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Abstract
Background Digital image correlation (DIC) with microscopes has become an important experimental tool in fracture 
mechanics to study local effects such as the plastic zone, crack closure, crack deflection or crack branching. High-resolution 
light microscopes provide 2D images but the field of view is limited to a small area and very sensitive to its alignment. 
A flexible positioning system is therefore needed to collect such DIC data during the entire fatigue crack growth process.
Objective We present in our paper a new experimental setup for local high-resolution 2D DIC measurements at any location 
and at any time during fatigue crack growth experiments with a non-fixed DIC microscopy system.
Methods We use a robot to move the 2D DIC microscope to any location on the surface of the specimen. Optical and tactile 
methods automatically adjust the system and ensure highest image quality as well as accurate alignment. In addition, an 
advanced repositioning method reduces out-of-plane motion effects.
Results The robot is able to achieve a repositioning accuracy of less than 0.06 mm in vector space, resulting in very low Von 
Mises strain scattering of 0.07 to 0.09% in the DIC evaluation. The system minimizes systematic errors caused by transla-
tion and rotational deviations. Effects such as crack deflection, crack branching or the plastic zone of a fatigue crack can be 
investigated with a field of view of 10.2 x 6.4  mm2.
Conclusions The robot supported DIC system generates up to 8000 high-quality DIC images in an experiment that  
enables the application of digital evaluation algorithms. Redundant information create confidence in the results as all revealed 
effects are comprehensible. This increases the information content of a single fatigue crack growth test and accelerates 
knowledge generation.
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Introduction

In the century of digitization, Digital Image Correlation 
(DIC) is a state-of-the-art method in experimental solid 
mechanics [1]. A contactless optical camera system takes 
images of a region of interest (ROI) and an evaluation soft-
ware computes full-field displacement and strain data. For 
this purpose, a reference image of the ROI with a speckle 
pattern is taken and compared with an image of the same 
ROI later [2].

High-resolution DIC is an important tool with increasing 
robustness for analysing fatigue crack propagation [3–11]. 

Tong et al. [4, 5] used the local displacement fields to study 
crack closure in fatigue crack propagation experiments by 
analysing crack opening displacements (COD) along the 
crack path. Similarly, Casperson et al. [3] investigated the 
crack closure behaviour in high-temperature environments. 
Following their investigations, Vasco-Olmo et al. [6] evalu-
ated shielding effects by crack tip opening displacement 
measurements (CTOD). Recently, Duan et al. [12] pointed 
out that COD is strongly dependent on the measurement 
location in the displacement field and that the crack open-
ing load differs at different locations near to the crack tip. 
To solve this problem, they introduced the crack opening 
ratio parameter. Furthermore, Vasco-Olmo et al. [10, 11] 
used DIC at microscopic level to assess the size and shape 
characteristics of the plastic zone and related them to crack 
tip shielding effects. Lu et al. [8], Tong et al. [9] and Carrol 
et al. [7] investigated the strain and damage accumulation 
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in front of the crack tip. Almost all quantitative evaluations 
require accurate information about the crack tip position. 
Réthoré introduced a crack detection algorithm based on  
a truncated Williams’ series [13]. Trained machine learn-
ing models determine the crack tip position even in scat-
tered DIC data [14, 15]. The crack tip field can be quanti-
fied by the J-integral, stress intensity factors or higher order  
Williams’ series coefficients using energy release integrals 
J [16, 17], the interaction integral [18, 19] or the near field 
itself [20]. A more recent technique for quantifying crack tip 
loads is the CJP model [21].

However, most experimental investigations of the plastic 
zone use a fixed camera setting and are therefore limited 
to a small ROI [22, 23]. Only effects occurring in this spe-
cific ROI can be captured. Consistent data along the entire 
crack path promise great potential for a better understand-
ing of fatigue cracks [24, 25]. Liang et al. [26] identified 
this issue and used a non-fixed camera system for captur-
ing DIC images. They concluded, that DIC error sources 
in such systems are a considerable challenge. Because of 
the high magnification of optical light microscopes [27], 
the two-dimensional DIC evaluation is sensitive to external 
influences. Zhao et al. [1] summarized the potential sources 
of errors affecting the two-dimensional DIC measurements 
as follows:

• Quality of speckle pattern
• Image quality (contrast, sharpness)
• Test environment conditions
• Out-of-plane motion

The choice of the DIC facet size depends strongly on the 
quality of the speckle pattern [28–31]. Dong et al. [31] sum-
marized that a good speckle pattern should have high con-
trast, randomness, isotropy and stability. Contrast deficits 
and image blurring pose a significant problem in identifying 
the required features within a facet. The pattern distribution 
should be non-periodic and non-directional. Furthermore, the 
speckle pattern should deform together with the specimen 
surface. Different methods for assessing the speckle pattern 
quality have been developed by Lecompte et al. [29], and 
Liu et al. [30] using image morphology. Liu et al. [30] intro-
duced the Shannon entropy and concluded that the pattern 
quality increases with this parameter. Crammond et al. [28] 
examined the influence of speckle size and density within a 
facet. A higher density of significant features reduces scat-
ter and provides more accurate results. Pan et al.[32] and 
Dufour et al. [33] investigated the effect of lens distortion on 
the accuracy of DIC. They concluded that the deviations are 
small and can be neglected if no large deformation gradients 
are expected in the distorted areas. Quian et al. [27] pointed 
out that lens distortion has a significant error impact in com-
bination with rigid-body motion in DIC microscopy due to 

the change of blurriness of features within a facet. The influ-
ence of the test environment affects the DIC measurement 
mainly through changes in ROI exposure or a moving target 
caused by vibrations. While a variation in exposure results 
in a change of the recognized features within a facet [28, 29], 
moving targets lead to rigid-body movements. Zappa et al. 
[34] pointed out that a moving target in dynamic systems con-
sequences a blurring effect on the acquired images. Sutton  
et al. [35] investigated the influence of translational and rota-
tional deviations on the 2d DIC evaluation and Hoult et al. 
[36] concluded that out-of-plane movements are the most 
elementary source of error in two-dimensional DIC evalua-
tions. In particular, deviations in the distance between camera 
and surface as well as incorrect alignment angles must be 
minimised. Haddadi et al. [37] suggest to first identify all 
possible out-of-plane movement sources to reduce scatter-
ing. Zhang et al. [38] described the influence via a change 
in the mapping between pixel and detected feature. Finally, 
Zhao et al. [1] and Pan et al. [39] concluded that all those 
potential error sources strongly depend on the experimental 
set-up. Additionally, the total DIC error is always a combi-
nation of the possible error types mentioned above, which 
makes it very difficult to subsequently separate and correct 
the individual errors.

Our paper addresses this gap for non-fixed high-resolution 
DIC system by presenting a new experimental mechanical 
testing system that uses multiscale DIC to generate autono-
mously a large amount of data. In contrast to current research, 
we use a non-fixed 2D DIC microscope system mounted on 
a robot. This enables moving to different locations at the 
surface of the specimen and to capture specific ROI during 
fatigue crack growth. In combination with advanced auto-
matic focussing algorithms, we can reduce potential DIC 
error sources, mentioned above. As a result, this system can 
capture temporally and spatially resolved local displacement 
fields along the entire fatigue crack growth. Thus, fatigue 
crack growth mechanisms such as crack branching, deflec-
tion, crack closure and the plastic zone can be investigated at 
a very detailed level.

Methodology

Advanced Test Stand

In order to capture local effects of the crack tip field, high-
resolution displacement data near the crack tip location at 
any time of fatigue crack growth is required. Figure 1(a) 
shows our experimental setup. All fatigue crack propagation 
experiments are in accordance with ASTM E647-15 [40].

The basis of the setup is a servo-hydraulic uniaxial testing 
machine with a 2-mm-thick MT(160) sheet specimen. The 
specimen used is made of the aluminium alloy AA2024-T3. 
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The rolling direction of the sheet is perpendicular to the 
crack propagation direction. In this example, the specimen is 
subjected to a uniaxial sinusoidal load with constant ampli-
tude. The maximum nominal load is Fmax = 15 kN with 
a load ratio of R = 0.1 and a test frequency of fcycle = 20 
Hz. The test is supplemented by a direct current potential 
drop (DCPD) system (IDC-POT = 100 A = const., UDC-POT 
= 60mV) for crack length measurement. Here, the voltage 
drop is measured at two pins 10 mm below and above the 
initial saw notch, respectively. Two multi-scale DIC systems 
are the core of the test stand. A GOM Aramis 12M 3D DIC 
system at the rear of the test stand captures displacement 
data of the entire specimen surface.

The 3D DIC system consists of two single 12 Megapixel 
cameras (4619 x 2598 pixels) with a slider distance of 98 
mm and an angle of 25° to each other. The measurement 
volume is set to 200 x 150 x 21  mm3 and 50 mm lenses are 
used. The distance to the specimen surface is 525 mm. Two 
external lamps (power = 20 W, beam angle = 19°), included 
in the GOM Aramis system, are used as the light source to 
achieve a uniform illumination of the specimen surface. For 
DIC evaluation, the back side of the specimen is primed with 
white varnish and afterwards a fine random black dot pattern 
is sprayed, to ensure pattern stability and to provide maxi-
mum contrast for feature identification. Here, a facet size 
of 19 x 19 pixel (0.86 mm x 0.86 mm) in combination with 
a facet distance of 16 pixel (0.59 mm x 0.59 mm) is used. 
The new microscopic 2D DIC (MDIC) system is located 
on the front side of the specimen. It consists of an opti-
cal Zeiss 206C stereo light microscope, including a Basler 
a2A5320-23umPro global shutter 16 Megapixel CMOS 
camera (5333 x 3000 pixels) and a straight inspection probe 
(see Fig. 1(b)). The KUKA LBR iiwa 14 R820 cobot carries 
the DIC microscope. A ring light (power = 9 W) is used for 
illumination (see Fig. 1(b)) and an exposure time of 200 
ms ensures a good contrast for feature identification. This 
allows the DIC microscope to be positioned on any location 
on the specimen surface. At a magnification of 1.6x, the 
facet distance is 0.047 mm (facet size: 40 x 40 pixel, facet 

distance: 30 x 30 pixel). With the used magnification, the 
field of view of the microscope is 10.2 mm x 6.4 mm. For 
the MDIC evaluation, the front of the specimen is coated 
with white paint and then sprayed with a mixture of black 
iron oxide powder and liquid ethanol using an airbrush (1.8 
mm nozzle, 2.4 bar spray pressure).

A schematic representation of the experimental setup is 
given in Fig. 2. The MTS FlexTest 40 Controller together 
with the MTS TestSuite Multipurpose Elite Software con-
trols the servo-hydraulic testing machine and communicates 
with the DIC systems. This system focuses safety aspects, 
and therefore the testing machine is mainly responsible for 
the whole test sequence. The test program is based on the 
Multipurpose Elite software and is extended by custom made 
Python communication scripts. The machine controller trig-
gers the external 3D DIC and the 2D MDIC system via Eth-
ernet communication. For this purpose, temporal dynamic 
Transmission Control Protocol (TCP) interfaces are opened, 
which send the corresponding trigger signal. In addition to 
the action command, it contains further machine data, such 
as the number of load cycles, current force and displacement. 
The TCP interface remains open until the requested action 
is completed by a response message from the corresponding 
DIC system. This prevents the test sequence from continuing 
in the event of an error within the DIC acquisition systems.

If the 3D-DIC system is activated by a command over 
the TCP stream, an image is captured and all metadata 
listed in the Table 1 are additionally stored. This image 
metadata makes the entire test reproducible and thus allows 

Fig. 1  General test setup: (a) overview and (b) the 2D DIC micro-
scope including camera, light source and inspection probe

Fig. 2  Schematic structure of the testing system including the DIC 
measurement systems and their Ethernet communication structure
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comparisons between all other types of measurement data. 
Then, the MDIC system is also activated via a corresponding 
TCP command. In general, the MDIC system consists of the 
MDIC controller, the robot controller, the robot arm and the 
MDIC microscope. When the MDIC controller receives a 
trigger signal, it submits the coordinates to the robot control-
ler, which commands the robot arm to guide the microscope 
to the desired position. If this is successful, an image is cap-
tured and the corresponding metadata is stored. The process 
is repeated until all the desired positions are covered.

In total, a single crack propagation experiment produces 
up to 8000 individual images with a data volume of about 
350 GB. To obtain full-field displacement information of 
the specimen surface, the raw images are processed using 
the GOM Aramis 2020 software. When the test is finished, 
all remaining TCP interfaces are closed.

Test Procedure

In general, the test procedure consists of two phases, as 
shown in Fig. 3. The DIC calibration takes place before the 
actual test. Then, the DIC data acquisition phase coordinates 
the image acquisition during fatigue crack growth.

Figure 4 gives an overview of the activities done by 
the 2D MDIC system during calibration and measurement 
phase. Before starting a test, the specimen is completely 
unloaded to obtain a reference DC potential at zero load 
needed for the crack length measurement. For this purpose, 
the machine records a data set over a period of 10 s with a 
sampling rate of 254 Hz and the average value recorded is 
used as reference. During the test, the DCPD crack length 

controls all further steps [40]. The influence of local effects 
such as crack deflection or crack branching can be neglected 
as their scale (< 0.5 mm) is significantly smaller than the 
macroscopic mode I fatigue crack. During calibration the 
robot starts moving to four points at the specimen surface 
and touches them by using a straight inspection probe 
(Fig. 1(b)). With the received coordinates, a working plane 
aligned and centred with the surface is computed and set as 
a new base coordinate system. For more detailed informa-
tion, see "Alignment of the Base Coordinate System". Then 
two points are approached at x,y = [30,0], [-30,0] and the 
system checks if the microscope’s line of sight is exactly 
perpendicular to the specimen surface. For this purpose, 
we developed a new optical cluster algorithm that uses the 
characteristic focus point of a captured image. Both aligning 
methods together take  about 3 min. If this condition is not 
satisfied, the base coordinate system will be adapted. In the 
following, the user inputs an area in which the crack prob-
ably will grow as given in Fig. 4.

Table 1  Sources of data and 
their information stored during 
the test procedure

Data source Stored information

Machine data Force, displacement, frequency, crack length via potential 
drop, load cycles, time

2D MDIC data Raw MDIC images, exposure time, image quality parameters
Robot data Desired coordinates, actual coordinates, current axis angles
3D DIC data Raw DIC images, exposure information

Fig. 3  Testing procedure with DIC image acquisition trigger points Fig. 4  MDIC system activities during calibration and measurement phase
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The robot then moves the MDIC microscope in a checker-
board pattern to capture reference images with 70% overlap 
in the defined region. At each location, the sharpness of the 
image is checked and adjusted according to the sharpness 
index presented in "Image Focusing". If the sharpness does 
not meet a certain limit, the depth is adapted by the robot 
until the images are focused. Thus, taking one single refer-
ence image can take up to 1 min until all quality conditions 
have been satisfied. Finally, the reference image is taken 
and all metadata are stored as listed in Table 1. The actual 
position of the reference images is particularly important 
here. This procedure is repeated for each location within the 
defined domain. Angle and focus checks are performed to 
ensure highest image quality and to avoid incorrect displace-
ment measurements due to misalignment between the MDIC 
system and the specimen surface.

After the calibration phase, the measurement phase takes 
place. Here the specimen is loaded cyclically with a constant 
amplitude until a crack propagation increment of Δastep = 
0.5 mm is measured by DCPD. Then, the load sequence 
is stopped and three different load levels are approached: 
minimum, intermediate and maximum load. At each load 
level, the 3D DIC system is triggered first and then the 2D 
MDIC system. The robot moves the MDIC microscope to 
the locations of the reference images in the proximity to the 
estimated crack tip. The approximated position of the crack 
tip is determined with the DCPD method xct , yct = a, 0 . 
When the robot moves to a reference image position, the re-
position accuracy and the re-position misorientation angle 
is checked and if it is below a user-defined values of xabs = 
0.06 mm and Φabs = 0.015° (see "Dynamic DIC Scattering"). 
These values are a suitable trade-off between DIC quality 
and repositioning accuracy. Otherwise, repositioning to the 
desired coordinates is repeated until the threshold values 
are reached. A direct correction of the measured position 
errors is not possible, as the robot is not able to perform such 
small movements with sufficient accuracy. We define the 
reposition accuracy as the absolute distance in vector space 
between the desired reference image position and the actual 
position. If this condition is satisfied, the image for the cur-
rent stage is stored. The machine controller repeats this pro-
cess until the specimen finally breaks.

Alignment of the Base Coordinate System 

Aligning the optical system to the measurement plane is an 
important task when setting up a 2D DIC system. Misalign-
ments have a significant impact on the DIC scattering and 
cause spurious displacements. To ensure vertical alignment 
of the camera's line of sight to the specimen surface, the 
robot defines a new working plane. Therefore, it touches 
the surface of the specimen with an inspection probe at four 

different locations (see Fig. 5). Contact is detected as soon 
as the measured force exceeds 10 N. Based on these coordi-
nates relative to the origin coordinate system, the new base 
coordinate system is computed:

The initial distance between the head of the inspection probe 
and the specimen surface l is 167 mm in the depth direction. 
Based on the measured distances of the touching points, the 
system is able to determine the rotation angles �cs and �cs by

Following, based on those angles the systems spans a virtual 
plane which is parallel to the specimen surface. This  plane 
serves as basis for all further movements of the robot and 
microscope.

Image Focusing

The image focusing algorithm is required for both parallel-
ism checking and image focusing in the calibration phase.  
This algorithm ensures good image quality in terms of con-
trast and sharpness, which is essential for a high-quality 
DIC evaluation. The method is explained with an example 
speckle image (see Fig. 6(a)) captured with the MDIC sys-
tem. The grayscale image contains pixel values from 0 to 
255. The general approach is that good image sharpness is 
characterized by large gradients between dark (I = 0) and 
white (I = 255) pixel areas.

Therefore, the image is derived twice by applying a Lapla-
cian transformation (see Fig. 6(b)) as given in the following 
formula. The repeated derivation is performed in order to 
weight the importance of image gradients once more.

(1)�cs = sin−1
(

f [mm]

50mm

)

(2)�cs = sin−1
(

g[mm]

30mm

)

Fig. 5  Aligning base coordinate system relative to the specimen sur-
face by four-point touching
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Figure 6(b) shows the Laplacian-transformed image. 
Only the edges of the speckle pattern are still visible. In this 
example, these edges are more pronounced in a focused area 
of the image. In Fig. 6(c), the histogram of the Laplacian-
transformed image follows a Gaussian normal distribution 
with mean �

(

∇2(I)
)

→ 0 . We use the variance V
(

∇2(I)
)

 
as a sharpness indicator. However, this indicator strongly 
depends on the quality of the speckle pattern, exposure, or 
contrast. For example, large speckles reduce the maximum 
variance in contrast to a large number of small speckles. 
Low exposure or contrast smooths the transition between 
the speckles and its background, which results in lower gra-
dients. Since the speckle pattern on the microscope side is 
generated by airbrush, it can have locally different proper-
ties. Therefore, the achievable sharpness index B = V

(

∇2(I)
)

 
differs locally and must be determined individually.

To do this, the robot moves the MDIC system continu-
ously in an interval of z = [-1, 1] mm in depth direction. 
Every Δz = 0.05 mm, an image is captured and its sharpness 
index B is calculated. This results in a curve describing the 
sharpness as a function of depth z, as shown in Fig. 6(c). 
The location of the maximum value defines the focus point 
and the maximum value itself serves as sharpness reference 
index Bb, which is used to check the sharpness. Then, the 
robot moves the MDIC system again in the mentioned inter-
val back to the noticed focus point until the sharpness index 
limit Bb is reached. The image taken after applying the pre-
sented focus algorithm is given in Fig. 6(d).

With the focus algorithm, we additionally ensure that the 
view direction of the MDIC system is completely vertical  
to the specimen surface. Therefore, the image is divided 

(3)∇2I =
�I2

�x2
+

�I2

�y2

into 25x25 sub-regions and their sharpness index B is deter-
mined, resulting in the focal heatmap shown in Fig. 7. In 
general, the number of sub-regions is a user-defined value 
and depends on the density of the speckle points. We choose 
25x25 sub-regions so that there are several black and white 
speckles in each region (approx. 10 to 20). This allows sta-
ble application of the focus algorithm and the determination 
of B. In addition, we do not use a telecentric lens to apply 
DIC as we use the inherent distortion of the lens to achieve 
a perfect alignment. In 7 out of 8 cases, this procedure is 
not necessary because the alignment by the touching points 
procedure is adequate. However, in rare cases, the alignment 
is not satisfactory due to the positioning error of the robot. 
The following algorithm solves the problem:

The sharpness indices B of all sub-region are summed up 
for each row and column in horizontal and vertical direction. 
The distribution of the mean values �(

∑

x,y B) describes the 
position of the focus point in the x or y location at the maxi-
mum value xmax(�(

∑

y B)) and ymax(�(
∑

x B)) . In this exam-
ple, the mean value ymax(�(

∑

x B)) = 0.048 is smaller than 
0.1 and no correction in needed. To determine the threshold 
value of 0.1, we applied the algorithm 15 times in a row to the 
same misaligned surface and examined the lowest achievable 
value. We found, that 0.1 is the lowest deviation that can be 
achieved with this algorithm and can be associated with the 
actual misalignment of the camera system. Optical alignment 
values less below 0.1 are often due to local artefacts in the 
speckle pattern rather than actual misalignment. In contrast, 
the x-direction is off-centre with xmax(�(

∑

y B)) = −1.124  
and therefore, the viewing directions is not perfectly vertical 
to the specimen surface. The new rotation angles are calcu-
lated according to the following formulas:

Fig. 6  (a) speckle pattern image, (b) Laplacian-transformed image, 
(c) its distribution and (d) depth-of-field

Fig. 7  Adjusting the alignment of the microscope by evaluating the 
focus point



Experimental Mechanics 

These formulas result from a parameter study performed by 
the robot, where the rotation angles �cs, �cs are varied. The 
results showed that there is a linear relationship between the 
angles and the optical algorithm output xmax(�(

∑

y B)) and 
ymax(�(

∑

x B)) , respectively. However, this linear relation-
ship is highly dependent on the chosen magnification of the 
microscope. For the chosen magnification of 1.6x, we identi-
fied  Cx=Cy=0.5 to be the best for our setup.

If a misalignment is detected, the correction procedure is 
repeated in a loop until the 0.1 threshold, explained above, 
is reached. Speckle pattern artefacts are also visible in the 
focus heatmap, but the algorithm is not sensitive to them. 
Furthermore, with the help of this algorithm we found out 
that the microscope's viewing direction is not exactly con-
centric with the lens, but shifted by 5°. If misalignment is 
detected by the optical algorithm, it usually takes 1-3 itera-
tions of the presented method to correct the alignment. The 
whole procedure can take up to 30 s.

Results

For evaluating the quality of the microscopic DIC data, 
we analyse exemplarily the displacements and von Mises 
strains of a fatigue crack with a total length of a = 28 mm 
and compare them with finite element (FE) simulations as 
shown in Fig. 8(a). All measuring points are located about 
2 mm above the fatigue crack and have a horizontal distance 
of 1 mm from each other. The specified vertical distance 
from the fatigue crack was chosen to reduce the impacts of 
local effects such as crack branching or deflection, which 
often lead to local strain gradients near the crack edges. This 
means that the determined strains of the measuring points 
should mainly result from the loading conditions and the 
elasticity properties of the material.

In order to receive reference strains, we perform a fatigue 
crack FE simulation with exactly the same boundary and 
loading conditions as applied in the experiment (see "Test 
Procedure"). A detailed description of the finite element 
model, meshing strategies, material model and definition 
of boundary conditions is given in [41]. In summary, we per-
formed a 3D crack propagation FE simulation of an MT160 
model based on the releasing-constraint crack propagation 
algorithm. The material model is based on bilinear iso-
tropic hardening to approximate the material behaviour of 
AA2024-T3. Extracting the nodal strain solution from the 
surface serves as reference for assessing the quality of the 
microscopic DIC measurement performed.

(4)�cs = Cx ∗ xmax(�(
∑

y

B))

(5)�cs = Cy ∗ ymax(�(
∑

x

B))

Figure 8(b) shows the obtained strains from both methods 
as a function  of the load. In general, the curves obtained 
from the DIC data show good agreement with the strain solu-
tion from the FE simulation. P0 shows the lowest DIC strain 
gradient while P3 is characterized by the largest increase-
ment of strain accumulation during a loading or crack open-
ing, respectively, sequence. However, it is noticeable that 
especially in the beginning at low loads from 1.5 kN to 5 kN 
the results based on DIC differs from the FE data. All curves 
show higher values than it is expected from FE results. The 
largest difference between FE solution and strains obtained 
from DIC is given by P3. The point P3 is located exactly 
above the crack tip position. Furthermore, significant dif-
ferences between FE and DIC can be observed at P4 and 
P5. While for medium loads (from 5 kN to 10 kN) both 
points match very well, the strains based on DIC increase 
more steeply at loads larger than 10 kN. From "Conclusion" 
and Fig. 4, respectively, we know that displacements of a 
certain point are measured multiple times due to the 70% 
overlap of the images taken in a checkerboard pattern. In 
detail, displacements of points located at y = 0 mm can be 
determined from eight different images. This leads to a high 
redundancy of the measured DIC data. Figure 8c illustrates 
the statistical evaluation of the measured von Mises strain 
each point but from eight different images. All images are 
taken at minimum load of 1.5kN. By studying Fig. 8(c), we 
can identify that the median values of strains near to the 
crack tip position tends to be approximately 1.5 times larger 
than at larger distances behind or in front of the crack tip. 
The strains determined from points behind the crack tip (P0 

Fig. 8  (a) definition of measurement points in a full-field strain field 
containing a fatigue crack of a length of a=28mm, (b) analysis of the 
point strain in dependency of the load and (c) analysis of measuring 
the same point in eight different DIC images
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and P1) have a low inherent scatter. In fact, at both points the 
measured strain values differ in a range from max. +0.03% 
to min. -0.01% related to the respective median. The points 
near the crack tip have the largest scatter. Especially, the 
points P2 and P4 have strain ranges from +0.06% to -0.03%. 
In summary, the results show that the strains for all images 
have a scatter lower than 0.1%.

Discussion

The discussion aims to separate the individual effects that 
are responsible for the characteristics shown in the "Result". 
Here, we distinguish between static and dynamic scattering 
effects. Static scattering mostly results from inherent influ-
ences of the DIC setup on the results. As dynamic scatter-
ing effects we declare all scattering causes that are directly 
related to the movement of the robot, e.g. out-of-plane move-
ment. Furthermore, we choose the von Mises strain as scat-
tering indicator since all components of the strain tensor 
are included.

Static DIC Scattering

The static DIC analysis reveals the scatter of a DIC evalu-
ation caused by inherent imaging errors and environmental 
conditions like the CMOS sensor noise, illumination, tem-
perature convection, air movement or vibrations. For this 
purpose, several images with identical setup are taken under 
the same conditions at zero load. The DIC evaluation is per-
formed with a facet size of 40 x 40 pixels (0.063 mm x 0.063 
mm) and a facet distance of 30 pixels (0.047 mm). Each 
facet encloses at least two significant features of the black 
and white pattern. It is important that there is no movement 
between the images in this analysis. Therefore, errors due 
to out-of-plane motion are negligible. Figure 9(a) shows the 
von Mises strain field based on two images taken.

Qualitatively, the von Mises strain field in the centre 
region is characterized by a low inherent scatter in a range 
from εv 0.01% to 0.05%. This scatter can be associated to 
environmental reasons, such as flickering in exposure, sen-
sor scatter or very small vibrations of the testing system. 
Nevertheless, the strains at the edges of the strain field 
plot are about twice as large as in the centre. Furthermore, 
local artefacts are visible in the lower right corner of the 
evaluated field (red spots with von Mises strain > 0.20%). 
Those artefacts can be related to bad pattern quality. That 
means pattern regions with a low number of features, e.g. 
in case of too big pattern points or a small number of 
single pattern points, lead to miscalculations of the cor-
responding displacements. Interestingly, there is another 
artefact located in the centre region at x, y = [-0.7, -1.4] 

which also results from bad pattern quality. Comparing the 
maximum strain values of artefacts in both locations, we 
observe that the strain values of the artefacts located near 
the edges are twice as large. This effect is associated to 
the lens distortion of the microscope. The distortion leads 
to a stronger scatter up to a maximum von Mises strain of 
0.15%, but amplifies the effect of local pattern artefacts. 
The distortions lead to a loss of image sharpness which 
makes it difficult to identify the features needed for the 
DIC evaluation.

Therefore, we focus our evaluations on the centre of 
the image, which is not as affected by lens distortion. 
The von Mises strain values of path A-A (see Fig. 9(b)) 
reveal that the focused area extents from x = -2.5 mm to 
x = +2.5 mm. On path B-B (see Fig. 9(c)), we decide on a 
focused region between y = -2 mm and y = +2 mm. Based 
on those values, the focus ellipse is defined by:

Within this ellipse, the inherent scattering of the DIC 
evaluation can be considered lower than the median value 
of the total strain field. This means that we expect scatter-
ing von Mises strains up to maximum of 0.05 %.

For statistical reasons, ten of those DIC evaluations, 
described above, have been performed and analysed 
regarding their scatter. The results in Fig. 10, show a con-
stant median of 0.43 % von Mises strain along all DIC 
evaluations performed. Only the maximum value differs 
slightly from 0.11 % to 0.13 %.

Dynamic DIC Scattering

DIC errors in a 2D setup with a moveable camera are mainly 
caused by misalignments, i.e. out-of-plane motions, to the 
position of the reference image. Here, the repositioning accu-
racy of the robot is the most important factor. The deviation 

(6)x2

2.5mm
+

y2

2.0mm
= 1

Fig. 9  (a) von Mises strain field at zero load of a static DIC evalua-
tion without motion between image capture and the abolute strain val-
ues of a (b) horizontal and (c) vertical path
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between the position of the reference image and the position 
of the repositioning image is described as follows:

Here xref, yref , zref are coordinates of the reference image 
and xrep, yrep, zrep are the position after repositioning in the 
DIC measurement phase. Next to the translational degrees 
of freedom, misalignments can occur in the rotational axis, 
too. Here, we define an equivalent angle of rotation that is 
described as follows:

In this formula, AR, BR and CR define the rotational angles 
of the corresponding translational axis (x,y and z). In order 
to assess the influence of the repositioning of the robot, we 
conducted the following experiment: After surface align-
ment and automatic focusing (using the algorithms in "Test 
Procedure") a reference image is taken. Then the robot is 
moved 20 mm in x-direction, followed by a reposition-
ing process to the origin position. Here, the repositioning 
accuracy and equivalent angle of rotation are determined 
by the internal robot position sensors. In our experiment, 
we approached the same position for different runs and fig-
ured out that the measured position is reproduced within a 
range of +/- 0.01 mm. In total, the repositioning runs were 
repeated ten times and each captured image was related to 
the reference image.

Figure 11 shows the von Mises strain field after two repo-
sitioning runs. We used the same image position as in the 
static analysis in Fig. 9(a). The repositioning accuracies are 
xabs = 0.055mm and �abs = 0.0135◦ , as can been seen from 
Fig. 12 (number of DIC evaluation = 2).

In this example, the overall scatter in Fig. 11 increases 
significantly especially at the corners of the image. But 
again, we distinguish between the distorted area near the 
corners and the focused area within the defined focus ellipse. 
Figure 11 shows that the effect of lens distortions are greater 

(7)xabs =

√
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)2
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(
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(
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)2
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AR,rep − AR,ref
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)2
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compared to Fig. 9(a). Compared to the static analysis, the 
local artefacts in lower right area are even more pronounced. 
All those effects result from an additional loss of image 
sharpness which can be associated with out-of-plane move-
ments of the robot during the repositioning process.

Figure 12 shows a correlation between the reposition-
ing accuracy xabs and the DIC scatter. In general, the robot 
achieves the desired position with an accuracy less than 
0.1 mm in vector space. All repositioning experiments 
with a repositioning accuracy lower than 0.035 mm have 
a median von Mises strain of about 0.057%. In contrast, 

Fig. 10  Analysis of the static DIC scatter of ten different DIC evalua-
tions without robot movement

Fig. 11  Von Mises strain field of a DIC evaluation after two reposi-
tioning runs with x

a�s
= 0.055mm and �

���
= 0.0135◦

Fig. 12  Dynamic DIC scatter for 10 repositioning experiments: (a) 
the repositioning accuracy xabs, (b) the repositioning angle accuracy 
Φabs, (c) von Mises strain statistics of the DIC evaluation
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all other runs have a repositioning accuracy of more 
than 0.035 mm. Here, the medians in von Mises strain 
are mainly in a range between 0.079% and 0.082%. To 
reduce the scatter during the fatigue crack growth test, we 
have set 0.06 mm as the limit for the repositioning process 
explained in "Test Procedure".

Additionally, Fig. 12 reveals that the angle of rotation 
has a smaller influence on the scatter. The DIC evalua-
tion #8 has a large misorientation of 0.0182°, but both the 
maximum and the median of the von Mises strain are still 
within the range of all other runs. Nevertheless, the whole 
system guarantees a very high DIC evaluation quality with 
an average scatter of less than 0.085 % von Mises strain. 
Especially small elastic strains can be captured in great 
detail by the system. The scatter analysis also explains 
the plateau like behaviour at small loads (from 1.5kN to 
5kN) from Fig. 8(b). Here, the scatter becomes dominant 
and strains smaller than 0.085% can no longer be revealed. 
We also found that the measured strains at points P4 and 
P5 increase more steeply at larger loads. This effect can 
be explained by the lens distortion of the microscope. At 
larger loads, the speckle points are shifted into the distorted 
region, resulting in a local amplification of the scatter.

Apart from out-of-plane motion, out-of-plane rotation is 
one of the main challenges in non-fixed 2D DIC system set-
ups, because it leads to spurious gradients in the computed 
DIC displacements. This systematic error affects the applica-
tion of path-independent integrals such as the J and interaction 
integral and should therefore be avoided. Figure 13(a) illus-
trates displacements ux along the path A-A in Fig. 9. Except 
for #8, all curves have the same gradient. No gradient is vis-
ible within the focus ellipse any more, but only outside in the 
distorted areas. The lens distortion supports the effect of small 
misalignments. Therefore, we strongly recommend to apply 
further evaluation only within the focus ellipsis. Neverthe-
less, #8 shows a large gradient in x direction. Sometimes the 
robot is not able to align the microscope accurate enough, 

which leads to this kind of systematic errors. Therefore, we 
defined the maximum misorientation angle to 0.015°. If this 
angle is exceeded by the robot, another repositioning attempt 
is performed. Furthermore, the analysis of gradients in verti-
cal direction (path B-B in Fig. 9) reveals that the system is not 
sensitive to deviations in this direction.

Conclusion

A robot is a great extension in classical mechanical experi-
ments for automated high resolution 2D DIC analysis. 
Because of the high reposition accuracy, the von Mises 
strain fields have spurious strains with less than 0.085 %.  
That makes it possible to investigate strains (greater than 
0.1%) close to fatigue cracks to reveal local mechanisms  
such as crack closure, crack branching or deflection. The 
ability to obtain both time-resolved data and data from any 
crack length enables investigations of fatigue cracks at a 
whole new level. In addition to conventional methods such 
as post-mortem fracture surface analysis, this method prom-
ises high potential for getting a better understanding about 
cause-and-effect relationships of fatigue crack mechanics. 
Furthermore, the ability to autonomously generate an enor-
mous amount of high-quality experimental data is a key tech-
nology for data-driven methods in experimental mechanics.

In addition, the following conclusion can be made:

1. Robotic arms are able to guide sensitive 2D microscope 
systems for high-resolution DIC measurements due to their 
high positioning accuracy of less than 0.1 mm. In addition, 
multiple repositioning to the desired location enables an 
increase in accuracy up to 0.048 mm in vector space.

2. Due to their seven degrees of freedom in motion, robotic 
arms in combination with optical or tactile automated 
methods can compensate systematic errors in the alignment 
of the camera to the specimen surface to prevent erroneous 
displacement or strain mapping in the DIC measurement.

3. Using a microscope in flexible 2D DIC setups is a chal-
lenge to retrieve low DIC scattering. The main problem 
is the lens distortion which is even more pronounced by 
out-of-plane motion caused by misalignments.

4. In the focused centre region, we can achieve scatter of 
less than 0.085% von Mises strain. Furthermore, no dis-
placement gradient has been identified in this area which 
recommends it as basis for further analysis.

5. The robot supported DIC system generates up to 8000 
high-quality local DIC images that enables the applica-
tion of digital evaluation algorithms. Redundant infor-
mation create confidence in the results as all revealed 
effects are comprehensible. This increases the informa-
tion content of a single fatigue crack growth test and 
accelerates knowledge generation.Fig. 13  Analysis of the impact of misorientation on DIC displacements
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Nomenclature �cs : Coordinate system rotation angle – y axis [°]; a 
: Crack length [mm]; Δa: Crack length increment [mm]; Δastep : Crack 
length increment for load level image capture [mm]; Δacycle: Crack 
length increment for cycle image capture [mm]; AR : Rotation angle 
around x-axis [°]; AR,ref : Rotation angle around x-axis of the reference 
image [°]; AR,rep : Rotation angle around x-axis of the reposition image 
[°]; �cs : Coordinate system rotation angle – x axis [°]; B : Image sharp-
ness indicator [-]; Bb : Image sharpness boundary [-]; BR : Rotation 
angle around y-axis [°]; BR,ref : Rotation angle around y-axis of the 
reference image [°]; BR,rep : Rotation angle around y-axis of the reposi-
tion image [°]; CR: Rotation angle around z-axis [°]; CR,ref : Rotation 
angle around z-axis of the reference image [°]; CR,rep : Rotation angle 
around z-axis of the reposition image [°]; df : Focus distance [mm]; 
�V: Von Mises strain [%]; fcycle : Test frequency [Hz]; f  : Surface 
touching difference distance (horizontal) [mm]; F : Force [kN]; Fmax
: Maximum force [kN]; Fmin : Minimum force [kN]; g : Surface touch-
ing difference distance (vertical) [mm]; IDC−Pot : Current for poten-
tial drop measurement [A]; R : Load ratio [-]; UDC−Pot : Voltage for 
potential drop measurement [V]; x : x-coordinate [mm]; xabs : Repo-
sition accuracy [mm]; xct : x-coordinate of the crack tip [mm]; xref 
: x-coordinate of the reference image [mm]; xrep : x-coordinate of the 
reposition image [mm]; y : y-coordinate [mm]; yct : y-coordinate of the 
crack tip [mm]; yref : y-coordinate of the reference image [mm]; yrep 
: y-coordinate of the reposition image [mm]; z : z-coordinate [mm]; 
zref : z-coordinate of the reference image [mm]; zrep : z-coordinate of 
the reposition image [mm]; �abs : Reposition misorientation angle [°]
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