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• Gradient-based algorithm for reconstructing realistic 3D microstructures from 2D slices 

• Validation based on real computed tomography scan of recent TiFe system and synthetic spinodoid structures 

• Error analysis in terms of statistical descriptors as well as anisotropic elastic and plastic effective behavior 
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A B S T R A C T 
 

Realistic microscale domains are an essential step towards making modern multiscale simula- 

tions more applicable to computational materials engineering. For this purpose, 3D computed 

tomography scans can be very expensive or technically impossible for certain materials, whereas 

2D information can be easier to obtain. Based on a single or three orthogonal 2D slices, the 

recently proposed differentiable microstructure characterization and reconstruction (DMCR) 

algorithm is able to reconstruct multiple plausible 3D realizations of the microstructure based 

on statistical descriptors, i.e., without the need for a training data set. DMCR is available in the 

open-source software MCRpy. This work aims at validating DMCR for 2D-to-3D reconstruction 

using a real computed tomography (CT) scan of a recently developed TiFe alloy as well as 

extremely anisotropic "bone-like" spinodoid metamaterial structures. After a detailed discussion 

of systematic errors in the descriptor space, the reconstructed microstructures are compared 

to the reference in terms of the effective elastic and plastic properties. Together with the free 

accessibility of MCRpy, the excellent results in this study motivate interdisciplinary cooperation 

in applying numerical multiscale simulations for computational materials engineering. 

 

 
 

 

1. Introduction 

Computational micromechanics has experienced significant progress in the last decade. Fast multiscale schemes [33, 

34, 15, 39, 27] alleviate the computational burden of FE2 (finite element square). Based on the fast Fourier 

transform (FFT), efficient approaches have been presented for the homogenization of the effective behavior of 

heterogeneous media [41] or for simulation using composite voxels [26, 53, 54] or boxels [30]. Furthermore, fast 

surrogates for the computationally intensive homogenization are given by convolutional neural networks [59, 13, 22] 

or deep material networks [36, 37, 16] trained on the basis of suitable data sets. Besides focusing on constitutive 

modeling and computationally efficient coupling schemes, a very relevant but comparatively under-researched aspect 

is the generation of realistic 3D representative volume elements (RVEs) solely based on 2D image data [2]. While 

special cases like fiber composites have relatively well-defined microscale geometries, many engineering materials 

are random heterogeneous media. For these complex materials, the elastic [63] and plastic [62] behavior can be very 

sensitive1 to the exact 3D micro-geometry [11, 10], which is, however, stochastic and unknown. Computed tomography 

(CT) scans are a common strategy for directly obtaining this 3D information [3]. However, compared to microscopy 

images, CT scans require intricate computer post-processing, where the chosen parameters of filters and thresholds 

strongly influence the microstructure and the predicted material behavior [17]. Furthermore, for some materials and 

length scales, CT scans are either very expensive [20] or technically impossible due to a lack of phase contrast. The 

alternative, serial sectioning, becomes extremely expensive and time-consuming. In contrast, obtaining microscopy 

images of one or few cross-sections can be significantly more feasible and requires fewer impactful parameters to be 

chosen manually. These images can serve as a basis for the reconstruction of 3D microstructures. 
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1For instance, determining yield surfaces by virtual testing is a relevant and open problem [18, 21] with ongoing developments [31, 65, 42]. 
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A brief introduction on microstructure reconstruction techniques with a focus on recent techniques for random 

heterogeneous media is given in the following. For this purpose, a distinction is made between descriptor-based and 

data-based methods. The reader is referred to the reviews [2, 5, 49] for a more detailed overview. 

Inspired from the advent of machine learning, data-based methods have received much attention lately. The central 

idea is to train a generative machine learning model on a data set of microstructures2 and to then use the trained model 

to sample new realizations of the same structure. Noticeable examples are generative adversarial networks for 2D- 

to-3D [29] and 3D-to-3D [23] reconstruction as well as hybrid methods with autoencoders [64] or transformers [46]. 

While these methods achieve excellent results throughout a variety of material classes, the disadvantage of data-based 

methods is the general necessity of a data set. 

Descriptor-based methods, in contrast, do not require a training data set. Instead of training a generative machine 

learning model by optimizing its weights, the optimization problem is directly carried out in the space of possible 

microstructures. For this purpose, the utility of a microstructure is computed by means of a descriptor that quantifies 

the morphology of the structure. These descriptors can range from simple volume fractions to high-dimensional 𝑛- 

point statistics and are discussed in more detail in Section 2.1. The desired value of the descriptor can be prescribed 

directly or computed from a reference microstructure. Here, a single microstructure example is sufficient for descriptor- 

based reconstruction, as opposed to machine learning methods, which usually require a data set of structures. While 

the latter need data to learn how to constrain their own flexibility, the former harness expert knowledge about 

microstructure descriptors to reduce the required amount of data to a minimum. One of the most well-known 

descriptor-based reconstruction methods is the Yeong-Torquato algorithm [61], which directly solves the optimization 

problem using a specially adapted version of a common stochastic optimizer. While this is very elegant, it becomes 

computationally challenging at high resolutions and in 3D, where billions of iterations are required for convergence [1]. 

A common method of simplifying the optimization problem is to approximate the structure by ellipsoidal [60, 50] 

inclusions or by harnessing the grain structure of metallic materials [19]. Alternatively, without any approximations 

on the microstructure morphology, differentiable descriptors can be used in order to directly solve the underlying 

optimization problem using a gradient based optimizer. This is known as differentiable microstructure characterization 

and reconstruction (DMCR) [55, 56] and is publicly available in the MCRpy package [57]. 

The aim of this work is to rigorously validate DMCR, i.e., to systematically check for the physical plausibility of 3D 

microstructures reconstructed from one or few 2D slices. Thereby, a special novelty of this contribution is to use real 3D 

CT data of a novel titanium alloy that was developed for additive manufacturing [20] as a reference. For this, a single 

slice is extracted from the 3D data to mimic the case that only a 2D microscopy image is available. The reconstruction 

from this slice is compared to the original 3D data regarding (i) the microstructure morphology, quantified by statistical 

descriptors, and (ii) the homogenized elastic and plastic properties. Using the homogenized properties, the same 

procedure is repeated on a higher length scale for synthetic spinodoid "bone-like" metamaterials [32] to apply the 

algorithm in the highly anisotropic regime. While some previous works on microstructure reconstruction list errors 

for the Young’s modulus [9, 23], to the author’s best knowledge, the present work is the first to (i) consider the 

full anisotropic stiffness tensor, (ii) also determine the plastic response and (iii) validate DMCR as a reconstruction 

procedure. In this context, as a further novelty of this work, the need for a descriptor-based smoothing procedure is 

stressed and the implementation of this post-processing step is discussed in detail. Overall, the present validation aims 

at demonstrating the range of applicability of DMCR, allowing the multiscale modeling and simulation community 

to assess its potential. This creates a basis for a plethora of possible future works that harness both, microstructure 

reconstruction and numerical homogenization, to advance scale-bridging simulations of complex materials. 

The organization of the paper is as follows: After an introduction to the underlying methods in Section 2, the 

experimental and synthetic 3D data used for validation are presented in Section 3. The results are presented and 

discussed in Section 4 and a conclusion is drawn in Section 5. 

The notation within this work is as follows: Tensors of first and second order are denoted as bold and italic letters in 

lower and uppercase, i.e., 𝒂 and 𝑨, respectively. Furthermore, fourth-order tensors are given by 𝔸. Single and double 

contractions of tensors are denoted by 𝑨 ⋅ 𝑩 and 𝑨 ∶ 𝑩, respectively. Arrays, in contrast, are bold but not italic, i.e., A, 
and the dimension is generally not specified. The coordinates of a tensor are given by [𝐴𝑘𝑙], whereas the entries of an 

array are given by 𝐴𝑖,𝑗,𝑘. This allows to simply express the the 𝑖-th slice in the first dimension of an array as A𝑖,∶,∶. 

More detail on this notation is given in Section 2.2. The Einstein summation convention is not used. 
 

2Sometimes, a single, very large microstructure is used and split into smaller sections or cut into slices, however, we argue that this is more 

similar to starting with a set of training data than to really requiring a single example only. 
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Figure 1: Schematic overview of the validation procedure: Three orthogonal slices are extracted from a real 3D specimen 
to mimic the situation that only 2D data is available. From these slices, multiple synthetic structures are reconstructed 
based on statistical descriptors and compared to the reference in terms of morphology as well as the effective elastic and 
plastic response. Herein, 𝑟1 and 𝑟2 denote the coordinates of the vector 𝒓 for the computation of the spatial two-point 
correlation. 

 
 

2. Methods 

In this work, 2D-to-3D microstructure reconstruction is validated as shown in Figure 1: From a 3D reference 

microstructure, three orthogonal slices are extracted. These slices are characterized by statistical descriptors as 

described in Section 2.1. Based on these descriptors, multiple 3D realizations of the structure are reconstructed as 

discussed in Section 2.2 and post-processed as presented in Section 2.3. In Section 2.4, these serve as RVEs for 

computational homogenization in order to obtain the effective elasto-plastic properties. These values are compared 

to the material response of the original 3D data in order to quantify the reconstruction error. 
 

2.1. Microstructure Characterization 
The characterization function 

𝑓 ∶ M ↦ {D }𝑛d
 

 
(1) 

𝐶 𝑖 𝑖=1 

maps the pixel- or voxel-based representation of a microstructure M to a set of 𝑛d different descriptors D𝑖. These 

descriptors quantify the microstructure morphology in a stationary and translation-invariant manner. This allows for 

quantitative comparisons of microstructures, for example the computation of differences. Volume fractions and pore 

size distributions are simple examples of such descriptors, however, in this work, more abstract and high-dimensional 

descriptors are employed. Specifically, we use spatial 3-point correlations, Gram matrices of the VGG-19 network [58] 

and the variation descriptor as laid out in the following. 
 

2.1.1. Spatial Correlations 

Spatial 𝑛-point correlations are one of the most commonly used descriptors for random heterogeneous media [61, 5]. 

An excellent introduction is given in [25] and briefly summarized in the following. Consider an indicator function 
 

𝐼𝑝(𝒙) = 
1  , if 𝒙 ∈ 𝑉𝑝 

0  , else 

 
(2) 

 

of the spatial coordinates 𝒙, where 𝑉𝑝 is the region occupied by phase 𝑝. Spatial 𝑛-point correlations stochastically 

quantify the outcome of simultaneously probing this indicator function at different spatial locations (𝒙1, 𝒙2, ..., 𝒙𝑛). 
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⟨ 

𝑠,𝑝 

. The special case of all phases being equal (𝑝1 
is called auto-correlations and is given in a simplified notation as 

𝑝2 .. 𝑝𝑚 

𝑝,𝑟 𝑠,𝑝 𝑠,𝑟 

 

Considering only statistically homogeneous media, the 𝑛-point correlation function does not depend on the absolute 

positions, but only their relative displacements 𝒓𝑖𝑗 = 𝒙𝑗 − 𝒙𝑖. Thus, the 𝑛-point correlation function of phases 

𝑝1, 𝑝2, ..., 𝑝𝑚 can then be written as3 
𝑆
𝑝1,𝑝2,...,𝑝𝑚 (𝒓12, 𝒓13, ..., 𝒓1𝑛) = lim  𝐼𝑝1 (𝒙1) 𝐼𝑝2 (𝒙2) ... 𝐼𝑝𝑛 (𝒙𝑛) 𝑛r , (3) 

𝑛 
 

where the 
𝑛r→∞ 

... 𝑛r denotes the average over an ensemble of 𝑛 
realizati

⟩

ons of placing 𝒙1 randomly in the microstructure 

such that 𝒙
⟨

2 …
⟩ 
𝒙𝑛 follow from 𝒙1 via (𝒓12 … 𝒓1𝑛) 

 
= = = = 

 

𝑆𝑝→𝑝(𝒓12, 𝒓13, ..., 𝒓1𝑛) = 𝑆𝑝,𝑝,...,𝑝(𝒓12, 𝒓13, ..., 𝒓1𝑛) . (4) 
𝑛 𝑛 

For example, the spatial two-point correlation function 𝑆1→1(𝒓12) can be interpreted as the probability of both ends of 

the vector 𝒓12 
2 

being in phase 1 when randomly placed into the microstructure. While most applications focus on 𝑆2 
only and ignore higher-order correlations for computational efficiency [6], a differentiable formulation of spatial two- 

and three-point correlations are given in [55] and implemented in MCRpy [57]. The higher computational effort is 

compensated by the higher information content and differentiability, which allow for an efficient reconstruction. In 
the following, the notation S(M) refers to an array comprising the values of 𝑆1→1(𝒓12, 𝒓13) for the microstructure M, 

where each array entry corresponds to distinct values of 𝒓12 and 𝒓13 

2.1.2. Gram Matrices 

3 

as described in [55]. 

Gram matrices are a recent alternative approach to characterizing microstructures using the internal activations of 

a pre-trained convolutional neural network (CNN), which are often called feature maps [38]. The activation of the 𝑝-th 

channel in layer 𝑛 at spatial position 𝑠 is denoted as 𝐹 𝑛 . In each layer 𝑛, the activations of all channels at all positions 

must contain relevant information about the image, because otherwise the classification head of the network would 

have no basis for its predictions. These feature maps provide a richer representation than the image because each 

layer combines low-level features to obtain condensed, higher-order information. To harness this representation, it is 

rendered approximately translation-invariant by computing the Gram matrix 

𝐺𝑛 = 
∑ 

𝐹 𝑛 𝐹 𝑛 
 

 

. (5) 

It can be seen that the summation eliminates the spatial index 𝑠, and an analogy between the Gram matrices and spatial 

three-point correlations of feature maps is drawn in [55]. Gram matrices are used for microstructure classification 

in [38] and for reconstruction in [35, 4, 56, 57]. 
 

2.1.3. Variation 

The variation was originally introduced to microstructure reconstruction as a denoising parameter [4]. The total 

variation accumulates the absolute deviations between neighboring pixels over the entire microstructure. Later, it was 

shown that the normalized total variation, referred to as variation F in the following, can be interpreted as a conventional 

microstructure descriptor quantifying the amount of phase boundary per unit volume [56]. Incorporating the variation 

to the loss function drastically reduces noise, especially in 3D reconstruction [4, 56]. 

With the correlations S, the Gram matrices G and the variation F computed on three orthogonal 2D slices, a 3D 

microstructure is reconstructed as described in the following section. 

2.2. Microstructure Reconstruction 
Differentiable microstructure characterization and reconstruction (DMCR) is used to generate microstructures from 

the descriptors in Section 2.1. In contrast to other reconstruction frameworks like the Yeong-Torquato Algorithm [61], 

DMCR formulates microstructure reconstruction as a differentiable optimization problem, facilitating significant 

speedups by means of highly efficient, gradient-based optimizers. DMCR is implemented in the open-source software 

package MCRpy [57], which is used in this work. While the reader is referred to [55, 56] for a detailed description to 

DMCR, a brief summary is given in the following. For this purpose, the procedure is first introduced in 2D in order to 

define the 3D process as a composition of parallel and coupled 2D reconstructions. 
 

3While these equation serve as a concise and comprehensive definition, FFT-based algorithms are often used in practice to efficiently compute 

spatial correlations [6]. 

𝑠 

𝑝) 
r 
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{ 
| 

} 

|| || 

𝑖 𝑖 𝑖=1 

M ∈ n3D 𝑖 𝑗 𝑘 

2.2.1. DMCR - 2D Reconstruction 

In 2D, microstructure reconstruction is approached by solving an optimization problem 

Mrec =arg min G 
(
{(D (M), Ddes)}𝑛d 

) 
with (6) 

 

n2D ∶= m ∈ ℝ𝑁1×𝑁2  ∀𝑖 ∈ {1, 2, … , 𝑁1}, 𝑗 ∈ {1, 2, … , 𝑁2} 0 ≤ 𝑚𝑖,𝑗 ≤ 1 , (7) 

where the loss G quantifies the difference between the desired descriptor Ddes and its current value D(M). For example, 

the present results are achieved with the loss function 
G(M) = 𝜆 S(M) − Sdes + 𝜆 G(M) − Gdes + 𝜆 F(M) − Fdes  (8) 

𝑆|| ||MSE 𝐺|| ||MSE F || ||MSE 

where 𝜆𝑆 , 𝜆𝐺 and 𝜆F are scalar weights for the spatial correlations S, the Gram matrices G and the variation F, 

respectively and A MSE is the mean squared error norm of an array A, i.e. the average of the squared values of all 

entries. In this context, it is worth noting that the search space n2D of DMCR defined in Eq. 7 not only contains integer- 

valued microstructures as in the Yeong-Torquato algorithm, but also real-valued "intermediate states". The reason for 

this choice is rooted in the gradient-based optimization of Eq. 6. In other words, while the Yeong-Torquato algorithm 

updates the microstructure in every iteration by applying a random mutation, DMCR harnesses the gradient 𝜕MG of 

the loss function G with respect to the microstructure M for a more informed modification of the microstructure. The 

existence of this gradient is ensured by using only differentiable descriptors to compose the loss function. In practical 

application, this requires 

• the descriptors to be defined not only for integer-valued indicator functions, but also for real-valued "intermediate 

states", 

• the value of the descriptor not to jump discontinuously as the value of individual pixels in the microstructure 

gradually change, and 

• in order to avoid plateaus during optimization, the gradient of the descriptor is required to be non-zero for the 

widest possible range of arguments. 

More details on the theoretical foundations of defining differentiable descriptors as well as a practical example for 

spatial correlations are given in [55]. Despite the constraint of differentiability, the range of possible descriptors 

to choose from is still very large and currently far from fully exploited [57]. Most importantly, the gradient-based 

optimizers that can be accessed by DMCR are significantly outperform the previously used stochastic methods, 

reducing the number of required iterations by several orders of magnitude. 
 

2.2.2. DMCR - 3D Reconstruction 

In 3D, Eq. (8) is called on all possible 2D slices in all directions. To express this, we introduce the notation 

M𝑖,∶,∶ ∈ n
2D to refer to the 𝑖-th slice in the 𝑥1-direction of the 3-dimensional microstructure array M ∈ n3D, where 

n3D ⊊ ℝ𝑁1×𝑁2×𝑁3 is the space of two-phase 3D microstructures in analogy to Eq. (7). Similarly, M∶,𝑗,∶ ∈ n2D 

and M∶,∶,𝑘 ∈ n2D denote the 𝑗-th and 𝑘-th slice in 𝑥2 and 𝑥3, respectively. Furthermore, for anisotropic structures, the 

desired descriptor values differ between orthogonal slices, for example Sdes,𝑥1 ≠ Sdes,𝑥2 ≠ Sdes,𝑥3 . This is accounted for 

by introducing different loss functions G𝑥1 , G𝑥2 and G𝑥3 for different dimensions. With this notation, 3D reconstruction 
is expressed as 

Mrec = arg min 
∑ 

G𝑥1 (M𝑖,∶,∶) + 
∑ 

G𝑥2 (M∶,𝑗,∶) + 
∑ 

G𝑥3 (M∶,∶,𝑘) . (9) 

2.2.3. MCRpy Software Tool 

MCRpy allows to compose loss functions like Eq. (8) by choosing the type of loss function and providing a list 

of descriptors and corresponding weights. If all descriptors are differentiable, automatic differentiation allows to use 

gradient-based optimizers such as L-BFGS-B [7] for the reconstruction. Furthermore, a simple multi-grid procedure 

is implemented that can be applied to any descriptor, where a low-resolution approximation to M is first computed on 

a coarse grid and then iteratively refined in a multi-level hierarchical pyramid scheme similar to [44, 28]. The present 

work uses the current version of MCRpy with the settings given in Table 1. 

𝐌 ∈ n2D 
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{ 
| 

} 

𝑙 

Parameter Value 

Resolution 1283 

Optimizer L-BFGS-B 
Multiphase descriptors False 
Multigrid reconstruction True 
Iterations per multigrid level 800 
Descriptors S, G, F 
Descriptor weights 0.1, 0.1, 10 
Correlation limit 16 

 

Table 1 
Settings for the microstructure reconstruction using MCRpy [57]. 

 

 

2.3. Microstructure Post-Processing 
2.3.1. Motivation for Specialized Algorithm 

Despite the effort of reducing noise in reconstructed structures by means of the total variation [4, 56], the 

reconstructed structures are still noticeably less smooth than the original one. This motivates a post-processing 

algorithm that can reduce spurious noise while at the same time keep the descriptors associated with the structure 

at the desired values. This is especially relevant when investigating the effective plastic behavior of the reconstructed 

structures: If a post-processing procedure eliminates sharp corners that are actually observed in the real structure, this 

reduces the intensity of stress concentrations and consequently increases the effective yield strength. Because simple, 

conventional smoothing procedures such as Gaussian filters fail at distinguishing between real and spurious corners and 

edges, this issue requires further attention. Although a variety of smoothing algorithms have been developed [14] and 

their applicability to reconstructed microstructures has not been studies thoroughly yet, descriptor-based microstructure 

reconstruction constitutes a special case as morphological information for distinguishing between real and spurious 

corners is available in form of the descriptors. 
 

2.3.2. Proposed Post-Processing 
In order to harness this information, we propose Algorithm 1: First, the reconstructed microstructure Mrec ∈ n3D 

is projected to M̂ ∈ n̂ 3D by element-wise rounding, where n̂ 3D ⊊ n3D is the set of integer-valued three-dimensional 

microstructures 

n̂ 3D ∶=  m ∈ ℤ𝑁1×𝑁2×𝑁3  ∀𝑖 ∈ {1, 2, … , 𝑁1}, 𝑗 ∈ {1, 2, … , 𝑁2}, 𝑘 ∈ {1, 2, … , 𝑁3} 𝑚𝑖,𝑗,𝑘 ∈ {0, 1} . (10) 

Secondly, the structure is adjusted to the correct volume fraction by selecting random pixels from an over-represented 

phase and swapping them to under-represented phases. Thirdly, randomly selected pixels from different phases are 

swapped if, and only if, this reduces the error in terms of the desired descriptor. Hereby, the error is identical to the 

loss function (8) used during gradient-based reconstruction in Section 2.2. Most importantly, in the second and third 

stage of the algorithm, the probability of selecting a pixels depends on the number of neighboring pixels are of a 

different phase. For this purpose, a sparse operator 𝑃𝑖,𝑗,𝑘,𝑙 is introduced that maps microstructure entries from a triple 

index (𝑖, 𝑗, 𝑘) to a single index 𝑙 as 

�̂� ′ = 
∑ 

𝑃𝑖,𝑗,𝑘,𝑙�̂� 
𝑖,𝑗,𝑘 . (11) 

𝑖,𝑗,𝑘 
 

With this, the probability of selecting index 𝑙 is defined as 

2 

𝑝(𝑙) ∝ max 
⎛
⎜0, 

∑ [
1 − |�̂� ′ − �̂� ′|

] 
− 𝑐

⎞
⎟ , (12) ⎜

⎝ ∈  ( ) 𝑙 𝑙  ⎟
⎠

 
𝑙   𝑙 

 

where  (𝑙) yields the six indices of the non-diagonal neighbors of 𝑙 and 𝑐 is a hyperparameter which is chosen 

as 𝑐 = 2.9. This means that isolated pixels such as spurious noise or valid sharp corners are significantly more likely to 

be swapped than pixels within a phase cluster. At the same time, the zero-tolerance in the acceptance criterion ensures 

that valid corners are not smoothed. 
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̂ ̂ 

̂ 

M 

iter 

2 

[ ] 

𝑙 ← sample index of over-represented phase with different-phase neighbors // use Eq. (12) 

 
 

Algorithm 1: Descriptor-based post-processing and smoothing procedure. 
Input: Reconstructed microstructure Mrec; desired volume fractions 𝑣des; number of iterations 𝑛max 

̂ prev  prev ̂ rec f iter 

M , 𝑣f , 𝑛iter ← M  , −1, 0 // initialize values 
rec 

M ← projection of M rec 
rec 

to M ∈ M̂ 
3D 

// first step: projection 
while ( ̂ 

rec
) − 𝑣des < 𝑣prev − 𝑣des do // second step: fix volume fractions 

|𝑣f M f  | | f f  | 

𝑣
prev

, M̂ 
prev 

← 𝑣 ( ̂ 
rec ̂ rec 

f f M ), M // store variables 

M̂ 
rec 

← mutation of M̂ 
rec 

with value at location 𝑙 flipped 

end 
rec 

M ← M̂ 
prev 

// use penultimate state due to loop break criterion 

while 𝑛iter ≤ 𝑛max do // third step: smooth microstructure 

𝑙0, 𝑙1 ← sample indices of phases 0 and 1 with different-phase neighbors // use Eq. (12) 

M̂ 
prev 

← M̂ 
rec 

// store variables 

M̂ 
rec 

← mutation of M̂ 
rec 

with values at locations 𝑙0 and 𝑙1 swapped 

if G ( M̂ prev
) < G( ̂ 

rec
) then // check if solution worsened, use Eq. (8) as loss 

M̂ 
rec 

← M̂ 
prev 

// undo mutation 
end 

𝑛iter ← 𝑛iter + 1 // increment counter 
end 

Output: Post-processed microstructure M̂ 
rec

 

 

The procedure is effectively a version of the Yeong-Torquato algorithm [61] with an acceptance criterion as in 

the Great Deluge [12] and a type of different-phase-neighbor (DPN) sampling rule [66, 45]. Indeed, the procedure is 

practically implemented as an optimizer plugin that is added to MCRpy upon acceptance of this work. The difference 

to a full-fledged reconstruction algorithm is that we can expect to be close to the solution and only want to minimize 

noise. This motivates the zero-tolerance pixel swap criterion and also allows for the number of iterations as low as 

U(104), as opposed to up to U(109) as in the Yeong-Torquato algorithm [1]. 

The settings used in this work are identical to the reconstruction settings in Table 1 except that multigrid 

reconstruction is not applicable and 20, 000 iterations are used. In this context, it is worth noting that in each iteration, 

the descriptors only need to be computed on slices that are affected by pixel swaps. Therefore, although more iterations 

are used for post-processing than for the actual reconstruction, the computational cost per iteration is much lower. 
 

2.4. Numerical Simulation and Homogenization 
The numerical simulations are conducted in DAMASK [48], which comprises efficient FFT-based solvers for regular 

grids. This enables the simulations directly on voxel data without introducing discretization errors that would arise from 

conventional meshes. 
 

2.4.1. Constitutive Model 

The assumed elasto-plastic constitutive behavior of the individual phases within the simulations is described in the 

following. A more detailed description of this model is given in [48]. Therein, DAMASK, a toolbox mainly designed 

for crystal plasticity simulations, is presented. Despite the advanced capabilities of DAMASK, the present work uses 

it merely in a reduced form with a fully phenomenological plasticity model without considering individual grains. 

As usual in finite strain inelasticity, the multiplicative decomposition 𝑭 = 𝑭 e ⋅ 𝑭 p4 of the deformation gradient 
𝑭 into elastic 𝑭 e and plastic 𝑭 p parts is assumed, where 𝑭 p is purely isochoric. Thus, the elastic Green-Lagrange 

strain tensor 𝑬e is given by 𝑬e ∶= 1 (𝑭 e)𝑇 ⋅ 𝑭 e − 𝑰 . Assuming a Saint Venant-Kirchhoff model for the stress-strain 
 

4Within the original model [48], the split 𝑭 = 𝑭 e ⋅𝑭 i ⋅𝑭 p into elastic, lattice-distorting inelastic and lattice-preserving inelastic parts is applied. 

Here, 𝑭 i is set to 𝑰. Due to this, Mandel stress in the plastic configuration 𝑴p = (𝑭 i)𝑇 ⋅ 𝑭 i ⋅ 𝑺 and second Piola-Kirchhoff stress coincide. 
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relation, the second Piola-Kirchhoff stress tensor 𝑺 is linked to 𝑬e by 

𝑺 = ℂ ∶ 𝑬e , (13) 

where ℂ denotes the fourth-order stiffness tensor. 

Plasticity is approached in a regularized manner by rate-dependent model. The evolution of the plastic deformation 

gradient is given in terms of the plastic velocity gradient 𝑳p by the flow rule 𝑭  
𝑝 

= 𝑳p ⋅ 𝑭 p. For the case of isotropic 

plasticity and purely isochoric plastic deformation, the plastic strain rate 𝛾̇ p is modeled by the phenomenological power 
law 

(√ 
3 ‖𝑺

dev‖ 
)𝑛

 

  
 where 𝑀 = 3 and 𝛾̇   depends on the initial strain rate 𝛾̇  , the stress exponent 𝑛, the Frobenius norm (∙) of the 

p 
1 

0 ‖ ‖F 

deviatoric part 𝑺dev ∶= 𝑺 − 
3 
𝑰 tr(𝑺) of the second Piola-Kirchhoff stress and the material resistance 𝜉. Herein,the 

evolution of 𝜉 from its initial value 𝜉0 towards its final value 𝜉∞ is given by 

|  𝜉 |𝑎 ( 
 𝜉 

) 

𝜉  = 𝛾̇  ℎ0 1 − 
| ∞ | 

sign 1 − 
𝜉∞ 

, (15) 

where ℎ0 denotes the initial hardening and 𝑎 is a fitting parameter. With Eqs. (14) and (15), the plastic velocity gradient 

is given by 

 
𝑳p = 

𝛾̇ p 
3 𝑺dev 

dev 

 
. (16) 

‖𝑺 ‖F 

The numerical values of the material properties of each phase are summarized in Table 2 in Section 3. 
 

2.4.2. Numerical Homogenization 

To determine the effective elastic and plastic properties of the considered heterogeneous materials, a computational 

homogenization framework is applied. Following common practice, the effective deformation gradient �̄� and the first 

Piola-Kirchhoff stress tensor �̄�̄ are defined by 
�̄� ∶= 𝑭 and  𝑷̄̄ ∶= 𝑷̄ , (17) 

where ⟨(∙)⟩ 

⟨

is t

⟩

he volume aver

⟨

ag

⟩

ing operator and [(∙̄) labels eff]ective quantities in the following. Other effective 
 

local fields, but need to be computed from �̄� and �̄�̄ . To fulfill the Hill-Mandel condition, periodic boundary conditions 

are applied. 

The effective elastic properties of the material, i.e., the case that 𝑭 p = 𝑰, are given by means of the full stiffness 

tensor ℂ̄ . As a simple way to determine ℂ̄ , six load cases are chosen such that only one or two entries of �̄� are non 

zero. This is achieved by prescribing 

̄2 − 1  0  0 ̄ ⎢ ⎥ 
̄ 

⎡𝜆 

[𝐸𝑘𝑙] = 
2 ⎢
⎣
 

0 0  0 

0 0  0
⎥
⎦ 

, i.e.,  [𝐹𝑘𝑙] = 
⎢
⎢0 1 0

⎥
⎥ , (18) 

for tension and 

0 �̄�̇∕2  0 
[�̄�𝑘𝑙] = 

⎢
�̄�̇∕2 0 0

⎥ 
, i.e.,  [�̄� 

 
�̄�̇∕(2𝛿) 𝛿 0 

] = 
⎢ 

𝛿 𝛾̇̄∕(2𝛿) 0
⎥ 

, (19) 
2 

for shear, where 

⎣

 

0 0 0 
𝑘𝑙 

0 0 1 

𝛿 = 

√ 
1 

(
1 − 

√
1 − 𝛾̇̄2

) 
. (20) 

𝑀𝜉 2 
𝛾̇ p = 𝛾̇ 0 , (14) 

quantities such as the Green-Lagrange strain �̄� and �̄� cannot be obtained directly by averaging the 
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Herein, 𝛾̇̄ denotes the shear and 𝜆̄ is the stretch. Analogous load cases are chosen for tension and shear in the other two 

directions. It follows that 
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�̄� 
𝑖𝑗23 = 
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2�̄�23 
�̄� 
𝑖𝑗13 = 

𝑖𝑗 
 

 

2�̄�13 
�̄� 
𝑖𝑗12 = 

𝑖𝑗 
 

 

2�̄�12 
, (22) 

where the subscript denotes the tensor component and the superscript denotes the load case. 

Furterhmore, in order to characterize the effective plastic properties of the considered materials, uniaxial stress 

states, e.g., 

⎡𝑃11 

 

are prescribed

⎣

within the c

⎦

omputational homogenization. Analogous states are applied into the 𝑥2 and 𝑥3 directions. 

2.4.3. Visualization of Effective Stiffness 

Instead of numerically listing all components of ℂ̄ , elastic surface plots are used for visualization [8, 43]. As shown 
in Figure 2 for isotropic, transversal isotropic and cubic material behavior, for each orientation (𝜑, 𝜃) in a spherical 

coordinate system5, the radius of the elastic surface is given by the directional Young’s modulus �̄�(𝜑, 𝜃) that would be 

measured under tension in this orientation. Using the effective stiffness tensor in Voigt notation C̄ 
V 

, it can be extracted 
from the transformed compliance matrix 

N̄ 
′ 

=  Q ⋅ C̄ 
V 
⋅ QT 

−1 
(24) 

as 

 

 

 
where 

�̄�(𝜑, 𝜃) = 
 1 

 

11 

 

, (25) 

⎡𝑏11𝑏11 𝑏12𝑏12 𝑏13𝑏13 2𝑏12 𝑏13 2𝑏11 𝑏13 2𝑏11 𝑏12 ⎤ 
 

 
 
 
 

with 

[Q]𝑘𝑙 = 
𝑏  𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 𝑏 + 𝑏  𝑏 𝑏 𝑏 + 𝑏  𝑏 𝑏 𝑏 + 𝑏  𝑏 
𝑏11𝑏31 𝑏12𝑏32 𝑏13𝑏33 𝑏12𝑏33 + 𝑏32𝑏13 𝑏11𝑏33 + 𝑏31𝑏13 𝑏11𝑏32 + 𝑏31𝑏12 

⎣𝑏11𝑏21 𝑏12𝑏22 𝑏13𝑏23 𝑏12𝑏23 + 𝑏22𝑏13 𝑏11𝑏23 + 𝑏21𝑏13 𝑏11𝑏22 + 𝑏21𝑏12⎦ 

sin 𝜃 cos 𝜑 sin 𝜃 sin 𝜑 cos 𝜃 

(26) 

[b]𝑘𝑙 = 
⎡
⎢cos 𝜃 cos 𝜑  cos 𝜃 sin 𝜑  − sin 𝜃

⎤
⎥ 

 
. (27) 

⎢
⎣ − sin 𝜑 cos 𝜑 0 

⎥
⎦ 

 

2.4.4. Plastic Properties 

The effective plastic properties investigated in this work are limited to the computation of the effective yield strength 

in three directions, since the determination of the full yield surface would exceed the scope of this work. For this 

purpose, uniaxial tension according to Eq. (23) is applied and the yield strength 𝜎̄̄y is defined by a plastic strain of 

�̄�p = 0.2%, where �̄�p is obtained from �̄� by subtracting the elastic part. 
 

5Herein, 𝜑 ∈ [0, 2𝜋] quantifies the azimuthal angle, i.e., the rotation around the z-axis, whereas 𝜃 ∈ [0, 𝜋] is the polar angle. 

(23) 

𝑇 

𝐸 

𝑇 

𝐸 

𝑇 

𝐸 

[𝑃 

𝑁 

̄ 
𝑘𝑙 

⎥ 

0  0 
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(a) Isotropic (b) Transversal isotropic (c) Cubic 

Figure 2: Exemplary elastic surface plots for an isotropic (a), a transversal isotropic (b) and a cubic (c) material model. 

 

(a) Real TiFe scan [20] (b) Synthetic columnar structure (c) Synthetic lamellar structure 

Figure 3: Original 3D structures used for the validation. The TiFe alloy (a) is a real CT scan, whereas the other structures 
are synthetically generated. 

 
 

3. Data for Validation 

Motivated by the advent and the complex structure-property linkages of additive manufacturing and metamaterials, 

a novel titanium alloy and a "bone-like" spinodoid structure are considered in Sections 3.1 and 3.2, respectively. 
 

3.1. Titanium Alloy on Microscale 
On the microscale, a new alloy developed for laser powder bed fusion is used. The alloy and experimental methods 

are described in detail in [20] and a brief summary is given in the following. The titanium-rich binary eutectic material 

(Ti-32.5Fe, wt.%) was produced by in-situ alloying using elemental powders blends during high temperature laser 

powder bed fusion at a temperature of 𝜃 ≈ 600 °C in an SLM Solutions 280 HL machine. The near-field ptychographic 

X-ray tomography experiments were performed with micrometer-sized cylinders (diameter 𝑑 = 18𝜇m and height 

ℎ = 40𝜇m, extracted from the material by focused ion beam milling) at the ID16A nano-imaging beamline of the 

European Synchrotron Radiation Facility (ESRF). The processing of the tomographic volume of each sample was 

carried out in three steps: (i) phase retrieval of the near-field ptychographic imaging scan at each tomographic angle, 

(ii) pre-processing of the retrieved tomographic projections and (iii) tomographic reconstruction. The segmentation 

of the two major microstructural constituents (hereafter called 𝛽-Ti and TiFe) was carried out after pre-processing the 

reconstructed volumes using bandpass filters available in Fiji [52] and Avizo Fire 9.5 to enhance their quality. As a 

reference structure for the present work, a statistically homogeneous cuboid of length 𝑙 = 10𝜇m is extracted from the 

CT scan and shown in in Figure 3. 

The material parameters of the individual phases for the numerical simulations are taken from the literature [51, 

68, 69] and summarized in Table 2. 

buge_ka 

2023-01-17 15:12:42 

-------------------------------------------- 

bitte Zitat hinzufügen: 

 https://www.esrf.fr/UsersAndScience/Experiments/XNP/ID16A.html 

http://www.esrf.fr/UsersAndScience/Experiments/XNP/ID16A.html


Realistic 2D-to-3D microstructure reconstruction – A validation 

Seibert et al.: Preprint submitted to Elsevier Page 11 of 24 

 

 

Parameter 
Microscale Mesoscale 

𝛽-Ti TiFe Ti alloy Void 

 

Table 2 
Material parameters for the micro- and mesoscale simulations. 

 

 

ℂ1111 in GPa 174.6 298.0 218.3 0.2 
97.9 0.0 ℂ1122 in GPa 82.2 135.8 
60.2 0.1 ℂ1123 in GPa 46.2 81.1 
530 - 𝜉0 in MPa 535.1 572.0 

1400.0 - 𝜉∞ in MPa 1426.0 1525.6 
700 - 

0.001 - 
ℎ0 in MPa 

𝛾̇ 0 

713.3 762 
0.001 0.001 

20 - n 20 20 

a 2 2 2 - 

 

3.2. Spinodoid Structure on Mesoscale 
On the mesoscale, "bone-like" spinodoid structures are reconstructed and homogenized using the effective material 

parameters from the microscale to demonstrate the ability to accurately capture highly anisotropic stiffness tensors. 

Spinodoid structures are very resilient due to the absence of notches [24] and have received much attention lately in 

inverse design of anisotropic stiffness [32] in combination with topology optimization [67]. Potential applications are 

the design of synthetic bones with tunable stiffness or the general design of resilient metamaterials. 

In the absence of data, the reference structure does not stem from a CT scan, but are generated from GIBBON [40]. 

Based on the work of Kumar et al. [32], GIBBON allows to generate spinodoid structures from a low-dimensional 

parametrization using Gaussian random fields. For the validation of DMCR, we use this parametrization to generate 

two reference structures and pretend they might stem, e.g., from a bone [32]. As shown in Figure 3, a columnar and a 

lamellar structure are considered in this work, both with a volume fraction of 50 %. 

The properties of the bulk material are taken from the homogenized response of the microscale domain, which 
is presented in Section 4. While the elastic properties can be obtained directly, the plastic properties 𝜉0, 𝜉∞ and ℎ0 
are estimated from the effective yield strength by a rule of proportion. Due to the inability of the chosen numerical 

solver to represent voids, a purely elastic material model is chosen with a phase contrast of approximately 1000 in the 

stiffness. The parameters of both material models are summarized in Table 2. 

 

4. Results and Discussion 

Section 4.1 presents the result of the microstructure reconstruction. After a qualitative and quantitative analysis of 

the statistical descriptors of the reconstructed structure in Section 4.2, a validation of the effective properties is carried 

out for the microscale alloy and the mesoscale metamaterial in Sections 4.3 and 4.4, respectively. 
 

4.1. Reconstruction results 
For each of the original structures in Figure 3, three orthogonal slices are extracted, down-sampled6 to 256 × 256 

pixels and used for the computation of microstructure descriptors as shown schematically for the TiFe structure in 

Figure 4. As described in Section 2.1, the spatial 3-point correlations, the Gram matrices and the variation are used as 

microstructure descriptors. 

MCRpy is used for reconstruction as described in Section 2.2 as well as for the smoothing procedure outlined in 

Section 2.3. With a resolution of 1283 voxels, the former took 7 hours for 800 iterations7 on a single Nvidia A100 

GPU, whereas the latter required 3 hours for 20, 000 iterations on the same hardware. The effect of the smoothing 

is shown in Figure 5. Although for the present microstructures the authors found that simpler and more efficient 
 

6This is done to allow for the reconstructed microstructures to "only" have a resolution of 1283 voxels and still be large enough to adequately 

represent the morphology. Although resolutions of up to 5123 voxels have already been reconstructed with MCRpy [56], this currently requires 
amounts of computational resources that we find impractical for the large number of structures considered in this work. 

7More precisely, 800 iterations are performed per multigrid level. The three multigrid levels took 20 minutes, 1.5 hours and 5 hours respectively. 

The last multigrid level on the highest resolution could have been aborted after 400 iterations with a very similar outcome, leading to a total wall-clock 

time of 4.5 hours, but this was not done. 
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Figure 4: Schematic visualization of the computation of statistical descriptors from the three orthogonal sections extracted 
from the 3D reference in Figure 3. In this example, the spatial 2-point correlation is shown. These descriptors are used 
in this work and complemented by higher-order correlations, Gram matrices and the variation. From left to right, it can 
be seen that short-distance correlations are computed with the highest accuracy, whereas longer-range correlations are 
computed on down-sampled versions of the structure as described in [55]. 

 
 

smoothing procedures based on Gaussian filtering also work (not shown here), this is not always the case as discussed 

in Appendix A. Per structure, 20 instances are created to compare the variation between random realizations to the 

deviation from the reference structure. 

After the reconstruction and subsequent smoothing, the generated structures are visually very similar to the 

references as shown in Figure 6. To support this qualitative statement, a quantitative morphology analysis is carried 

out based on spatial correlations. First, the statistical distribution of 2D correlations over all slices is analyzed for the 

original and reconstructed structure. Then, the fully three-dimensional two-point correlations are directly compared. 
 

4.2. Descriptor errors 
In order to visually analyze the high-dimensional two-point correlations, a principal component analysis (PCA) is 

used to reduce them to two dimensions. In Figure 7, the original microstructure is exemplarily compared to the first 

reconstructed structure shown in Figure 6 in terms of the first two modes of the slice descriptors. It is worth noting that 

the 2D-to-3D reconstruction is not informed about the entire distribution of original descriptors, which would describe 

the entire 3D structure, but only one randomly chosen value which corresponds to the single original 2D slice. Based 

on this discrepancy, three phenomena are discussed based on simple volume fractions and are identified in Figure 7 

for spatial correlations: 
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(a) Unsmoothed TiFe (b) Unsmoothed columnar (c) Unsmoothed lamellar 

(d) Smoothed TiFe (e) Smoothed columnar (f) Smoothed lamellar 

Figure 5: The effect of smoothing on the reconstructed structures. 

 
 

• Descriptor concentration: Due to random variations in the microstructure, the volume fraction of a single slice 

might be higher or lower than that of the entire microstructure. The expected magnitude of these fluctuations 

decreases as the microstructure size increases. Since the reconstruction is not based on the statistical distribution 

of volume fractions, but on a single value, there is no control of the fluctuations. Analogously, for generic 

descriptors, the descriptors in the reconstructed slices is observed to scatter less than in the original structure in 

Figure 7. 

• Descriptor difference: Due the same variations in the microstructure, the prescribed value of the volume fraction 

is not optimal. A similar phenomenon can be observed for generic descriptors. In Figure 7 (a), the prescribed 

descriptor is close to the boundary of the original descriptor point cloud. Therefore, although the descriptors of 

the reconstructed structure are centered around the prescribed value, a discrepancy is observed. 

• Descriptor incompatibility: Moreover, the random fluctuations of the slice descriptors can lead to contradictions 

between orthogonal slices. For example, it is impossible to achieve a volume fraction of 𝑣f = 5% on all slices 

in 𝑥1-direction while at the same time requiring 𝑣f = 6% on all slices in 𝑥2-direction. The average of the loss 

function over all slices and dimensions in Equation 9 leads to a compromise between incompatible descriptors, 

which manifests itself as offset between the mean descriptor of the reconstructed slices and the prescribed value. 

For generic descriptors, this phenomenon can be observed in Figures 7 (b) and (c). 
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Figure 6: Five reconstruction examples per structure for the real TiFe material (top) and the columnar (center) and lamellar 
(bottom) synthetic structure. 

 
 

(a) Slicing in 𝑥1-direction (b) Slicing in 𝑥2-direction (c) Slicing in 𝑥3-direction 

Figure 7: Low-dimensional analysis of the descriptor distribution over the slices of the original and reconstructed TiFe 
structure. 

 
 

Because the purpose of Figure 7 is a discussion of qualitative trends, only a single reconstructed structure is shown. 

Similar trends can be observed for all reconstructed structures. While the principal components are well-suited for 

discussing qualitative trends in point clouds, the magnitude of the errors can not be assessed very well. The absolute 

and relative descriptor error are measured given by 

£abs = 3D(Mrec) − S3D(Mog)  (28) 

𝐷 
 

and 

||S2 2 ||MSE 

£rel = £abs∕  S3D( og)  . (29) 
𝐷 || 2  M ||MSE 
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max £ abs(Mrec) 1 

20 

∑ 
£ (M  ) max £ rel(Mrec) abs rec 1 

20 

∑ 
£ (M  ) rel rec 

𝛼 𝐷 𝛼 𝛼  𝐷 𝛼 𝛼 𝐷 𝛼 𝛼  𝐷 𝛼 

𝑦 

Errors of the full 3D two-point correlations. 

 
 

Alloy 
Columnar 

3.01 ⋅ 10−5 

2.66 ⋅ 10−5 

2.84 ⋅ 10−5 

2.52 ⋅ 10−5 

0.071% 
0.043% 

0.067% 
0.040% 

Lamellar 2.94 ⋅ 10−5 2.88 ⋅ 10−5 0.046% 0.045% 

 

 

(a) Original structure (b) Reconstructed structure (c) Difference 

Figure 8: Elastic surface plots of the original and generated TiFe structure. 

 
 

Note that this comprises the full 3D correlations computed with pyMKS [6] and not a slice-wise comparison. The 

maximum and average error of all 20 reconstructed microstructures is given in Table 3. With less than 0.1% deviation, 

the three-dimensional two-point correlation is captured very well. However, it presently not clear how small a descriptor 

error should be in order to guarantee similar effective properties. Therefore, the homogenized material response is 

analyzed in the following. 
 

4.3. Effective alloy properties 
The effective properties of the titanium alloy are quantified in terms of the elastic and plastic behavior. 

The elastic behavior is captured by the full stiffness tensor, which is visualized by means of elastic surface or YMS 

plots [8, 43], see Section 2.4. A comparison between the original CT scan and the first reconstructed structure is given 

in Figure 8 and Table 4 enables a quantitative comparison of 𝐸̄ in 𝑥1-, 𝑥2- and 𝑥3-direction. It can be seen that the 

range of the Young’s modulus as well as the degree of anisotropy is captured very well. The exact direction of the 

anisotropy slightly differs from the correct value. However in Table 4, for each reconstructed structure, the effective 

Young’s modulus in a certain direction is closer to the reference modulus in the same direction than to the reference 

modulus in another direction. Over all, the relative error 

£rel = 
�̄�rec − �̄�og 

 

 
(30) 

𝐸 �̄�og 

of the directional Young’s modulus is limited to approximately ±0.5% with a maximum error of 0.61%, which is 

extremely small considering a phase contrast of 𝐸TiFe∕𝐸𝛽−Ti ≈ 2. As a comparison, for the same material properties, 

simple homogenization by Voigt’s and Reuss’ formulae yield an upper and lower bound of 163.3 MPa and 151.3 MPa, 

respectively. 

The plastic material response is quantified by the effective yield strength �̄�̄y, whereby this work is limited to the 𝑥1-, 
𝑥2- and 𝑥3-direction for computational efficiency. The results are summarized in Table 4. Again, all relative errors 

�̄�̄ rec − �̄�̄ 
og

 

£rel =  < 𝑦 (31) 
𝜎̄𝑦 �̄�̄ og 

 

are very small and the anisotropy of the effective properties is captured very well. 

Finally, Figure 9 shows the scatter of the effective isotropic elasto-plastic properties compared to the reference. 

Note that the reference is different for each spatial direction, as can be seen in Table 4. However, as shown in Table 3, 
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Table 4 
Errors of the effective directional Young’s modulus and yield strength for the TiFe structure. 

 

y y 

 
 
 

 

 

Figure 9: Error of the effective directional Young’s modulus and yield strength. It can be seen that the scatter over different 
realizations is much smaller than the systematic error. Note that all values are divided by the reference, but the reference 
is different in each direction. The numerical values are given in Table 4. 

 
 

the differences within the reconstructed structures are much smaller than the deviation between the reconstructed and 

original structure. This is likely attributable to the systematic descriptor deviations mentioned in Section 4.2 and is 

discussed further in the following section with a higher degree of anisotropy. 
 

4.4. Properties of spinodoid metamaterial 
Based on the effective properties to the TiFe system identified in the previous section, the elasto-plastic material 

model introduced in Subsec. 2.4.1 is parametrized as given in Table 2 and is used to determine the macroscopic 

properties of the spinodoid, "bone-like" materials. This poses several challenges because with increasing phase contrast 

and anisotropy, (i) both, original as well as reconstructed structures, need to be increasingly large to adequately capture 

the morphology, (ii) small errors in reconstructing highly stressed parts of the structure can lead to spurious local stress 

concentrations and hence strongly affect the effective behavior, and (iii) for the same reason, noise that is inherent to 

2D-to-3D reconstruction [4, 56] becomes increasingly problematic. The remainder of this section shows the results, 

which are surprisingly accurate considering the above challenges. Further investigations on the effect of insufficiently 

large volume elements and the effect of smoothing on the properties are given in Appendices B and C, respectively. 

The elastic surfaces of the original structure in Figure 3 and one reconstruction result (first column of Figure 6) are 

compared in Figure 10. As opposed to the TiFe system in Figure 8, the elastic response of the spinodoid materials is 

highly anisotropic, making the result extremely sensitive to small errors in the reconstruction process. Nevertheless, 

the "rod-like" and "disc-like" shape of the elastic surfaces as well as their maximum radius are captured very well. The 

largest errors do no occur in the stiffest direction, but at an angle close to the stiffest direction. The reason for these 

errors is visualized by means of cuts through the elastic surfaces in Figure 11: Due to the very steep gradient of the 

elastic surfaces with respect to the load orientation, even small deviations in the orientation lead to large errors in the 

effective stiffness. The same applies to a slightly "thinner rod" in the columnar case or a slightly "flatter disk" in the 

lamellar case. 

A quantitative comparison of the effective Young’s modulus and yield stress is given in Table 5 and Figure 12. 

It can be seen that in 𝑥1-, 𝑥2- and 𝑥3-direction, £𝐸 stays within ±5% and the anisotropy is captured very well. As a 

Direction �̄�ref in GPa �̄�rec in GPa £E in % �̄�̄ ref in MPa �̄�̄ rec in MPa £𝜎̄y 
in % 

x 158.383 159.346 ± 0.006 0.61 1417.69 1400.53 ± 0.18 -1.21 
y 156.713 156.864 ± 0.005 0.10 1455.76 1455.73 ± 0.23 -0.00 

z 157.825 157.515 ± 0.006 -0.20 1428.05 1439.74 ± 0.21 0.82 
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(a) Original columnar (b) Reconstructed columnar (c) Difference 
 

 
(d) Original lamellar (e) Reconstructed lamellar (f) Difference 

Figure 10: Elastic surface plots of the original and generated spinodoid structures. 

 
 

 

(a) Columnar, 

𝜑 = 0 
(b) Columnar, 

𝜑 = 𝜋∕2 
(c) Lamellar, 𝜑 = 0 (d) Lamellar, 𝜑 = 𝜋∕2 

Figure 11: Cuts through Figure 10 (c) and (f) at 𝜑 = 0 and 𝜑 = 𝜋∕2 reveal that a slightly wrong orientation of the elastic 
surface leads to large deviations in the radial direction. 

 
 

comparison, for the same material properties, simple homogenization by Voigt’s and Reuss’ formulae yield an upper 

and lower bound of 80 MPa and 0.4 MPa8, respectively, irrespective of loading direction. 

In summary, the extreme phase contrast and strong anisotropy of the "bone-like" spinodoid structures naturally 

lead to larger errors compared to the real CT scan of the TiFe system. Despite being synthetically constructed, the 

columnar and lamellar structure thus demonstrate the robustness of the reconstruction procedure. 
 

8It should be mentioned that this lower bound is a purely numerical value, since the Fourier-based solver used in this work requires a non-zero 

stiffness to be assigned to the void phase as shown in Table 2. The correct lower bound by Reuss’ formula is of course 0 MPa. 
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Table 5 
Errors of the effective directional Young’s modulus and yield strength for the spinodoid structures. 

Direction �̄�ref in GPa �̄�rec in GPa £E in % �̄�̄ ref in MPa �̄�̄ rec in MPa £𝜎̄ in % 

x 15.53 15.3 ± 0.15 -1.7 111.8 122 ± 1.8 9.3 
y 15.56 15.6 ± 0.12 0.23 113.4 121 ± 1.7 6.9 
z 43.03 43.1 ± 0.14 0.27 331.8 337 ± 3.1 1.5 

x 32.06 31.2 ± 0.12 -2.7 257.8 256 ± 1.4 -0.6 
y 32.05 30.8 ± 0.11 -4.0 259.0 255 ± 1.5 -1.6 
z 3.55 3.4 ± 0.02 -3.1 45.99 43.5 ± 0.4 -5.4 

 

 

(a) Columnar structure (b) Lamellar structure 

Figure 12: Error of the effective directional Young’s modulus and yield strength. The zoom as in Figure 9 is omitted to 
avoid redundancy. Note that all values are divided by the reference, but the reference is different in each direction. The 
numerical values are given in Table 5. 

 
 

5. Conclusions and Outlook 

In this work, the applicability of the recently proposed differentiable microstructure characterization and recon- 

struction (DMCR) to 2D-to-3D reconstruction is validated. For this purpose, a computed tomography (CT) scan of a 

recently developed TiFe alloy as well as morphologically extremely anisotropic "bone-like" spinodoid metamaterials 

are used as 3D reference structures. From each of these structures, three orthogonal slices are extracted to mimic the 

situation that only 2D information is available. Based on only these slices, statistical descriptors are computed and used 

for reconstructing 20 independent 3D realizations of each structure. The synthetic structures are visually very similar 

to their original counterpart and an in-depth quantitative analysis is carried out. 

A detailed discussion of errors in the descriptor space classifies the sources of systematic deviations as descriptor 

concentration, difference and incompatibility. While the former is inherent to the formulation of the optimization 

problem and might be addressed in the future by formulating advanced cost functions, the latter two are expected 

to vanish as the structure for characterization becomes infinitely large. All phenomena are visualized by means of a 

scatter plot in the first two principal components of the descriptor space and the full 3D correlation errors are given 

for reference. 

While there is no easy criterion to determine which magnitude of descriptor errors is acceptable, the effective 

properties are a practical indicator of whether the reconstructed structures match the reference. For this reason, elasto- 

plastic simulations are performed and a numerical homogenization is carried out in order to determine the full stiffness 

tensor as well as the effective yield strength in three directions. The errors of the real TiFe system are extremely 

small. For the synthetic spinodoid structures, the extreme anisotropy and high phase contrast naturally lead to higher 

deviations, however, a good prediction quality is reached and the anisotropy is captured very well. 

In summary, the utility of DMCR in reconstructing realistic 3D microscale domains from 2D slices is confirmed. 

This is an essential step towards making modern multiscale simulations more applicable to computational materials 

la
m

. 
co

l. 
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engineering. In this context, it is worth noting that DMCR is freely available in the open-source software MCRpy. 

Thus, the excellent results in this study motivate further initiatives across disciplines in applying numerical multiscale 

simulations for computational materials engineering. 
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A. Descriptor-based smoothing 

The difference between the descriptor-based smoothing suggested in Section 2 and simple Gaussian smoothing 

followed by thresholding is not very pronounced in the investigated structures. However, this is not always the case. 

In this section, a simple academic example is constructed to illustrate the differences between the methods. Consider a 

structure with a horizontal slit as shown in Figure 13 (a), which is to be recovered from a noisy version in Figure 13 (b). 

This noisy version could, for example, stem from a reconstruction algorithm. As can be seen in Figure 13 (c), simple 

Gaussian smoothing followed by thresholding fails to differentiate between noisy pixels and true sharp corners, hence 

the smoothing significantly alters the microstructure and its effective properties. In contrast, the suggested descriptor- 

based smoothing procedure exactly recovers the original structure in very few iterations9. In conclusion, although 

simple smoothing procedures can work for real microstructures, there is no warranty that they do. It is therefore 

recommended to use descriptor-based smoothing procedures whenever possible, despite the higher computational cost. 

 

 
B. Size of original slice 

If the original 2D microscopy image or slice for the computation of the desired descriptor in Equation (6) is small, 

then, as discussed in Section 4.2, the descriptor is most likely not representative for the entire structure. For example, 

in a matrix structure with inclusions, as the sample size decreases, if becomes increasingly likely that a random 2D 

slice does not cut a single inclusion. In this extreme case, the result of the characterization would be an inclusion 

volume fraction of 0%. To demonstrate this effect, a smaller cuboid with 1283 voxels is cut out of the columnar and 

lamellar spinodoid structures and used for validation in analogy to Figure 1. Figure 14 summarizes the error in the 

effective elastic and plastic properties. In direct comparison to the results from the full original structure in Figure 12, 

a significantly increased scatter can be observed as well as a larger error in general. In theory, for increasing the 
 

9The number of iterations varies but is mostly less than 10. 
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(a) Original structure (b) Noisy version of (a) (c) Standard Gaussian 

smoothing and thresholding 

of (b) 

(d) Suggested descriptor- 

based smoothing of (b) 

Figure 13: Motivation of descriptor-based smoothing: Sharp corners in the original structure (a) can not be distinguished 
from noise (b) by a simple Gaussian smoothing and significant errors occur (c). In contrast, the descriptor-based algorithm 
recovers the original structure (d). 

 

Table 6 
The effect of averaging descriptors over multiple slices on the effective Young’s modulus under tension in 𝒙-direction 
compared to a larger single slice. The 𝒚- and 𝒛-direction are similar 

£ 
𝑥 

Columnar Lamellar 

Small sample, single slice 
Small sample, averaged slices 

Large sample, single slice 

−7.8% −11% 
−0.5% −8.4% 
−2.1% −2.0% 

 
 

  
 

(a) Columnar structure (b) Lamellar structure 

Figure 14: Error of the effective directional Young’s modulus and yield strength. Compared to Figure 12, a higher scatter 
is observed and the error is larger in general. 

 
 

representativeness of a descriptor, averaging descriptors over multiple slices of a small sample should have the same 

effect as using a single slice of a larger sample. This is, however, less relevant in practice, since as discussed in the 

introduction, 3D data is often significantly more cost- and time-intensive to obtain than 2D data. Nevertheless, the 

authors averaged the descriptor over all slices from the smaller version of the original structure and used this value for 

an additional reconstruction and homogenization. To keep the computational effort for this a simple experiment low, 

only a single example was reconstructed in this manner. Indeed, averaging descriptors over multiple small slices has 

a similar effect as using a single large slice as can be seen in Table 6. This shows the possibility to use multiple 2D 

microscopy images if this is of interest. 

𝐸 
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Table 7 
Effect of smoothing on the effective Young’s modulus and shear stress for the spinodoid structures. 

 

 £𝐸 

unsmoothed 

 
smoothed 

£𝜎̄𝑦 

unsmoothed 

 
smoothed 

Columnar −1.3% 0.1% −0.9% 0.5% 

Lamellar −4.1% −2.0% −1.9% −0.3% 

 

C. Effect of smoothing 

The impact of smoothing on the effective properties is outlined in Table 7, where the unsmoothed and smoothed 

version of the same reconstructed structure are compared regarding their effective properties. In general, a lower 

stiffness is observed for unsmoothed structures. This can be explained as follows. Consider a connected domain of 

the stiffer phase. Random noise has the effect of erroneously assigning the weaker phase to some voxels within that 

domain, thus weakening its effective stiffness. On the other side, in a connected domain of the more compliant phase, 

single voxels with higher stiffness do not contribute much to the overall behavior as long as they are not connected. 

Similarly, spurious noise acts as a stress concentrator and thus promotes strain localization at lower stress levels. 

Hence, it is plausible that smoothing increases the effective yield strength. An even larger impact is expected to occur 

if fatigue indicator parameters are to be computed as in [47], which further underlines the need for microstructure 

post-processing. 
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