3. State of Research

3. State of Research

3.1. Deterministic Irradiance Forecasting

3.1.1. ML Model Comparison

As the basic topics and fundamentals for irradiance forecasting are exposited, this chapter

gives an insight on the state of publications with respect to the project. Therefore the

paper of Dávid Markovics and Martin János Mayer [32] presents an excellent overview

on different ML approaches for 15-minute-ahead-prediction on 16 power plants. Several

sets of engineered input features have been, as displayed in figure 3.1. Additionally per-

formance of all models are evaluated with function-default and tuned hyperparameters

[32].

Figure 3.1.: Different input-feature-sets 1 and training options [32].

These results of all individual test cases are highly valuable, as a selection of appropriate

ML models can be made. Since the outcome for all approaches and used training sets

are listed, including the performance, see appendix A . The evaluated metrics include the

root-mean-squared-error (RMSE), which, compared to the MAE, shows possible trends

to outliers in the predictions. Both give an idea about the prediction error of the model

in the targets unit. Additionally the Pearson-correlation-coefficient is a measure for the

correlation of the target and prediction data. As a reference to the performance of a

1Ta: Ambient temperature, Ws: Wind-speed
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smart-persistence model, the skill-score shows wether a ML-model outperforming the

smart-persistence and is considerable or not.

Moreover, as these models are trained on the data of different power plants, the paper

[32] provides histograms of best performing hyperparameters on all models. This serves

as a useful reference on which hyperparameters can focus on, while training one of these

model for irradiance prediction.

3.1.2. Persistence Forecast Data as ML Input Feature

Generating deterministic forecasts is also the major topic in the publication of Huertas

and Brito [21]. They discuss the influence of a physic-based prediction method as input

parameter of a ML-model. Hereby the physic-based prediction is a SSP approach which

feeds a RF model.

The environmental input feature set includes measured CSI values Kt , their mean and

standard deviation is calculated by the last hour of measurement. Thus, the mean value

K̃t for the calculation of the standard deviation σKt(t) is a rolling window value, where

the calculation is shifted with the step i for the last 60 minutes as w, see formula 3.1

σKt(t) =

√
1
w

w

∑
i=0

(Kt(t − i)− K̃t(t − i))2 (3.1)

This is extended by the SSP forecast data, where the SSP is calculated with respect to the

forecast horizon. Similar to the environmental values, a mean and standard deviation is

calculated for the SSP result.

By training of the RF model, a maximum number of trees is set to 500. Based on this gen-

erated forecasting approach, an evaluation on different forecast horizons is made. Hence

in figure 3.2 all used feature sets are evaluated across the forecast horizon. In that regard

the model with only measured features performs worse, followed by the model with pre-

dicted features except the SSP prediction. A superiority to these approaches generates

the RF models, feed with aggregated features, including measurement mean and standard

deviation as well as SSP mean and standard deviation. Which outperformed by the model

with features from instantaneous data, which include measurements and SSP prediction.

The best results are generated by using all features, what provides the most data.
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Figure 3.2.: Skill-score with and normalized RMSE by the observed target data, with respect to
the forecast horizon [21]

Concluding the results of Huertas and Brito [21] forecasting data of an additional model

can improve the prediction results, as well as combining predictions and measurements

enhanced the estimation process [21]. A second learning is the error behavior per forecast

horizon, which shows a steep inclination within about an hour. After this, the error slope

almost stagnates.

3.2. Probabilistic Irradiance Prediction

3.2.1. Multi-model Ensemble Result Distribution

In order to estimate confidence intervals, the step from a deterministic ensemble to a

probabilistic one, is crucial. This can be done by accumulating the individual prediction

of several ML-models, that is shown in the publication of Mohammed and Yaqub [34], as

part of the Global Energy Forecasting Competition (GEFCOM) [20].
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During this competition hourly

data points are provided, one

week ahead for three time in-

tervals within one year. After

16 weeks the whole dataset con-

sists of 56.953 data points between

April 2012 until May 2014. Avail-

able features for training and pre-

diction are listed in table 3.1. As

already mentioned, the time dis-

tance between two data points is

one hour, all grouped on a hourly

base. Defined by properties of all

features, an impact on the solar

power is generated by each [34],

so no further engineering is per-

formed.

Table 3.1.: Features of GEFCOM [20] competition
dataset

Description Unit
Total column liquid water kg/m2

Total column ice water kg/m2

Surface pressure Pa

Relative humidity at 1000 mbar %

Total cloud cover 0 − 1

10 metre U wind component m/s

10 metre V wind component m/s

2 metre temperature K

Surface solar rad down J/m2

Surface thermal rad down J/m2

Top net solar rad J/m2

Total precipitation m

By using the provided data, seven individual models are trained. Analyzed ML-models

within the ensemble approach are [34]:

• Decision Tree Regressor

• RF Regressor

• KNN Regressor with uniform weighting

• KNN Regressor with distance weighting

• Ridge Regression

• Lasso Regression

• Gradient Boosting Regressor

To form a probabilistic result, three methods are chosen, where a Naive model [34] cal-

culates a cumulative probability distribution on the results. The second method is an

assumption of Normal distribution with mean and standard deviation of the deterministic

predictions, to calculate 99 quantiles. As an adoption of this method, the third approach

uses additional data, by performing within two different initial settings with the models

and adding the respective month as an feature.

By evaluation of these three approaches, the superiority of the third method with different

initial settings is declared.

Also a fluctuation of the loss over the year is mentioned within the publication. There-

fore Mohammed and Yaqub argue that the main reason is the cloud cover, which results
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in lower offset by more clear-sky occurrence in summer as lower irradiance fluctuation

results [34].

3.2.2. Natural Gradient Boosting Method

As a different approach on generation of probabilistic predictions, the publication of

Mitrentsis and Lens [33] uses a NGB approach to predict data within an interval of 15

minutes to 36 hours. The offset between the single predictions is set to 15 minutes, like

the dataset resolution. All measurements of the dataset are supplied by two PV plants in

Southern Germany, covering an time-interval from February 2018 until October 2019. As

not relevant for irradiance prediction, night time is excluded.

By the reason that each data point only supplies information on the actual environmen-

tal state, no knowledge of the past is included. To tackle this issue, historic information

by shifted timestamps is appended. So three past measurements are added with ( t −15,

t −30, and t −45). Also data with a past offset of 24 hours has been added, but neglected

as no increase of prediction accuracy is traceable. However the dataset is appended by in-

formation on the specific part of the year. Hence two continuous values as circle positions

are added, see formulas 3.2 and 3.3.

monthsin = sin(2π ∗ month
12

) (3.2)

monthcos = cos(2π ∗ month
12

) (3.3)

In order to evaluation, two further methods are implemented as well. These are a

Gaussian-Process [54] and a Lower Upper Bound Estimator (LUBE). For this bench-

mark, the used metrics are for deterministic predictions MAE, RMSE and mean-bias-

error (MBE), presented in section 6.1. For probabilistic forecasts interval coverage prob-

ability (ICP) and normalized mean interval width (MIW), see section 6.1, are chosen.

As the paper argues on development of high accurate forecasting, an important influence

are the input features. To understand the feature importance within the NGB-model, for

each feature the shapley additive explanation (SHAP) score [30] is calculated. Hereby

the model performance is observed with and without a specific feature to estimate the

importance within the prediction process. Thus with respect to the models and forecast

horizon, feature impacts are displayed in figure 3.3.
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Figure 3.3.: Feature impact to prediction [33]

By the information provided of the feature impact, a subset of input is taken for NGB

training as well as the full set. As a result for deterministic and probabilistic prediction an

improvement by use of the subset it observed. Therefore the corresponding results by the

two training-approaches are shown in table 3.4. Mentionable is here the improvement for

the feature subset where the RMSE decreases by 6% and the CRPS by roughly 10%. That

shows the outperforming accuracy by using the reduced set. Mitrentsis and Lens argue

this result, by a local optimum training solution due to the higher dimensionality when

using all features [33].

Figure 3.4.: Averaged metrics of the two training approaches with all features and a selected sub-
set [33]

Concluding the findings, the optimal feature selection is highly depending on the specific

model and prediction target, more than on the dataset itself. Furthermore, additional

features lead to a higher complexity and extended training times [33].
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4. Data Preparation and preparatory Work

4.1. Dataset Introduction

The dataset, which has been chosen for this

project is provided by the DLR-Almerı́a,

figure 4.1, Energy Meteorology team of Dr.

Stefan Wilbert [53].

The time resolution of the measurements is

one minute, covering a time frame from the

1st of January 2015 til the 31th of Decem-

ber 2019 with 1.18 million measurements.
Figure 4.1.: Site of measurement at Plataforma

Solar de Almerı́a [53]

For each datapoint available measurements are:

• Irradiance-data

◦ GHI in W/m2

◦ DNI in W/m2

◦ DHI in W/m2

• Environmental-data

◦ Temperature in Celsius

◦ Relative humidity in percent

◦ Pressure in millibars

◦ Wind-speed in km/h

◦ Wind-direction in degree

◦ Sun-position in degree azimuth and ele-

vation

◦ Linke-turbidity-factor in percent

4.2. Data Preparation and additional Features

In order to use the dataset for the whole project, all measurements prior to sunrise and after

sunset are excluded, as they are considered irrelevant for irradiation measurement. Addi-

tional data-points with failed measurement, identified by zero or not a number (NaN) are

excluded as well. Hence the remaining measurements are taken for feature-engineering.
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Hereby additional features for backward information and value variance are calculated

with respect to the publication of Pedro and Larson [40].

• Backward average, formula 4.1, gives information on the recent irradiance in steps

of 5 minutes til 30 minutes in the past [40].

• Lagged average, formula 4.2, is calculated similar to the backward average, for-

mula 4.1, but with a gap by one time offset value. This formula provides informa-

tion on the past state without recent measurement [40].

• Variability, consists of formula 4.4, as the difference of past measurements in steps

of five minutes. The root of these squared differences, normalized by the number

of measurements, formula 4.3, provides information on how the given input value

of irradiance varies on certain time spans [40].

Backward averagei(t) =
1
N ∑

t∈[t−i∗5, t]
kt(t) , f or i = {1,2, ...,6} (4.1)

Lagged averagei(t) =
1
N ∑

t∈[t−i∗5,t−(i−1)∗5]
kt(t) , f or i = {1,2, ..,6}

(4.2)

Variability =
1
N

√
∑

t∈]t−i∗5,t]
∆kt(t)2 , f or i = {1,2, ...,6}

(4.3)

with ∆kt(t) = kt(t)− kt(t −5∗ t) (4.4)

These features depend on a specific amount of prior time data-points. Therefore the

timestamps, consisting of insufficient prior data and failing in calculation are excluded.

The remaining dataset is divided into a training set for the individual model-training, a

validation set to evaluate model performance after training, a historic set for the similarity

lookup and a performance set to test the method.

The usage of subsets, randomly chosen of the dataset without replacement, are defined

as follows: The training-set is determined to train all individual deterministic models in

the project, where the validation-set serves for estimation the prediction error on unseen
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data. As for selection of similar conditions for each prediction is necessary, the historic-

set is taken for data-lookup. Additionally as there is no direct contact to the models for

probabilistic estimation, it is also used for training these models. Finally the performance-

set is proposed on benchmarking all individual ML models, as well as evaluating the

whole project.

As last step on data preparation, standardization and data-scaling is performed. So by

formula 4.5, with feature-mean and feature-standard-deviation, the data is transformed

to a Gaussian-distribution. The scaling then is accomplished by formula 4.6, using the

feature-extreme-values and spread on each feature. Thereby finally all data is distributed

between an interval of zero and one as necessary for processing with ML-techniques [23].

xi normed =
xi − x̃

σx
(4.5)

xi scaled =
xi normed −min(x)
max(x)−min(x)

(4.6)

4.3. Reference Models

4.3.1. Smart Persistence Model

By completed definition of the dataset and subsets, this section presents the considered

reference models for benchmarking the project-modules.

Therefore all individually used deterministic ML-functions are evaluated to the perfor-

mance of SSP predictions, presented in section 2.1.4. The simple model was chosen, as

a typically benchmark model, explained in section 2.1.4. A second reason is the lack of

additional environmental data for a more accurate, physic based model as for example the

Kumler Smart Persistence [28]. Thus the target value for all prediction serves the CSI to

avoid a seasonal bias as in irradiance, see section 5.2. The CSI is calculated with respect

to the CSIR-model of Ineichen and Perez [22].

Resulting to this adaption, the SSP by formula 2.2 is simplified to formula 4.7 with the

estimated correction factor of 1.05. The factor is an approximation by comparison of

CSIR-predictions to clear sky condition days within the dataset. These clear sky condi-
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tions are identified by a undisturbed GHI curve, qualitatively compared to the estimation

generated by the SSP.

SP(t,h) = 1.05∗CSI(t)∗ Ics(t +h) (4.7)

4.3.2. Probabilistic Prediction Reference Model

As the generation of probabilistic intervals is the goal of this project, there is another ref-

erence model to benchmark the method of probabilistic prediction. This model consists

of three parts. One part is the resulting combination of selected forecasts to an analog en-

semble [2] The analog-ensemble (ANEN) is estimated by formula 4.8, where the distance

of a data point t to historic measurements T is evaluated. In that regard all features are

normalized by σ f i and compared to historic features Fi−At by weight vector Wi. The sum

of these root-squared distances defines the resulting similarity score of the data point to a

historic one, figure 4.2. With respect to the historical timestamp and the forecast horizon,

then the respective target value is added to the ensemble.

Limited by the available time horizon on the project, the weight-vector Wi is not estimated

by approaching the lowest prediction error, but set to one for all values.

||Ft ,AT ||=
N

∑
i=1

Wi

σ f i

√√√√ t̃

∑
j=−t̃

(Fi,t+ j −Ai,T+ j)2 (4.8)

Figure 4.2.: Comparison of features for similarity measurement and forecast extraction [2] pro-
cess in green, data in blue, time-offset-data in light blue

As second part a prediction ensemble is generated by a specific number of best perform-

ing individual ML models. These m models are selected by performance on k historical
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data-points, evaluated in use of the dynamic selection method [11]. By the evaluation of

Santos and Domingos [11] for three of four sites the values m = 3 and k = 20 are produc-

ing the best results, out of which a prediction ensemble is generated.

After the resulting analog-ensemble and prediction-ensemble, a third combined-ensemble

is generated by combining both ensemble results. For each of these groups of deter-

ministic predictions, probabilistic predictions are generated as benchmark-method to this

project. The confidence interval for each ensemble, is estimated based on the assumption,

of normal-distributed predictions. [34], displayed in figure 4.3.

Figure 4.3.: Flowchart of generated reference model function, with respect to dynamic selection
process [11], for probabilistic prediction generation by an Gaussian confidence inter-
val process in green, data in blue

25



5. Implementation of the Probabilistic Dynamic Ensemble

5. Implementation of the Probabilistic Dynamic

Ensemble

5.1. Concept of the Dynamic-Probabilistic-Model

After introducing the relevant past work, the concept of the proposed method is declared

within this chapter. The basic idea is to take an advantage of the knowledge from past

situations and combine it with the predictions of the best performing models on those

cases, displayed in the flow chart 5.1.

Figure 5.1.: Process of a prediction by use of the proposed method
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Nevertheless wrong information can still be within this accumulated ensemble, by wrong

predictions or not correlating past situation.

To get the best feasible results, all data is post-processed by an NGB model. This model

is trained by the ensemble result and target-value, to learn the importance of certain mea-

surements compared to the result. An advantage of the NGB approach [13] is the resulting

information of the most certain deterministic prediction, as well as the selected parametric

distribution.

In order to create a probabilistic prediction to a given data-point, a historic dataset from

the same origin as the input data is needed. Additionally a pool of trained models and

prediction results of all historic data is needed in prior as well. For the model pool, a most

promising selection by the result of Markovics [32] is taken. As these models are trained

with different training approaches, the algorithm can select the best models within this

pool, figure 5.2.

Figure 5.2.: Available models blue by selected training approaches green

5.2. Dataset Preparation

This chapter explains the implementation steps of the probabilistic approach, written in

Python [16] 3. All used libraries are declared in appendix G.

For the task of data preparation, figure 5.3, the provided data is read from a hierarchical

data format (HDF) [18] file to a Pandas DataFrame [42]. This data type provides various

features and functions useful for handling big sets of data.

As it is common to use the CSI for PV prediction tasks [57] [40] the GHI value is con-

verted to the CSI.
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Figure 5.3.: Process of raw data preprocessing with functions in green, data in blue and light blue
marked target value

The main reason is that the CSI does not inherit high seasonal bias, in reference to the

raw GHI displayed in figure 5.4. Necessary to mention is that the a bias also for the CSI

persists, by the seasonal weather conditions and cloud coverage [52].

Consequently CSI is calculated by formula 2.1 with respect to the CSIR of the given data.
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Figure 5.4.: High biased normalized GHI value in blue compared to CSI GHI in orange with low
seasonal bias, data-points averaged by seven days

To estimate those CSIR values, the function get clearsky of the pvlib-library [49] is cho-

sen. The calculation is based on the location of measurement: latitude = 37.093040,

longitude = -2.2353150 and altitude = 500 meter sea level to calculate the respective solar

movement by a given timestamp. As this information is valuable by its relation to the

irradiance, the solar elevation, azimuth and zenith are appended to the dataset.

The estimation of the CSIR itself is calculated by the model of Ineichen and Perez [22],

see section 2.1.2. For the calculation, air-pressure, by altitude, and the linke-turbidity

are provided as important parts to estimate the influence of air-mass. As in figure 5.5

displayed, during clear-sky-condition, the estimated values overlap the real measurement

within a small offset. To avoid information of nighttime measurements, all sections of the

dataset, containing information before and after sunset, are excluded by their time-index.
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Figure 5.5.: CSIR (orange) compared to real GHI (blue) for a overcast day 1st Jan 2015 on the left
and clear day 2nd Jan 2015 on the right hand side

Additional to the CSI as input feature and reference to the cloud coverage, future CSI

values are added to the data points within an interval of 5, 10, 15 and 20 minutes. These

values are used for model training and evaluation, as target value to the given forecast

horizon.

To provide an information of past condition for each data point as well, the backward-

feature-generation-method from Pedro et. al [40], section 4.2, is selected. These formulas

set past information by the given times step, which is not provided within data points

in the first rows or ones including faulty or missing measurements. Respective times-

tamps are neglected for the final dataset. At last the subsets needed for model training and

evaluation, section 4.2 are randomized and divided by the function train test split of the

scikit-learn (sklearn) library [39]. These are listed in table 5.1.

Table 5.1.: Composition of datasets and share according to total usable data

Dataset Share Data points
Train 48 % 569,339

Validation 12 % 142,336

Historic 20 % 237,224

Performance 20 % 237,224

Total 100 % 1,168,123
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The distribution for the CSI

of those subsets is presented

in figure 5.6. As all graphs

almost perfectly align, a bias

is expected to be minimal.

As mentioned in section 4.2

all features are standardized

by their mean and standard

deviation and scaled to an

interval from zero to one.

Figure 5.6.: CSI cumulative distribution of all datasets

5.3. Model Training

5.3.1. Training Sections

The following step after data preparation is the training of all individual ML-models, fig-

ure 5.7. Therefore predefined model-implementations from sklearn for ( RF, SVM, LR,

KNN, MLP and Linear-stochastic gradient descent (SGD) ) are used. For extreme gradi-

ent boost (XGBoost) the correspondent library [8] is integrated, as well as for CatBoost

[41].

To evaluate all named individual models by feature importance and hyperparameter opti-

mization, the training-process is subdivided to three sections, table 5.2.

31



5. Implementation of the Probabilistic Dynamic Ensemble

Figure 5.7.: Flow chart of the training process and result generation

• Basic feature set considering only raw measurement data.

• Enigneered feature set by feature evaluation with all available measurement-data,

including the backward information, section 4.2, introduced by Pedro Et al. [40]

• Optimized model set with optimized model parameters. The notation standard

parameters refers to the implemented values of the used libraries [7] [41] [8]. By

optimized parameters the best performing options, see appendix B, by a parameter-

evaluation with GridSearchCV of the sklearn module are selected.
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Table 5.2.: Feature sets for model training and parameter estimation

Section Notation Features
Basic features CSI, temperature, humidity, wind speed, sun elevation

[standard parameters] and azimuth

Engineered features Basic features with linke-turbidity

[standard parameters] Plain irradiance types: GHI, DNI, DHI, GHI-CSIR

Backward engineered features for (5,10,...30 minutes) [40]:

GHI-backward average , GHI-lagged average , GHI-variance

Optimized models Basic features with linke-turbidity

[optimized parameters] Plain irradiance types: GHI, DNI, DHI, GHI-CSIR

Backward engineered features for (5,10,...30 minutes) [40]:

GHI-backward average , GHI-lagged average , GHI-variance

5.3.1.1. Feature Engineering

For feature-evaluation, every feature importance is measured by the correlation to its tar-

get value, to estimate the influence in the prediction process.

This scoring is achieved by the SelectKBest function from the sklearn module [7]. The

optimization metric for the function is set to f regression. This score calculates the cross-

correlation, formula 5.1, with input X from the features to the target value Y .

By the information of feature-influence, a subset of 18 features is selected, displayed in

figure 5.8.

Cross-correlation-score =
x− x̃∗ ỹ
σx ∗σy

(5.1)

For better comparability, all scores are normalized for figure 5.8. As the score shows

a second significance step within the logarithmic scale after lagged-GHI-30, the first 17

features are selected, marked by the green area in figure 5.8.

The feature naming consists of l for lagged, b for backward, v for variability and cs for

clear-sky-irradiance. By a comparison of the importance score for all forecast horizons,

only small significance deviations are remarkable for DNI. Hence the difference for the

azimuth score within the forecast horizons may be neglected as the score is at the lower

significance-end of the evaluated field.
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Figure 5.8.: Logarithmic score of available features with respect to target

5.3.1.2. Optimized Model Training

The in this way generated subset of input features are pitched for model optimization as

well. To set the available parameters of each ML-model to an appropriate number, the

same options as in the publication of Markovics [32] are taken into account, 5.3.

To gather the best parameters, the selection function GridSearchCV of the sklearn module

[7] is utilized. This method trains a model on subsets of the training-set with a generated

grid of given parameters. The so generated models-instances are evaluated to a circum-

stance specific scoring function. Hence the best parameters for the mentioned metric can

be estimated.

For the hyperparameter tuning the negative-RMSE is taken with three folds for cross-

validation, chosen due to computational resources.
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Table 5.3.: Markovics model parameters [32] used in GridSearchCV [7]

Model Parameters Options
LR Normalize: True, False

SVM Kernel: rbf

Epsilon: [0.5, 0.25, 0.23, 0.2, 0.15, 0.12, 0.1, 0.08]

C: [0.001, 0.01, 0.1, 0.5, 0.9, 1, 1.15]

MLP hidden layer sizes : [(5,), (10,), (50,), (5,5), (10,10), (5,5,5), (100,)],

alpha: [0.0001, 0.001, 0.01, 0.1, 1]

KNN n neighbors: [5, 10, 15, 20, 30, 50, 70, 100, 200, 300, 500]

RF n estimators: [50, 100, 250, 300]

max depth: [None, 5, 8]

min samples leaf: [100, 10, 1, 0.01]

max features: [’auto’, ‘sqrt’]

XGBoost objective: [logistic, squarederror]

learning rate: [0.01, 0.05, 0.1, 0.3]

max depth: [3, 4, 5, 6]

min child weight: [1, 2 ,3, 4]

n estimators: [50, 100, 200]

reg lambda: [0.1, 0.4, 1]

CatBoost learning rate: [0.03, 0.1]

max depth: [-1, 3, 5, 6, 8, 10, 15, 25, 31, 50]

l2 leaf reg: [3, 10, 50, 100, 200, 500, 1000]

iterations: [50, 100, 150]

Linear-SGD loss: [squared error,huber,epsilon insensitive

free chosen ,squared epsilon insensitive]

parameter set alpha: [0.0001, 0.001, 0.01, 0.1, 1]

penalty: [l2, l2, elasticnet]

max iter: [500,1000,5000,10000]

5.3.1.3. Prediction Storage

Each mentioned training approach, section 5.3.1, generates prediction results which are

normalized and scaled values, such as the targets passed for training purpose in section

4.2. Therefore the reverse calculation with respect to formula 4.5 and 4.6 is processed.

This results back to CSI values. To generate an outcome with an unit, better assessable,

the CSIR is chosen to receive a irradiance prediction.

For later use all these generated predictions are stored with specific naming ( e.g. ran-

dom forest optimized model 5 ) containing the model, the training approach and the fore-

cast horizon. As the storage type,HDF [18] is used by the method DataFrame.to hdf [42].

35



5. Implementation of the Probabilistic Dynamic Ensemble

This file-format can inherit different datasets along with informative attributes and offers

an uncomplicated handling [18]. In the file all predictions are sorted by respective keys

for the dataset on which the predictions are generated.

5.3.2. NGB Training

In order to generate probabilistic predictions, a NGB-model for each forecast horizon is

trained. Accordingly the in python3 [16] implemented NGB library [13] is included. The

process of training the network is done in use of the validation-set. This data is considered

to create the training-input-data with the dynamic-selection-process [11], as the set is not

utilized within other training or testing processes.

The first step is similar to the approach for analog-ensemble-generation presented in sec-

tion 4.3.2, which is denoted as Calculate similarity score in figure 5.9. Followed by the

dynamic-selection as proposed by Santos and Domingso [11].

Figure 5.9.: Flow chart of dynamic model selection [11] by evaluation of similar data points with
data in blue and processes in green
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For this reason the data and predictions of the historic-dataset is extracted from the result-

HDF. The selection of similar data points is calculated by the euclidean distance to a

given situation.

The features to be considered for this comparison are the features used for model train-

ing. As the different measurements spread by value, they are normalized by their standard

deviation. The sum of these differences is the similarity score, where the smallest score

represents the highest similarity.

In consequence the dataset is sorted with decreasing similarity-value. Being mentioned

in section 4.3.2, best results are generated by considering 20 data points. Their future CSI

values, with respect to the forecast horizon, accumulates to the analog-ensemble.

The amount of selected data-points is crucial, as a low number represents a lack of infor-

mation diversity. In contrary a high value exposes the risk of generating a high variance

within the data subset.

Therefore the selection of 20 samples and three best performing models are evaluated

by Santos and Neto [11] as best approach. In this project, a total number of ten mode-

predictions is chosen to provide additional information to the probabilistic prediction of

the NGB-model.

Looking-up the prediction of all individual ML-models is achieved by a functionality of

the pandas DataFrame [42]. So with the index of the similarity set, the corresponding

predictions and their target values can be selected.

These results in a dataset of predictions and measured target values for occurrences are

comparable to the input data point. Where the case that no prediction data is available, the

model-pool is loaded and predictions are generated by the selected historical data-points.

The next step is to evaluate the prediction performance of the data set, with the purpose

that the RMSE of all models by the included target value is calculated with the corre-

sponding function of sklearn [7]. These metric results in information on the model per-

formance, where the ten best performing are chosen to generate prediction for the input

situation. All prediction of those models for the given input data-point are accumulated

to the model-prediction-ensemble. Concatenating the dataset of analog-ensembles and

model-prediction-ensembles, the result is used for training the NGB-model as presented

in figure 5.10.

37



5. Implementation of the Probabilistic Dynamic Ensemble

Figure 5.10.: Flow chart of NGB training procedure with functions in green and data in blue

Hereby the ensemble-dataset is normalized and scaled as mentioned in section 4.2. While

training the NGB, the parameter selection function GridSearchCV [7] is utilized as with

the deterministic models in section 5.3.1.2. The used parameters are listed in table 5.4.

They include the options as considered in the publication of Duan and Anand [13] with

additional options by deviation parameters.
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Table 5.4.: Used parameters for the gridsearch method

Parameter Options
Base learner Decision tree with squared error criterion

max depth [3, 4]

MLP with 100 hidden layers, ReLu activation

Number of estimators [ 100, 200, 400, 600, 800]

Natural gradient [True, False]

Learning rate [0.0001, 0.001, 0.01, 0.1]

The selected parametric distribution within the NGB module is the Normal-distribution

as proposed by Duan [13], along with the CRPS as scoring metric.

5.3.3. Probabilistic Prediction

Consequently to the training approach, the data with prior normalization and scaling is

processed. These deterministic predictions are feed with the input data to the NGB-model,

figure 5.11. The resulting probabilistic predictions are de-normalized and scaled back by

irradiance-value properties. Since the Gaussian distribution is chosen for the probabilistic

prediction, a confidence interval is calculated by an interval function of the NGB library

[13], considering the respective mean and standard deviation.

Within the reference function, the interval is calculated by the t.interval function out of

the stats module from the scipy library [51].

Figure 5.11.: Generation of probabilistic predictions by mixture of deterministic models and input
data
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6. Method evaluation

6.1. Quality Measures and Scores

6.1.1. Deterministic Prediction Metrics

To evaluate all presented parts of the method, chapter 5, different scoring metrics are

necessary for deterministic and probabilistic results. Hence for deterministic results of the

individual models, section 5.3.1, chosen evaluation metrics are MAE , MSE, RMSEand

Skill-score. So MAE exploits the average prediction error with equal weighting of all

individual errors, formula 6.1 with ŷ as prediction, y as the target and n the number of

data points . All metrics are calculated after decomposing the CSI back to GHI by the

specific CSIR, as the SI-based unit W
m2 of an irradiance is more accessible.

MAE =
1
n

n

∑
i=1

yi − ŷi (6.1)

Compared to this equal weighting, the MSE penalizes high errors by the squared-value,

formula 6.3. Therefore models, which tend to outliers can be identified by this metric. A

downside of this evaluation score is that resulting values are not directly comparable to

the target unit.

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (6.2)

To have an outlier highlighting value, sharing the targets unit, the RMSE is calculated,

formula 6.3.

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)2

n
(6.3)

As a difference to these error based metrics, the skill-score compares a model perfor-

mance to a benchmark method. A common used comparison metric within the skill-score

is the RMSE [56]. For irradiance predictions, a reasonable benchmark method is the smart

40



6. Method evaluation

persistence [56] or in this case by lack of data, the SSP, section 2.1.4. Hence by formula

6.4 the factor of majority to the SSP method is calculated.

Skill-Score = 1− RMSEmodel

RMSEbenchmark
(6.4)

6.1.2. Probabilistic Prediction Metrics

As these metrics are not practicable with confidence interval results, therefore various are

chosen: The ICP, MIW and the CRPS [55].

First there is the ICP, which is a score of how many target values fall within the estimated

interval, formula 6.5. So the hit-index ci, formula 6.6 is summed up for all predictions,

where it is set to one in case the true value yi is within the interval lower bound L(xi) and

upper bound U(xi). To receive a relative score, the sum of hit-points is then divided by

the number fo measurements N.

ICP =
1
N

N

∑
i=1

ci (6.5)

with ci =

1, if yi ∈ [L(xi),U(xi)]

0,else
(6.6)

Due to the reasons, that predictions whit a high uncertainty result in an wide interval and

thus can generate a high ICP by a poor prediction. To tackle that issue, the ICP should

go along with the MIW. The MIW is a metric to provide information about the interval

uncertainty and therefore its width. Hence in formula 6.7 sums up all interval-spreads by

U(xi)−L(xi) where ci indicates a hit of the target value. By this factor, only successful

predictions are evaluated to generate a relation of both metrics to another. Resulting to

this adaption, all failed predictions are set to zero, consequently the sum off interval-width

is normalized by the count of hits ĉ in formula 6.8.

MIW =
1
ĉ

N

∑
i=1

(U(xi)−L(xi))∗ ci (6.7)

ĉ =
N

∑
i=1

ci (6.8)
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So by considering ICP and MIW, the performance of a probabilistic prediction can be

evaluated by success and precision. The remaining downside is, that these metrics are

only feasible for fix interval bounds. In comparison, to evaluate an interval by its distri-

bution, the CRPS is chosen. As it computes the integral of squared differences between

the distributions cumulative density function F(y) and the observation Fo(y), formula6.9

[17].

CRPS =

∞∫
−∞

[F(y)−Fo(y)]2dy (6.9)

6.2. Individual Deterministic Predictions

After all metric in use are declared, the performance of individual deterministic models in

operation, see section 5.1, are listed. Firstly the smallest forecast-horizon and basic input

features as in section 5.3.1.1 mentioned are evaluated. Consequently figure 6.1 compares

all models on each metric. So by MAE, CatBoost, MLP and Random Forest perform

better than the reference model SSP. But with respect to MSE and RMSE only CatBoost

and MLP deliver better results than SSP what results to a positive Skill-score. For Random

Forest, the results implies that the overall prediction is better than the reference model, but

also produces an higher amount of outliers with big prediction offsets. Opposite behavior

shows LR compared to KNN. So LR performs in average worse than KNN, but with less

high offset errors. For LR and Linear-SGD is to be mentioned, that the model performance

is worse than SSP. Therefore those models struggle with the input parameters or features.

The worst performance is shown from the SVM, which produces in general bad results.
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Figure 6.1.: Model performances with a forecast horizon of 5 minutes and basic features

The following training section, where engineered features, section 5.3.1.1, are used with

default model parameters, generates results as seen in figure 6.2. Here, the most improve-

ment with additional features and use of an feature selection algorithm can be observed

within the KNN model. By exclusion of features with low target correlation, influence

of more meaningful neighbors raises, as low impact features have no more influence. In

comparison tho KNN, the MLP , LR and linear SGD metrics almost stagnates. Reason

for that is the training process of these models, where low importance features receive

small influence on the result generation.
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Figure 6.2.: Model performances with 5 minute forecast horizon and engineered features

The last training section involves optimized models by an searching algorithm, section

5.3.1, and given parameters to chose from table 5.3. With that regard a enhancement on

all model, except for KNN, linear-SGD and MLP can be observed in figure 6.3. Hereby

KNN stagnates, because the default number of neighbors from initialization has already

produced best results. For linear-SGD and MLP the MAE and therefore average perfor-

mance worsens.

But the RMSE, MSE and consequently Skill-score improves as the optimization algorithm

uses the MSE as measure of improvement. Reason of this behavior is the hyperparamter

optimization, where the RMSE is chosen as metric to penalize high errors .

Opposite to these models, the random forest performance is highly enhanced by opti-

mized model parameters. So within the contained decision trees, the model is capable of

assigning a low importance on low influence features, but the dimension and dept allows

the training process to generate better structure for the task.
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Figure 6.3.: Model performances with 5 minutes forecast horizon, engineered features and opti-
mized model parameters

As the specific goal on individual models is to outperform the reference SSP method, all

model results by forecast horizon are presented within this section. Hence for a forecast

horizon of 5 minutes all model sections reach at least in one approach a better result than

the SSP, except the Linear-SGD model and the SVM.

In consequence by comparing all four charts ( 6.4, 6.5, 6.6, 6.7), it is clearly visible that

by rising error of the SSP prediction the score of all models increases.
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Figure 6.4.: Model Skill-score for each training approach to 5 minutes horizon

Figure 6.5.: Model Skill-score for each training approach to 10 minutes horizon

Figure 6.6.: Model Skill-score for each training approach to 15 minutes horizon
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Figure 6.7.: Model Skill-score for each training approach to 20 minutes horizon

6.3. Probabilistic Predictions

After an overview of the individual models results is presented, the ensembles generated

by the dynamic selection, see section 5.3.2, are evaluated. To achieve a more represen-

tative comparison, this evaluation is based on an analog ensemble of 20 members and a

prediction ensemble with 10 best performing members to be chosen from a total of 24

available models. To underline the results of the individual models, a histogram of most

selected models as the three best for a 5 minute horizon is appended to the document, see

appendix D.

According tho the probabilistic results, developed by the three reference ensembles and

the NGB-approach, are presented within this section. Therefore in table 6.1 the results

for ICP, MIW and averaged CRPS are presented to an 5 minute forecast horizon. Hereby

the interval created by the analog ensemble shows a high ICP combined with a wide

MIW what implicates a good average similarity of most ensemble members with also a

remarkable number of outliers.

Compared to the analog ensemble, the prediction ensemble of the best performing ML-

models, proofs a higher prediction precision, by a lower MAE, but suffers on a lower

coverage probability as the interval width is narrow. Better results than analog ensemble

and prediction ensemble are delivered by both accumulated to an combined approach, as

well as the NGB-method. The coverage probability hereby is over 86% by a mean width

smaller than 108 W
m2 .
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Table 6.1.: Interval metrics with t-distribution for 5 min horizon

Method ICP MIW ACRPS MAE
Interval 5% - 95%
Analog ensemble 0.95 139.90 21.74 42.87

ML ensemble 0.60 30.81 26.84 31.19

Combined ensemble 0.94 113.90 21.40 39.19

NGB distribution 0.86 108.00 19.02 25.19

To provide additional information on the interval hit and miss behavior, all interval-hits,

interval-misses and interval-widths are distributed by a daily interval between 2 AM and

10 PM. So figure 6.8 to figure 6.11 show these results for all interval generation ap-

proaches. To gather a better understanding, at which time of the day a interval is likely to

give right or wrong estimations, the distribution is normalized by the amount of hits and

misses. Therefore in the left histogram for the analog ensemble with 5 minutes forecast

horizon in figure 6.8 the 5% of wrong predicted intervals is distributed mostly within the

time of 8:30 AM, 3:30PM, 5:30PM and 7:30PM.

Figure 6.8.: GHI-interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM

Considering the distribution of interval width on the right hand side of graph 6.9, the high

hit rate of all intervals approaches around noon is reasoned by the highest interval width

at this time. Hence the low coverage probability of the ML-ensemble is by considering

the low interval width compensated.
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Figure 6.9.: GHI-interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM

The third interval estimation approach, which combines the results of historic similarities

and best model predictions shows in figure 6.10 the advantage in comparison to the source

ensembles. Thus for the distribution of target hitting or missing the interval, the high miss-

rates in the late afternoon of the similarities is compensated by the sharp ensemble of the

model predictions. A similar effect can be observed for the interval width. There, the

overall width on the whole day is smaller, as well as its spread close to noon.

Figure 6.10.: GHI-interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM

Comparing the hit and miss distribution of the combined ensemble interval to the NGB

interval distribution in figure 6.11, a similar behavior of the missed predictions across the

day is to be mentioned. Here both figures show a decreasing number of missed predictions
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about 2:30PM, where the combined distribution suffers from the high occurrences of the

analog ensemble.

Figure 6.11.: GHI-interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM

All interval distribution graphs for a forecast horizon of 10, 15, and 20 minutes are listed

within appendix E.

Hence the analog ensemble covers the most target values by the created interval, with the

largest MIW. In comparison, the interval calculated by the ML ensemble shows the least

coverage by the smallest MIW.

Consequently by using all results in a combined ensemble, a better result for the averaged

CRPS can be reached. This combination profits of the more accurate prediction from the

model predictions, as well as the higher variability of the analog ensemble.

Since the performance of a single forecast horizon is analyzed, the behavior of the ap-

proaches on higher horizons is displayed in figure 6.12. Hereby all metrics are shown,

where numeric values are available in appendix F.
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Figure 6.12.: Probabilistic result metrics by forecast horizon on all approaches

So the metric behavior of the combined ensemble show the expected decrease of perfor-

mance by higher forecast horizons. Accordingly, the width of correct interval predictions

raises by a stagnating coverage probability as higher prediction steps are more difficult to

predict. The same behavior appears within the MAE.

It is worth mentioning that the increased coverage probability of the ML ensemble, where

only a small rise at the interval width can be seen.

In a benchmark, the composition method with additional NGB model, the green colored

data provide evidence that within the interval of 5 to 10 minutes the metrics are quite

comparable to the combined ensemble. However by a forecast horizon of 15 and 20 min-

utes, the coverage probability raises accompanied by a decreasing interval width, what is

a strong indicator for rising prediction quality. Consequently this finding is confirmed by

a stagnating CRPS and MAE, where the other approaches show aggravate metric values.
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6.4. Process Performance

After all modules of the proposed approach are classified regarding the selected metrics,

the average time consumption for each predictions is evaluated.

For intra-hour forecast, a model should perform within a second. By that time resolution,

a prediction can be corrected on every time-step and therefore new measured data. The

performance evaluation is performed on a laptop computer with properties as shown in

table 6.2.

Table 6.2.: Hardware setup of the personal computer used for prediction time measurement

Component Details
Model HP Z-Book Fury

Harddrive 1.5 Terabyte(TB) Solid state drive

RAM card 31.1 gibibyte (GiB)

Graphic card Mesa Intel HD Graphics 4600

Central processor unit Intel Core i7-11850H @ 2.50 Gigahertz x 16

Since the time occupation for an prediction iteration depends on the selected individual

models, a high spread to the mean of 27.5 seconds can be observed in figure 6.13.

Figure 6.13.: Process time evaluation on 400 prediction iterations
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However even by that spread the maximal occupied processing time reaches 39.1 seconds.

This value lays still within the upper limit for processing time.

6.5. Evaluation Result

The final section of this chapter is the conclusion of all benchmarked modules in context

to the goals of section 1.2. So all specific ML models except the linear-SGD and the

SVM reach at least in one training approach a better result on all forecast horizons, than

the reference SSP model. Benchmarking the probabilistic NGB approach to the combined

ensemble as reference, within a forecast of 5 and 10 minutes only a minor superiority of

the new approach is reached. But on forecast horizons for 15 and 20 minutes, the NGB

prediction clearly outperforms the combined ensemble, as well as its components.

To give a résumé, all specific parts are listed with dedicated results as follows:

As fist goal, the maximal process time for one full prediction is set to one minute, so by

incoming measurements with an one minute interval, results are available before the next

measurement. Hence, the maximal needed processing time within a sample of 400 data

points was at 39.1 seconds with a mean prediction time of 27.5 seconds, the process hits

that goal with the used computational resources.

The second goal is a better RMSE for each individual model compared to the SSP predic-

tion

Since six of eight models with optimized parameters create superior results on all forecast

horizons with respect to the SSP result, the goal is partly reached.

Closing the evaluation chapter with the final goal on the method:

Consequently the new NGB prediction approach is challenged to outperform all input

ensembles, as well as their combined version by the metrics of CRPS and MAE. Hereby

for all evaluated forecast horizons the NGB approach reaches superior results than its

input components. The performance is even increasing by forecast horizon. Hence the

goal is fully reached.
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7. Conclusion and future prospects

7.1. Project Résumé

This chapter sums up all completed work and also discusses the achieved results of the

various modules with respect to the set goals within section 1.2. Additionally a final

conclusion is presented along with some future prospects on further improvement of the

method.

Hence this thesis presents an approach of different ensemble model combinations to cre-

ate probabilistic results by feeding the resulting ensemble to a NGB model. The goal of

this setup is to create reliable probabilistic predictions to forecast future irradiance income

by an interval of most likely occurrence.

Considering recent publications on that topic, there are well performing ML models for

intra hour prediction existing. Additionally it is discussed, that by providing prediction

data of several models to a superordinate model, the overall result can be enhanced.

This finding is within the project included to an probabilistic perdition approach, the

NGB. Consequently this approach is chosen to estimate a probabilistic prediction by a

superposition of individual ML models.

These probabilistic predictions are supposed to help estimation of future power outcome

of PV plants to ease the power-network stabilization. Hence the method should produce

better results than the reference model and perform a whole prediction cycle within one

minute.

As mentioned, the selected ensemble model consists of two separate parts, introduced

in section 5.3.2. The first part hereby is accumulated by irradiance values of historic

occurrences with similar environmental and irradiance data. As of these 20 historic mea-

surements, the future irradiance is known, those values are used within the ensemble.

The second part is based on ML models, trained on a dataset of the same geographical

location as the data to predict to. On these models a subset is created by 10 individuals

which produce best results on the historic similar environmental conditions of the ensem-

bles first part. By the three different training settings, most tested ML models create by at

least one training approach better predictions than the reference method for every forecast
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horizon. Except the linear-SGD and the SVM show significant worse results.

For each trained model predictions for the historic lookup dataset are generated, so de-

pending on the chosen similarities it is known which models perform best. With this

information, these model perform predictions for a given data point. This accumulated

data serves as input features to the NGB model, which is capable of estimating parametric

distributions, in this project a normal distribution.

While benchmarking this new probabilistic method to the two ensemble parts, which

it consists of, a superiority to both individuals is found. Hereby the NGB prediction

profits from information of the historic analogs as reference to the possible outcomes on

a given input situation. Additionally the sharp predictions of the individual ML models

provide information to the NGB of the most likely deterministic irradiance according to

the forecast horizon.

7.2. Result Conclusion

Considering all results of this project a method is developed which combines two ensem-

ble approaches to estimate a more precise outcome with respect to a resulting confidence

interval width and hit rate of the target. Comparing the accumulated ensemble to the ad-

ditional NGB prediction, the improvement of the ensemble by the NGB is mostly by a

better CRPS and MAE.

7.3. Future Prospects

As this project is limited by a certain time and computational resources, only a proof of

concept is made. By further tweaking of the ML parameters and evaluating more different

models, better results might be reached, as well as for the NGB regressor.

Also for the analog ensemble, a survey on the chosen similarity search features and their

weights would be a good approach on better ensemble generation. As the superposition

ensemble of the two approaches is also weighted equally, this can also create a point of

improvement, to have the results weighted according to their similarity score or model

performance.

Mentioning these results, the number of 20 similarities and 10 prediction results were

selected to provide sufficient data to the NGB algorithm. These numbers might also

inherit potential of improvement by different values or with additional features.
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Appendix

A. Results of Markovics Model Comparison

Figure 1.: Metric results of all test-cases and ML models [32]
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B. Model Parameters

Optimized model parameters with respect to forecast horizon

optimized models 5

• random forest ’bootstrap’: False, ’ccp alpha’: 0.0, ’criterion’: ’squared error’,

’max depth’: None, ’max features’: ’sqrt’, ’max leaf nodes’: None, ’max samples’:

None, ’min impurity decrease’: 0.0, ’min samples leaf’: 1, ’min samples split’:

2, ’min weight fraction leaf’: 0.0, ’n estimators’: 300, ’n jobs’: 4, ’oob score’:

False, ’random state’: None, ’verbose’: False, ’warm start’: False

• xgboost ’objective’: ’reg:squarederror’, ’base score’: 0.5, ’booster’: ’gbtree’, ’col-

sample bylevel’: 1, ’colsample bynode’: 1, ’colsample bytree’: 0.3,

’enable categorical’: False, ’gamma’: 0, ’gpu id’: -1, ’importance type’: None,

’interaction constraints’: ”, ’learning rate’: 0.3, ’max delta step’: 0, ’max depth’:

6, ’min child weight’: 4, ’missing’: nan, ’monotone constraints’: ’()’, ’n estimators’:

200, ’n jobs’: 16, ’num parallel tree’: 1, ’predictor’: ’auto’, ’random state’: 0,

’reg alpha’: 10, ’reg lambda’: 0.1, ’scale pos weight’: 1, ’subsample’: 1, ’tree method’:

’exact’, ’validate parameters’: 1, ’verbosity’: None, ’alpha’: 10

• linear regression ’copy X’: True, ’fit intercept’: True, ’n jobs’: None, ’normalize’:

’deprecated’, ’positive’: False

• cat boost ’iterations’: 150, ’learning rate’: 0.1, ’l2 leaf reg’: 3, ’loss function’:

’RMSE’, ’verbose’: False, ’max depth’: 15, ’gpu cat features storage’: True

• k-nearest ’algorithm’: ’auto’, ’leaf size’: 30, ’metric’: ’minkowski’, ’metric params’:

None, ’n jobs’: None, ’n neighbors’: 5, ’p’: 2, ’weights’: ’uniform’

• multy-layer-perceptron ’activation’: ’relu’, ’alpha’: 0.0001, ’batch size’: ’auto’,

’beta 1’: 0.9, ’beta 2’: 0.999, ’early stopping’: False, ’epsilon’: 1e-08,

’hidden layer sizes’: (100,), ’learning rate’: ’adaptive’, ’learning rate init’: 0.001,

’max fun’: 15000, ’max iter’: 200, ’momentum’: 0.9, ’n iter no change’: 10, ’nes-

terovs momentum’: True, ’power t’: 0.5, ’random state’: None, ’shuffle’: False,

’solver’: ’adam’, ’tol’: 0.0001, ’validation fraction’: 0.1, ’verbose’: False, ’warm start’:

False

• linear sgd ’alpha’: 0.0001, ’average’: False, ’early stopping’: False, ’epsilon’:

0.1, ’eta0’: 0.01, ’fit intercept’: True, ’l1 ratio’: 0.15, ’learning rate’: ’invscal-

ing’, ’loss’: ’squared error’, ’max iter’: 500, ’n iter no change’: 5, ’penalty’: ’l2’,

’power t’: 0.25, ’random state’: None, ’shuffle’: True, ’tol’: 0.001, ’validation fraction’:

0.1, ’verbose’: 0, ’warm start’: False

optimized models 10
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• random forest ’bootstrap’: False, ’ccp alpha’: 0.0, ’criterion’: ’squared error’,

’max depth’: None, ’max features’: ’sqrt’, ’max leaf nodes’: None, ’max samples’:

None, ’min impurity decrease’: 0.0, ’min samples leaf’: 1, ’min samples split’:

2, ’min weight fraction leaf’: 0.0, ’n estimators’: 300, ’n jobs’: 4, ’oob score’:

False, ’random state’: None, ’verbose’: False, ’warm start’: False

• xgboost ’objective’: ’reg:squarederror’, ’base score’: 0.5, ’booster’: ’gbtree’, ’col-

sample bylevel’: 1, ’colsample bynode’: 1, ’colsample bytree’: 0.3, ’enable categorical’:

False, ’gamma’: 0, ’gpu id’: -1, ’importance type’: None, ’interaction constraints’:

”, ’learning rate’: 0.3, ’max delta step’: 0, ’max depth’: 6, ’min child weight’:

1, ’missing’: nan, ’monotone constraints’: ’()’, ’n estimators’: 200, ’n jobs’: 16,

’num parallel tree’: 1, ’predictor’: ’auto’, ’random state’: 0, ’reg alpha’: 10, ’reg lambda’:

0.4, ’scale pos weight’: 1, ’subsample’: 1, ’tree method’: ’exact’, ’validate parameters’:

1, ’verbosity’: None, ’alpha’: 10

• linear regression ’copy X’: True, ’fit intercept’: True, ’n jobs’: None, ’normalize’:

’deprecated’, ’positive’: False

• cat boost ’iterations’: 150, ’learning rate’: 0.1, ’l2 leaf reg’: 3, ’loss function’:

’RMSE’, ’verbose’: False, ’max depth’: 15, ’gpu cat features storage’: True

• k-nearest ’algorithm’: ’auto’, ’leaf size’: 30, ’metric’: ’minkowski’, ’metric params’:

None, ’n jobs’: None, ’n neighbors’: 5, ’p’: 2, ’weights’: ’uniform’

• multy-layer-perceptron ’activation’: ’relu’, ’alpha’: 0.0001, ’batch size’: ’auto’,

’beta 1’: 0.9, ’beta 2’: 0.999, ’early stopping’: False, ’epsilon’: 1e-08,

’hidden layer sizes’: (100,), ’learning rate’: ’constant’, ’learning rate init’: 0.001,

’max fun’: 15000, ’max iter’: 200, ’momentum’: 0.9, ’n iter no change’: 10, ’nes-

terovs momentum’: True, ’power t’: 0.5, ’random state’: None, ’shuffle’: False,

’solver’: ’adam’, ’tol’: 0.0001, ’validation fraction’: 0.1, ’verbose’: False, ’warm start’:

False

• linear sgd ’alpha’: 0.0001, ’average’: False, ’early stopping’: False, ’epsilon’:

0.1, ’eta0’: 0.01, ’fit intercept’: True, ’l1 ratio’: 0.15, ’learning rate’: ’invscal-

ing’, ’loss’: ’squared error’, ’max iter’: 10000, ’n iter no change’: 5, ’penalty’:

’l2’, ’power t’: 0.25, ’random state’: None, ’shuffle’: True, ’tol’: 0.001, ’valida-

tion fraction’: 0.1, ’verbose’: 0, ’warm start’: False

optimized models 15

• random forest ’bootstrap’: False, ’ccp alpha’: 0.0, ’criterion’: ’squared error’,

’max depth’: None, ’max features’: ’sqrt’, ’max leaf nodes’: None, ’max samples’:

None, ’min impurity decrease’: 0.0, ’min samples leaf’: 1, ’min samples split’:
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2, ’min weight fraction leaf’: 0.0, ’n estimators’: 300, ’n jobs’: 4, ’oob score’:

False, ’random state’: None, ’verbose’: False, ’warm start’: False

• xgboost ’objective’: ’reg:squarederror’, ’base score’: 0.5, ’booster’: ’gbtree’, ’col-

sample bylevel’: 1, ’colsample bynode’: 1, ’colsample bytree’: 0.3, ’enable categorical’:

False, ’gamma’: 0, ’gpu id’: -1, ’importance type’: None, ’interaction constraints’:

”, ’learning rate’: 0.3, ’max delta step’: 0, ’max depth’: 6, ’min child weight’:

3, ’missing’: nan, ’monotone constraints’: ’()’, ’n estimators’: 200, ’n jobs’: 16,

’num parallel tree’: 1, ’predictor’: ’auto’, ’random state’: 0, ’reg alpha’: 10, ’reg lambda’:

1, ’scale pos weight’: 1, ’subsample’: 1, ’tree method’: ’exact’, ’validate parameters’:

1, ’verbosity’: None, ’alpha’: 10

• linear regression ’copy X’: True, ’fit intercept’: True, ’n jobs’: None, ’normalize’:

’deprecated’, ’positive’: False

• cat boost ’iterations’: 150, ’learning rate’: 0.1, ’l2 leaf reg’: 3, ’loss function’:

’RMSE’, ’verbose’: False, ’max depth’: 15, ’gpu cat features storage’: True

• k-nearest ’algorithm’: ’auto’, ’leaf size’: 30, ’metric’: ’minkowski’, ’metric params’:

None, ’n jobs’: None, ’n neighbors’: 5, ’p’: 2, ’weights’: ’uniform’

• multy-layer-perceptron ’activation’: ’relu’, ’alpha’: 0.001, ’batch size’: ’auto’,

’beta 1’: 0.9, ’beta 2’: 0.999, ’early stopping’: False, ’epsilon’: 1e-08,

’hidden layer sizes’: (10, 10), ’learning rate’: ’constant’, ’learning rate init’: 0.001,

’max fun’: 15000, ’max iter’: 200, ’momentum’: 0.9, ’n iter no change’: 10, ’nes-

terovs momentum’: True, ’power t’: 0.5, ’random state’: None, ’shuffle’: False,

’solver’: ’adam’, ’tol’: 0.0001, ’validation fraction’: 0.1, ’verbose’: False, ’warm start’:

False

• linear sgd ’alpha’: 0.0001, ’average’: False, ’early stopping’: False, ’epsilon’:

0.1, ’eta0’: 0.01, ’fit intercept’: True, ’l1 ratio’: 0.15, ’learning rate’: ’invscal-

ing’, ’loss’: ’squared error’, ’max iter’: 1000, ’n iter no change’: 5, ’penalty’:

’l2’, ’power t’: 0.25, ’random state’: None, ’shuffle’: True, ’tol’: 0.001, ’valida-

tion fraction’: 0.1, ’verbose’: 0, ’warm start’: False

optimized models 20

• random forest ’bootstrap’: False, ’ccp alpha’: 0.0, ’criterion’: ’squared error’,

’max depth’: None, ’max features’: ’sqrt’, ’max leaf nodes’: None, ’max samples’:

None,’min impurity decrease’: 0.0, ’min samples leaf’: 1, ’min samples split’:

2, ’min weight fraction leaf’: 0.0, ’n estimators’: 300, ’n jobs’: 4, ’oob score’:

False, ’random state’: None, ’verbose’: False, ’warm start’: False
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• xgboost ’objective’: ’reg:squarederror’, ’base score’: 0.5, ’booster’: ’gbtree’, ’col-

sample bylevel’: 1, ’colsample bynode’: 1, ’colsample bytree’: 0.3, ’enable categorical’:

False, ’gamma’: 0, ’gpu id’: -1, ’importance type’: None, ’interaction constraints’:

”, ’learning rate’: 0.3, ’max delta step’: 0, ’max depth’: 6, ’min child weight’:

4, ’missing’: nan, ’monotone constraints’: ’()’, ’n estimators’: 200, ’n jobs’: 16,

’num parallel tree’: 1, ’predictor’: ’auto’, ’random state’: 0, ’reg alpha’: 10, ’reg lambda’:

1, ’scale pos weight’: 1, ’subsample’: 1, ’tree method’: ’exact’, ’validate parameters’:

1, ’verbosity’: None, ’alpha’: 10

• linear regression ’copy X’: True, ’fit intercept’: True, ’n jobs’: None, ’normalize’:

’deprecated’, ’positive’: False

• cat boost ’iterations’: 150, ’learning rate’: 0.1, ’l2 leaf reg’: 3, ’loss function’:

’RMSE’, ’verbose’: False, ’max depth’: 15, ’gpu cat features storage’: True

• k-nearest ’algorithm’: ’auto’, ’leaf size’: 30, ’metric’: ’minkowski’, ’metric params’:

None, ’n jobs’: None, ’n neighbors’: 5, ’p’: 2, ’weights’: ’uniform’

• multy-layer-perceptron ’activation’: ’relu’, ’alpha’: 0.0001, ’batch size’: ’auto’,

’beta 1’: 0.9, ’beta 2’: 0.999, ’early stopping’: False, ’epsilon’: 1e-08,

’hidden layer sizes’: (100,), ’learning rate’: ’adaptive’, ’learning rate init’: 0.001,

’max fun’: 15000, ’max iter’: 200, ’momentum’: 0.9, ’n iter no change’: 10, ’nes-

terovs momentum’: True, ’power t’: 0.5, ’random state’: None, ’shuffle’: False,

’solver’: ’adam’, ’tol’: 0.0001, ’validation fraction’: 0.1, ’verbose’: False, ’warm start’:

False

• linear sgd ’alpha’: 0.0001, ’average’: False, ’early stopping’: False, ’epsilon’:

0.1, ’eta0’: 0.01, ’fit intercept’: True, ’l1 ratio’: 0.15, ’learning rate’: ’invscal-

ing’, ’loss’: ’squared error’, ’max iter’: 10000, ’n iter no change’: 5, ’penalty’:

’l2’, ’power t’: 0.25, ’random state’: None, ’shuffle’: True, ’tol’: 0.001, ’valida-

tion fraction’: 0.1, ’verbose’: 0, ’warm start’: False
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C. Individual Model Results

Table 1.: Results of individual model with a forecast horizon of 5 minutes

Model-case MAE MSE RMSE Skill-S
SSP
- 46.61 8098 89.99 0

random forest
basic 39.54 9661 98.29 -0.0922

engineered 40.12 9599 97.98 -0.0887

optimized 29.89 4965 70.47 0.2170
xgboost
basic 36.44 5793 76.11 0.1543

engineered 34.89 5609 74.89 0.1678

optimized 34.02 5526 74.34 0.1739

support vector
basic 190.00 50769 225.32 -1.5038

engineered 182.58 45973 214.41 -1.3826

optimized 129.98 26859 163.89 -0.8211

LR
basic 66.57 10796 103.90 -0.1546

engineered 66.56 10787 103.86 -0.1541

optimized 42.13 6586 81.16 0.0982

cat boost
basic 32.39 5368 73.26 0.1859

engineered 32.75 5370 73.28 0.1857

optimized 32.85 5313 72.89 0.1900

KNN
basic 52.72 9979 99.89 -0.1100

engineered 34.39 5740 75.76 0.1581

optimized 34.39 5740 75.76 0.1581

MLP
basic 38.11 5994 77.42 0.1397

engineered 36.31 5855 76.52 0.1497

optimized 42.94 6225 78.90 0.1232

linear sgd
basic 98.30 22732 150.77 -0.6754

engineered 97.54 22761 150.87 -0.6765

optimized 99.62 22631 150.44 -0.6717
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Table 2.: Results of individual models with a forecast horizon of 10 minutes

Model-case MAE MSE RMSE Skill-S
SSP
- 54.53 10906 104.43 0

random forest
basic 45.51 11886 109.02 -0.0439

engineered 46.12 11927 109.21 -0.0458

optimized 34.52 6026 77.63 0.2567
xgboost
basic 42.09 7278 85.31 0.1831

engineered 40.24 6987 83.59 0.1996

optimized 39.83 6989 83.60 0.1995

support vector
basic 187.72 49516 222.52 -1.1308

engineered 181.49 45423 213.13 -1.0408

optimized 150.05 31505 177.50 -0.6996

Linear Regression
basic 68.74 12083 109.92 -0.0526

engineered 68.62 12058 109.81 -0.0515

optimized 47.52 8182 90.45 0.1338

cat boost
basic 38.95 6840 82.71 0.2080

engineered 38.75 6795 82.43 0.2107

optimized 38.51 6659 81.60 0.2186

KNN
basic 54.67 10590 102.91 0.0146

engineered 38.17 6813 82.54 0.2096

optimized 38.17 6813 82.54 0.2096

MLP
basic 43.54 7575 87.04 0.1666

engineered 44.91 7567 86.99 0.1670

optimized 50.07 8403 91.67 0.1222

linear sgd
basic 99.19 22655 150.52 -0.4413

engineered 100.34 22579 150.26 -0.4388

optimized 97.78 22729 150.76 -0.4436
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Table 3.: Results of individual models with a forecast horizon of 15 minutes

Model-case MAE MSE RMSE Skill-score
SSP
- 59.24 12526 111.92 0

random forest
basic 48.50 13089 114.41 -0.0222

engineered 49.67 13293 115.29 -0.0301

optimized 37.15 6573 81.07 0.2756
xgboost
basic 45.52 8178 90.43 0.1920

engineered 43.65 7829 88.48 0.2094

optimized 43.40 7853 88.62 0.2082

support vector
basic 189.09 50297 224.27 -1.0038

engineered 182.24 45833 214.09 -0.9128

optimized 109.13 18774 137.02 -0.2243

linear regression
basic 70.05 12843 113.33 -0.0126

engineered 69.80 12798 113.13 -0.0108

optimized 50.83 9072 95.25 0.1490

cat boost
basic 42.59 7679 87.63 0.2170

engineered 42.35 7636 87.38 0.2192

optimized 41.84 7423 86.16 0.2302

KNN
basic 56.02 11007 104.91 0.0626

engineered 40.37 7352 85.74 0.2339

optimized 40.37 7352 85.74 0.2339

MLP
basic 46.98 8515 92.28 0.1755

engineered 48.90 8680 93.17 0.1676

optimized 52.09 8902 94.35 0.1570

linear sgd
basic 100.62 22530 150.10 -0.3411

engineered 99.13 22582 150.27 -0.3427

optimized 98.08 22645 150.48 -0.3446
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Table 4.: Results of individual models with a forecast horizon of 20 minutes

Model-case MAE MSE RMSE Skill-score
SSP
- 62.89 13799 117.47 0

random forest
basic 49.95 13697 117.03 0.0037

engineered 51.35 14000 118.32 -0.0073

optimized 38.85 6940 83.31 0.2908
xgboost
basic 48.01 8851 94.08 0.1991

engineered 45.89 8424 91.78 0.2187

optimized 45.88 8490 92.14 0.2156

support vector
basic 188.92 50228 224.12 -0.9079

engineered 181.41 45421 213.12 -0.8143

optimized 110.72 19676 140.27 -0.1941

linear regression
basic 71.18 13427 115.87 0.0136

engineered 70.81 13376 115.65 0.0154

optimized 53.40 9818 99.08 0.1565

cat boost
basic 45.01 8278 90.99 0.2254

engineered 45.04 8281 91.00 0.2253

optimized 44.31 8025 89.58 0.2374

KNN
basic 57.21 11404 106.79 0.0909

engineered 41.97 7760 88.09 0.2501

optimized 41.97 7760 88.09 0.2501

MLP
basic 53.77 9487 97.40 0.1708

engineered 52.05 9572 97.84 0.1671

optimized 51.20 9341 96.65 0.1772

linear sgd
basic 98.20 22643 150.48 -0.2810

engineered 98.36 22626 150.42 -0.2805

optimized 100.26 22524 150.08 -0.2776

71



Appendix

D. Most used Models within Dynamic Selection

Figure 2.: Best and second best model histogram for 5 minutes horizon
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E. Interval Coverage and Width Distribution

Figure 3.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM to
10PM

Figure 4.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM to
10PM
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Figure 5.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM to
10PM

Figure 6.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM to
10PM
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Figure 7.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM to
10PM

Figure 8.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM to
10PM
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Figure 9.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM to
10PM

Figure 10.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM
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Figure 11.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM

Figure 12.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM
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Figure 13.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM

Figure 14.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM

78



Appendix

Figure 15.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM

Figure 16.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM
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Figure 17.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM

Figure 18.: GHI interval hits in green , misses in red and MIW in orange, distributed from 2AM
to 10PM
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F. Probabilistic Prediction Results of all Approaches and

Forecast Horizons

Table 5.: Interval metrics with t-distribution for 5 min horizon

Method ICP MIW ACRPS MAE
Interval 5% - 95%
Analog ensemble 0.95 139.90 21.74 42.87

ML ensemble 0.60 30.81 26.84 31.19

Combined ensemble 0.94 113.90 21.40 39.19

NGB distribution 0.86 108.00 19.02 25.19

Table 6.: Interval metrics with t-distribution for 10 min horizon

Method ICP MIW ACRPS MAE
Interval 5% - 95%
Analog ensemble 0.95 162.01 25.42 49.82

ML ensemble 0.57 41.30 30.98 37.22

Combined ensemble 0.93 132. 24.89 45.60

NGB distribution 0.84 128.55 21.28 28.34

Table 7.: Interval metrics with t-distribution for 15 min horizon

Method ICP MIW ACRPS MAE
Interval 5% - 95%
Analog ensemble 0.95 177.04 27.57 54.16

ML ensemble 0.70 53.78 32.03 40.71

Combined ensemble 0.93 145.97 26.82 49.68

NGB distribution 0.89 122.89 20.88 27.75

Table 8.: Interval metrics with t-distribution for 20 min horizon

Method ICP MIW ACRPS MAE
Interval 5% - 95%
Analog ensemble 0.95 189.81 29.01 57.41

ML ensemble 0.70 58.32 33.40 42.75

Combined ensemble 0.94 156.49 28.10 52.52

NGB distribution 0.88 118.87 21.30 28.41
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G. Python Environment

used packages:

• catboost=0.26.1=py38h06a4308 0

• h5py=3.6.0=nompi py38hfbb2109 100

• hdf4=4.2.15=h10796ff 3

• hdf5=1.12.1=nompi h2386368 104

• libxgboost=1.5.0=h6a678d5 2

• pandas=1.4.0=py38h43a58ef 0

• pickleshare=0.7.5=py 1003

• pillow=9.0.1=py38he2f12e7 1

• pip=22.0.3=pyhd8ed1ab 0

• py-xgboost=1.5.0=py38h06a4308 2

• python=3.8.12=ha38a3c6 3 cpython

• python abi=3.8=2 cp38

• scikit-learn=1.0.2=py38h1561384 0

• scipy=1.8.0=py38h56a6a73 1

• xgboost=1.5.0=py38h06a4308 2

• yaml=0.2.5=h7f98852 2

• crps==2.0.1

• ngboost==0.3.12

• properscoring==0.1
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