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Second reader: Prof. Dr. Stefan Kettemann



Abstract

To adapt to the increasing share of renewable producers in power systems, the
energy dispatch has to be redesigned to consider the intermittent nature of renew-
able energy sources and its predictability. A stochastic dispatch model was tested for
optimizing the energy dispatch in the day-ahead market, which implements expected
balancing costs using ensemble forecasts in a two-stage stochastic market clearing. It
was compared to a conventional dispatch model, which bases its day-ahead market
clearing on a deterministic forecast. The impact of the level and spatial distribution
of generator flexibility and of link capacities was analyzed for both models.

The results of the thesis show that the stochastic dispatch model improves the over-
all market performance. It decreases total system costs from 2.72AC/MWh in the con-
ventional dispatch model to 2.38AC/MWh equalling yearly total savings of 47.5 MioAC.
It decreases curtailment slightly by 4000 MWh from 184.4× 105 to 184.0× 105 MWh.
It significantly improves shedding by reducing the total amount of shedded load by
317000 MWh from 318034 MWh in the conventional model to 1448 MWh with a total
load of ca. 140× 106MWh.

Increased generator flexibility level reduces the total amount of shedded load sig-
nificantly for both models, where it is ideal to locate the generator with the highest
generator flexibility at the bus with the highest load. Increasing link capacity of links
connected from a bus with a high share of wind power to a bus with a high load,
decreases overall curtailment. This results in increased system costs for the conven-
tional model due to increased shedding as the deterministic forecast is less accurate
in predicting sudden downward ramps in wind power, which trigger shedding. In the
stochastic model total system costs are decreased as it utilizes successfully more wind
energy with marginal costs of 0AC/MWh using the ensemble forecast.
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Nomenclature

Sets

i ∈ I Set of sectors

I ∈ L Set of links

n ∈ N Set of buses

s ∈ S Set of carrier types

Parameters

F I Nominal link capacity

Gn,s Nominal generator capacity

G̃n,s,t Availability (forecasted) of generator

G̃obs
n,s,t Availability (observed) of generator

C+
n,s Cost of balancing dispatch deficit

C−
n,s Cost of balancing dispatch surplus

Cshed
i Cost of load shedding

Kn,I Incidence Matrix of network topology

Ln,i,t Load at bus n in sector i at time t

On,s Marginal price

Wt Snapshot weighting

Decision Variables

fI,t Link capacity

g∗n,s,t Optimal day-ahead dispatch

g+n,s,t,ω Balancing dispatch deficit

g+n,s,t,ω Balancing dispatch surplus

gcurtn,s,t,ω Curtailed generation

gn,s,t Day-ahead dispatch

lshedn,s,t,ω Shedded load

Constants

CB
conv. Costs conv. balancing market

CB
stoch. Costs stoch. balancing market

Cconv. Total costs conventional model

CD
conv. Costs conv. day-ahead market

CD
stoch. Costs stoch. day-ahead market

Cstoch. Total costs stochastic model
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1 Introduction

One of the key issue of today’s world is to combat climate change in an efficient and timely
manner before the threshold of a global warming of 1.5°C is reached, which will result in
irreversible consequences [1].

The global energy sector as the largest emitter of CO2 is one of the main drivers of
the climate crisis [2]. According to the Net Zero Emissions by 2050 (NZE) scenario of the
International Energy Agency (IEA) the installed share of renewable energy has to rise from
28% in 2021 to over 60% in 2030 and eventually reach nearly 90% in 2050 [3]. New policies,
technologies and operational methods have to be developed to sustainably accommodate the
globally increasing electricity demand. Hence, the energy transition - away from conventional
fossil fuel power plants towards renewable energy sources - has to be of utmost priority and
yet presents a major challenge.

A rapidly growing share of renewable energy sources in the electricity market leads to
elevated penetration levels of renewable producers with a very volatile energy input in the
electricity market. Here, a significant contributor are wind power plants. As an already ma-
ture technology it has demonstrated high competitiveness with conventional power plants [4].

Due to the weather dependent nature of renewable energy sources the uncertainty of the
system increases. Their energy production is variable on all time scales from milliseconds
to months and years [5]. For stochastic fluctuations on time scales below 15 minutes ancil-
lary balancing methods (e.g. automatic- and manual frequency restoration reserves (aFRR,
mFFR) [6]) and new forms of momentary reserves (e.g. grid-forming inverters [7]) have to
be implemented to maintain a stable power grid.
However, the focus of this thesis is on variations on larger time scales of hours, days to
months. Here, a promising approach is to reform the electricity market design and adapt
new dispatch methods. It is essential for wind power and other volatile renewable energy
sources to replace more and more conventional energy sources in a cost-efficient manner
while maintaining the overall stability of the energy system [8].

On the supply side, solutions to account for the increased uncertainty in generation in-
clude an international expansion of the transmission grid [9] [10]. This removes system
constraints and allows for spatial balancing of fluctuations by stochastic producers. Further,
temporal balancing can be achieved by integrating highly efficient storage technologies [9].
Another approach is to pool different energy sources into virtual power plants and increase
the overall resilience based on their complementary nature [11].

On the demand side, e.g., sector-coupling meaning the connecting of energy consuming
sectors (like heating, transport, industry) with the energy producing sector has been pro-
posed to increase flexibility. Especially significant flexibility contributions were found from
technologies like battery electric vehicles (BEV), power-to-gas units (P2G) and long-term
thermal energy storage (LTES) [12].

4



This thesis will focus on implementing and analyzing a market scheme proposed by J.
M. Morales [13], which explicitly incorporates the uncertainty in short-term forecasting of
renewable energy sources using probabilistic ensemble forecasting via a two-stage stochastic
programming market clearing. It is based on a simplified energy market, which consists of
a day-ahead market, where producers determine the electricity dispatch one day prior to
delivery, and a balancing procedure to restore balance due to deviations in predicted and
actual generations by wind power plants.

Conventionally, the day-ahead market and the balancing measures are considered inde-
pendently in a process called separate bidding. The day-ahead market is cleared using a
least-merit order based on a deterministic forecast. Hence, as stochastic producers like a
wind park enters the market with very low marginal costs of usually zero, they are being
dispatched first. But these forecasts are inherently inaccurate when describing a stochastic
system and occurring forecasting errors have to be compensated with balancing energy for
an increased price [13].

Morales’ two-stage stochastic market clearing takes the expected costs occurring in bal-
ancing into account using probabilistic weather forecasts in a process called optimal bidding.
This allows to endogenously determine the amount of reserve capacities needed for balanc-
ing [13]. In the first stage - the here-and-now decisions - the day-ahead dispatch schedule is
determined, while in the second stage - the wait-and-see decisions - the real time operation
of the power system is considered. Hence, it displays the interaction between the day-ahead
market and the balancing process and determines the optimal energy dispatch by anticipat-
ing the balancing operations using network and grid constraints and the expected balancing
costs to maximize market efficiency [14].

The objective of this thesis is to investigate I) how the proposed stochastic market-
clearing procedure compares to the conventional method of market-clearing using determin-
istic forecast in terms of efficiency and cost-effectiveness. Furthermore, it II) examines how
factors such as provided generator flexibility and link capacity contribute to the performance
of the model. The findings of the thesis can improve our understanding of how to design a
more efficient and sustainable energy market that incorporates the uncertainty in short-term
wind power forecasts, which is essential for achieving the transition to a low-carbon future.
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2 Theory

2.1 Probabilistic Forecasting

The atmosphere is a chaotic system. That means its future state cannot be described with
unlimited accuracy as its evolution is highly sensitive to its initial conditions [15][16]. Hence,
all forecasts are inherently uncertain. There are two main sources of uncertainty: 1) the as-
sumptions underlying the deterministic physical laws describing the atmosphere and 2) the
uncertainty in the configuration of the initial state. In order to display the uncertainty in
forecasts, probabilistic forecasts have been developed, which consider this uncertainty by ap-
plying the physical laws to a probability distribution of the initial state [15]. The distribution
represents a full range of possible initial states, and hence its result reflects a range of possible
outcomes. This makes it a more complete representation than a single deterministic forecast.

In Stochastic Dynamic Forecasting this probability distribution moves through the phase
space - a geometrical representation of all hypothetically possible states - following the laws
of fluid dynamics. As time progresses, the initial distribution becomes more distorted and
dispersed for longer projections. This is equivalent to higher uncertainty in forecasts further
into the future. However, the equations describing this evolution are too large to be solved
directly due to the dimensionality of phase space when considering realistic problems with
an actual forecasting interest [15]. A solution is offered by ensemble forecasts. Here, only
a finite set of representative members are picked, where each member represents one initial
state configuration. Now, the movement of the probability distribution is approximated via
the collective trajectories of the ensemble members through phase space [15]. There are
different ways of efficiently selecting initial members. The ensemble forecasts used in this
thesis are from the European Centre for Medium-Range Weather Forecasts (ECMWF) [17].
They are generated using singular vectors. They identify the direction of uncertainty in the
initial state, that results in the largest uncertainty of the model state at a time t in the
future [18]. Ensemble members are then defined using linear combinations of the identified
patterns, with their magnitude corresponding to the level of analysis uncertainty [15].

2.2 Optimal Power Flow Model

This thesis is based on the Optimal Power Flow (OPF) Model under DC-Approximation
(DC-OPF), an important approach for electricity system modelling. It is a simplification
of the AC-OPF, which is a non-linear, non-convex optimization problem [19]. Its goal is to
minimize an objective function - the cost function - while considering physical, operational
and technical constraints of the network. This includes among others Ohm’s - and Kirchhoff’s
laws, operational limits of generators, capacity limits of links and voltage levels [20].
Mathematically, it can be expressed as follows [19]:

min
y

f(x, y)

s.t. cEi (x, y) = 0 i = 1, ..., n

cIj (x, y) ≥ 0 j = 1, ...,m

(2-1)
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Here, x denotes the grid parameter - and y the optimization variable vector. They are
the arguments for f(x, y) - the objective function, which has to be minimized, while being
subject to n equality constraints cEi ∈ CE and m inequality constraints cIj ∈ CI .
The AC-OPF power flow equation considers both active and reactive power flow [20][21].
Consider a set of buses N , which are connected by transmission lines with the index I ∈ L.
Then the complex power flow Sij from bus i to bus j can be decomposed into its active (pij)
and reactive components (qij). Following the derivation of [22] they can be expressed in case
of the simple power flow model as:

pij =
1

r2ij + x2
ij

[rij(v
2
i − vivjcos(δij)) + xij(vivjsin(δij))] (2-2)

qij =
1

x2
ij + x2

ij

[rij(v
2
i − vivjcos(δij)) + xij(vivjsin(δij))] (2-3)

where rij is the resistance of each transmission line, xij the line reactance, and vi and δj
the voltage magnitude and voltage angle at bus i, respectively. While the full AC power
flow equations is more accurate, it is also more likely to diverge and can be up to 60 times
slower. Hence, the DC-OPF makes the following assumption to consider a linearized power
flow only [21][23]:

• The resistance of each line rij is negligible relative to line reactance xij, and hence can
be assumed to be rij ≈ 0.

• The bus voltage magnitudes are approximated by one per unit such that vi ≈ 1.

• The voltage angle difference of each branch δij << 1, i.e. cos(δij) ≈ 1 and sin(δij) ≈ δij.

Applying these assumptions results in this simplified final form:

pij ≈
δij
xij

= fI (2-4)

qij ≈ 0 (2-5)

The physicality of the flows described in equation 2-4 is ensured by implementing the Kirch-
hoff’s current law also called node-balance equation, which states that the power reaching
each bus must equal the power withdrawn from the bus at all time steps t. Using the
incidence matrix K, which is defined as follows:

Ki,j =


1, if transmission link I begins at node i

−1, if transmission link I ends at node i

0, otherwise

(2-6)

and a reactance value of xij, the flows can be expressed per time step as:

fI =
∑
i,j

kijδij
x,j

(2-7)
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Implementing Kirchhoff’s current law results in the following expression for pij, the net active
power being the difference between consumption and generation at bus i [24].

pij =
∑
I

kijfI (2-8)

Together with the remaining constraints, it leaves a linear objective function, which can be
solved very efficiently as a linear programming problem [22].

2.3 Energy Dispatch Models

An energy dispatch model is used to manage the operation schedule of all generators within
a power system network. Considering factors like short-term weather forecasts and cost of
electricity, it optimizes the allocation of available energy sources to meet the demand as
efficiently as possible meaning while minimizing the costs of the electricity market.

In this thesis costs can occur at two stages in the electricity market. First, in the day-
ahead market, which is cleared one day prior to delivery (d− 1) and determines a typically
hourly dispatch schedule. Second, in the balancing process, where any imbalances between
day-ahead schedule and actual energy production are settled in real-time [13].

This thesis compares two energy dispatch models, the conventional dispatch model and
the stochastic dispatch model, which are both formulated as a DC-OPF.

2.3.1 Conventional Dispatch Model

In the conventional dispatch model the day-ahead and balancing are settled separately in a
sequential market bidding process. Consider a network consisting of a set of buses N , which
are connected by links denoted as I ∈ L. The time-dependent load per bus n in sector i
(i ∈ I = {Industry; Commerce, Trade, Services (CTS); Domestic}) at time t is denoted
as Ln,i,t. Without loss of generality, it is assumed that the demand at each bus is known
with certainty. The load can be covered by the electricity generated by generators based on
the carrier s ∈ S with S = {Onshore wind park (WP), Offshore WP, OCGT}. Here, gn,s,t
denotes the electricity covered by generator with carrier type s at bus n at time t in the
day-ahead schedule. Each generator is assigned a marginal cost On,s, which is assumed to
be time-independent. Costs related to investments are not considered as it is assumed that
all necessary investments have been carried out already and no expansion planning is being
done. Generation is limited by the nominal power Gn,s as well as the forecasted availability of
the power source G̃n,s,t. For a stochastic producer this depends on meteorological conditions
(here: wind speed), whereas for conventional producer it is a constant.
Now, the electricity needs to be distributed from the buses, where it is generated, to the
buses, where it is consumed. This is done via transmission links, which each are assigned a
nominal capacity F I . Here, no costs related to investment or transmission losses are assumed.
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Based on this, the problem of minimising day-ahead costs CD
conv. can be mathematically

formulated as follows:

CD
conv. = min

gn,s,t

[∑
n

∑
s

∑
t

(WtOn,sgn,s,t)

]
(2-9)

Equation 2-9 is used throughout the thesis as the cost function of the conventional dispatch
model. The electricity dispatch gn,s,t is the decision variable. Wt are optional snapshot
weightings, where each snapshot represents one time step. This can be used to represent the
probability of different load/weather conditions [25]. Additionally, the incidence matrix Kn,I

describing the topology of the network, the load Ln,i,t and the forecasted availability G̃n,s,t

are entered as exogenous data.

The cost function is subject to several constraints:

1. Nodal balancing: At each node n during every time step t, the generated electricity
has to be equal to the load.∑

s

gn,s,t −
∑
I

Kn,IfI,t − Ln,i,t = 0 ,∀n, s, t, I (2-10)

2. Upper bound: Generation cannot exceed available nominal power.

gn,s,t − G̃n,s,t ·Gn,s ≤ 0 ,∀n, s, t (2-11)

3. Declaration of non-negative variables.

0 ≤ gn,s,t ,∀n, s, t (2-12)

0 ≤ |fI,t| ≤ F I ,∀n, s, t (2-13)

The generators are dispatched in a least-cost merit-order principle following the concept of a
network-constrained auction. As stochastic producers have very low marginal costs of mostly
0, they will usually be dispatched first.
After the optimal day-ahead schedule g∗n,s,t has been found as the solution of the optimization
problem, it is used as an input to balance any deviations between the schedule g∗n,s,t and the

realization of the energy production G̃obs
n,s,t (in comparison to the forecasted availability G̃n,s,t).

In case of a deviation the following measures can be taken:

• Increase or decrease electricity generation of flexible producers by g+n,s,t or g
−
n,s,t bounded

by the available flexibility η±n,s in case of an deficit or excess of (wind) production,
respectively. Each process is assigned a corresponding cost (C+

n,s, C
−
n,s). In case the

wind power is lower than forecasted and OCGT generators have to increase generation,
they get paid C+

n,s per MWh, which is higher than the day-ahead price by a defined cost
premium. In case the wind power is higher than forecast, the OCGT generators have
to decrease the previously scheduled generation. In this scenario, the OCGT provider
pays back the money they received in the day-ahead market reduced by the defined
cost premium and C−

n,s enters the cost function with a negative sign.
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• Shedding part lshedn,t,i of the load at a cost of Cshed
i depending on the sector i. This is

usually the most expensive measure.

Further, a part gcurtn,s,t of the wind production can be curtailed but as this is not connected
to costs, it is not a decision variable of the optimization problem. Hence, the costs CB

conv.

associated with the balancing process can be summarized as follows.

min
g+,g−,lshed

∑
n,s,t

(g+n,s,tC
+
n,s − g−n,s,tC

−
n,s) +

∑
n,t,i

(lshedn,t,iC
shed
i ) (2-14)

s.t. ∑
s

(g+n,s,t − g−n,s,t) +
∑
i

lshedn,t,i − (Ln,i,t − g∗n,s,t) = 0, ∀n, s, t, il (2-15)

(g∗n,s,t + g+n,s,t − g−n,s,t)− (G̃n,s,tGn,s) ≤ 0, ∀n, s, t (2-16)

g∗n,s,t − g−n,s,t ≤ 0, ∀n, s, t (2-17)

g∗n,s,t + g+n,s,t ≤ G̃obs
n,s,tGn,s, ∀n, s, t (2-18)

g−n,s,t ≤ Gn,sη
+
n,s, ∀n, s, t (2-19)

g+n,s,t ≤ Gn,sη
−
n,s, ∀n, s, t (2-20)

Equation 2-15 ensures that the redispatching of generators and loads are done such that it
exactly compensates the deviation between day-ahead schedule and realization. Equation
2-17 defines that in order to provide negative reserve the generator needs to run at least on
that level but neglects a minimum load requirement. Similarly, equation 2-18 defines that
a generator providing positive reserves does not surpass its available power. Equation 2-19
and 2-20 ensure that the provided balancing does not surpass the flexibility of the generator.
Additionally, the non-negative condition (Eq. 2-12, Eq. 2-13) still applies.

Note, that the optimal day-ahead schedule g∗n,s,t is used as an input parameter for CB
conv.

and thus, does not capture any dependency. The overall cost for the conventional system is
given by:

Cconv. = CD
conv. + CB

conv. (2-21)

This derivation followed similar formulations in [13], [24] and [26].

2.3.2 Stochastic Dispatch Model

The stochastic dispatch model is based on probabilistic forecasting to capture the interaction
between day-ahead market and balancing. Following the formulation in [13], a set of Ω
scenarios each based on a member of an ensemble forecast is assumed. Every member ω ∈ Ω
is associated with forecasted available wind power G̃n,s,t,ω with s ∈ {onshore, offshore} and a
probability of occurrence πω. Hence, πω ≥ 0, ∀ω ∈ Ω and

∑
ω πω = 1. Now, the expected

balancing costs E[CB] is immediately considered in the cost function CD
stoch.:

min
g,g+,g−,lshed

∑
n,s,t

(WtOn,sgn,s,t) + E

[ ∑
n,s,t,ω

(g+n,s,t,ωC
+
n,s − g−n,s,t,ωC

−
n,s) +

∑
n,t,i,ω

(lshedn,i,t,ωC
shed
i )

]
(2-22)
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s.t.∑
n,s,t,ω

(gn,s,t + g+n,s,t,ω − g−n,s,t,ω) +
∑
n,i,t,ω

lshedn,t,i,ω − (Ln,i,t − g∗n,s,t)−
∑
I

Kn,IfI = 0, ∀n, s, t, ω ∈ Ω

(2-23)

0 ≤ gn,s,t, ∀n, s, t (2-24)

0 ≤ |fI,t| ≤ F I,t, ∀I, t (2-25)

(g∗n,s,t + g+n,s,t,ω − g−n,s,t,ω)− (G̃n,s,tGn,s) ≤ 0, ∀n, s, t, ω ∈ Ω (2-26)

g∗n,s,t − g−n,s,t,ω ≤ 0, ∀n, s, t, ω ∈ Ω (2-27)

g∗n,s,t + g+n,s,t,ω ≥ G̃n,s,tGn,s,t, ∀n, s, t, ω ∈ Ω (2-28)

g−n,s,t,ω ≤ Gn,sη
+
n,s, ∀n, s, t (2-29)

g+n,s,t,ω ≤ Gn,sη
−
n,s, ∀n, s, t (2-30)

Note, that equation 2-23 ensures that the nodal balance equation is fulfilled, conditions 2-24
to 2-25 ensure that the day-ahead schedule is feasible, while 2-23 to 2-28 model the expected
balancing action and ensure its feasibility. Further, 2-29 and 2-30 ensures that balancing is
bounded by the available flexibility. Hence, this maximizes overall market efficiency. After
determining the optimal day-ahead schedule g∗n,s,t, again balancing is calculated following the
description in 2-14 to 2-20. As in the conventional model the costs of both markets combined
make up total system costs for the stochastic dispatch model:

Cstoch. = CD
stoch. + CB

stoch. (2-31)
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3 Methodology

3.1 Network Design

A visualization of the implemented power system network can be found in Fig. 1. It is a
fit to purpose power network of northern Germany with main buses in Büttel, Hamburg,
Wilhelmshaven and Ems, an area with typically very high penetration of wind energy in
Germany [27]. The network is connected to the Ruhrgebiet, a highly industrialized region
with high demand and high conventional power production. Only two of the German off-
shore wind park clusters (Hohe See and Sandbank) have been selected and are considered in
the network. Additionally, the wind park Nordergründe was included in the network. The
offshore wind parks are connected to the closest bus (Hohe See and Ems, Sandbank and
Büttel, Nordergründe and Wilhelmshaven) and for simplicity, their grid capacity is set to
the capacity of the connected offshore wind farms. Their capacity was set in relation to the
load at the connected buses and not to real-life values.

Figure 1: Visualization of power system network used in thesis. Thickness
of links corresponds their nominal capacity. Connection between offshore
wind parks and corresponding buses are marked by thin, grey dashed line.
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The amount of needed energy also called load was determined by using electricity demand
data of the Open Energy Tracker [28]. The load at each bus can be split into three sectors:
Domestic, CTS (Commerce, Trade, Services) and Industry. The values for Hamburg are
taken directly from Open Energy Tracker [28], which provides load values per federal state
in Germany divided by sector. For the remaining values, the total amount of load was
determined in relation to Hamburg (Table 1) and the ratio between the sectors was taken
from the Open Energy Tracker as the ratio of the sectors in the corresponding federal state
of the bus. In case of an underproduction of energy one measure is to shed part lshedn,t,i at the
sector i specific cost Cshed

i . The cost is staggered with shedding the household load being the
most expensive measure at 250AC/MWh, followed by CTS at 200AC/MWh and eventually, the
industrial load at 150AC/MWh. The values were chosen to display the effect that shedding is
relatively the most expensive balancing measure as well as the differences in shedding cost
per sector and not based on loss of load cost in reality.

Sector Hamburg Büttel Ems Wilhelmshaven Ruhrgebiet
Total
load rel.
to HH

- 1 0.1 0.15 0.3 10

Domestic 436.2 58.7 51.3 104.0 3447.8
Avg.
Load
[MWh]

CTS 455.9 46.0 57.7 117.0 3009.1

Industry 534.0 38.7 101.8 206.3 7269.6
Domestic 801.4 107.9 94.2 191.0 6334.8

Peak
Load
[MWh]

CTS 948.6 120.1 57.7 243.4 6260.7

Industry 621.7 45.1 118.5 240.1 8642.7

Table 1: Definition, average and peak of load

Furthermore, using the demandlib Python library load profiles for each bus and sector were
implemented in form of a time series. This allows to consider effects such as working days
and hours, holidays and seasonality. An example of the load profile of an average day during
winter (a) as well as the seasonal cycle (b) can be found in Fig. 2.

In general, three carriers for generators are considered: On- and offshore wind parks (WP) as
stochastic producers and open-cycle gas turbines (OCGT) as conventional producers, each
assigned a nominal capacity GS (Table 2). The marginal costs are 0AC/MWh for wind parks
and 4.50AC/MWh for OCGTs at the day-ahead market. Each OCGT is taken as a flexible
generator meaning it is capable in case of imbalances to either in- or decrease its production
by 20% and 40% of its Gn,s, respectively during balancing. As this requires the provision
of reserves and flexibility for short-term trading, it increases overall system costs. This is
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(a) Daily load profile (b) Yearly load profile

Figure 2: Examples of implemented load profile for Ruhrgebiet

implemented through a cost premium for balancing, which is 14% for an upwards correction
meaning it sells at 1.14-times the day-ahead price. In case of a downwards correction a price
premium of 3% is implemented meaning only 97% of the price received at the day-ahead
market is paid back by the OCGT generator providers. Furthermore, the values of Gn,s were
chosen to roughly display real-world capacities of the buses as well as to showcase behavior
of future systems. It was made sure that the capacity of the conventional generators is able
to cover the entire demand by setting it to 105% of the peak load of the load time series.
This was done to avoid having an infeasible solution for the conventional dispatch model.
The offshore wind nominal capacity was set in relation to the average of the total load of
Hamburg (e.g. offshore wind park Ems: 0.15-times Hamburg’s average total load). The
remaining onshore nominal capacity values were defined in relation to the load of the bus
and considering an onshore-capacity factor being the ratio of actually generated electricity
and theoretical maximum of 0.25 (e.g. onshore wind park Wilhelmshaven: 25% of 1.5-times
Wilhelmhaven’s average load).

Carrier Büttel Hamburg Ems Wilhemshaven Ruhrgebiet
onshore
WP

2996.57 119.87 2689.72 2696.91 5993.15

Nom. Ca-
pacity Gn,s

[MW]

offshore
WP

4494.86 - 7491.42 449.48 -

OCGT 216.41 2122.62 306.19 620.65 19280.30

Table 2: Nominal capacity of generators Gn,s

Between each bus links with the nominal capacity F I (Table 3) are used to transport the
energy. It was chosen in relation to the connected on- and offshore wind power s.t. among
other bottleneck behaviour can appear to investigate its impact on the model performance.
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For this F 1 is set to 50% of the wind power capacity connected to Büttel, F 2 is set to the sum
of the nominal capacity of Büttel-HH and HH-Ems. F 3 covers 20% of wind power capacity
in Ems and Wilhelmshaven, while F 4 is equal to 25% of the connected wind power capacity
in Wilhelmshaven and Ems. F 5 is set to the nominal capacity of the offshore wind park
Nordergründe in Büttel.

Büttel-HH (1) HH-Ruhr (2) HH-Ems (3) Ems-Ruhr. (4) Ems-Whv (5)
Nom. Ca-
pacity F I

[MW]
3567.35 6105.94 2538.58 3346.82 428.08

Table 3: Nominal capacity of links F I

3.2 Technical Implementation

Using above mentioned parameters a network model was built using the open-source software
Python for Power System Analysis (PyPSA). It carries out the optimal load flow linearization
described in 2.2 to solve the optimization problem and find the day-ahead schedule with
minimal system costs for both models using the cost function 2-9 and 2-22, respectively
[29]. For that it creates for each network component (here: buses, carriers, loads, generators
and links) a data frame listing its static attributes and a dictionary for its time-dependent
attributes. The optimization software is part of DLR’s Probabilistic Forecast Evaluation Tool
’ProPower’ following closely the PyPSA formulation. It uses the Python-based optimization
modeling language Linopy [23]. The enveloping algorithm used is the following:

Algorithm 1 Optimization of Power Flow

Input
Input for network parameters: Buses -, links-, loads-, generators attributes
ECMWF Ensemble Forecasts
ERA5 Reanalysis Observations
List of months
List of wind parks

Output
.csv-files of wind park independent data:
(Continuously Ranked Probability Score (CRPS), Root Mean Squared Error (RMSE),

mean costs, mean observation, total load, total curtailment)
.csv-files of wind park dependent data:
(day-ahead schedule, balancing, forecasted wind power, observed wind power, curtail-

ment, load shedding)
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for month in months do
Get list of days in corresponding month
for day in days do

for wp in windparks do
Read (ensemble) forecast for each wind park and store them in data frame
Read observation data for each wind park and store them in data frame

end for
Initialize networks and return conventional and stochastic network model
Calculate network independent data
for nw in [conventional network, stochastic network] do

Clear day-ahead- and balancing market
Calculate Curtailment
Calculate RMSE and CRPS
Calculate system costs

end for
end for
Export data to .csv files

end for

Read Forecasts and Observation

The ensemble forecast consisting of 50 members was retrieved from ECMWF for each bus
with an hourly resolution [17]. Using a power-curve the wind speed at 100 m height input
data was transformed into available wind power and normalized using the nominal capacity
of the wind park. The entire ensemble was used as input for the stochastic model, while only
one member picked at random was used as the deterministic forecast of the conventional
dispatch model. ERA5 Reanalysis data was taken as the observed wind speeds at a 100 m
height and available wind power, which is required to calculate necessary balancing. The
skill of the forecasts was evaluated using the RMSE for the deterministic - and the CRPS
for the stochastic case (see Appendix).

Initialize Network

First, the network had to be initialized using the in section 3.1 mentioned components and
their attributes as well as the respective forecasts and observations. The day-ahead market
and balancing is cleared each day. It results in a Linopy model with 24 hourly timestamps
also called snapshots, 13 generators, 5 links and a load time series for each of the 5 buses and
3 sectors. Further, it considers operational constraints. Namely, the flexibility and capacity
bounds of the generators and links as well as the nodal balance equation.

Clear Markets

The day-ahead market and subsequently balancing is cleared for both the stochastic and the
conventional model. This was done using the following algorithm:
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Algorithm 2 Clearing of Markets

Input
Initialized network

Output
.csv-file of day-ahead schedule
.csv-file of balancing actions
.csv-file of required link capacity
.csv-file of load shedding

if day-ahead = conventional then
function Prepare conventional day-ahead:

Implement nodal-balancing constraint for each bus, time stamp and member
Implement technical constraints of generators for expected dispatch
Implement technical constraints of links for expected power flow
Define conventional cost function

end function
Solve optimization problem

end if
if day-ahead = stochastic then

function Prepare stochastic day-ahead:
Implement nodal-balancing constraint including expected balancing actions
Implement technical constraints of generators for expected dispatch
Implement technical constraints of links for expected power flow
Limit overall balancing to available flexibility
Limit generation after balancing to ensemble member taken as observation
Limit repurchasing of electricity to day-ahead schedule
Limit shedding to be between 0 and dispatched energy
Define stochastic cost function

end function
Solve optimization problem

end if
Export day-ahead schedule as .csv-file

Clear Balancing Market:
function Prepare Balancing Market:

Implement nodal-balancing for balancing actions
Limit overall balancing to available flexibility
Limit generation after balancing to observation
Limit repurchasing of electricity to day-ahead schedule
Limit shedding to be between 0 and dispatched energy
Define balancing cost function

end function
Solve optimization problem

Export balancing measures, link capacities and shedding results as .csv-files
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Calculate System Parameter

The model performance is evaluated using further system parameters. The curtailment was
calculated as the difference between the available energy production, which is the product
of the observed wind power and the nominal capacity of the generators, and the actual
dispatched energy. Further, the costs for the day-ahead schedule, balancing and the entire
market chain as well as the RMSE and CRPS were calculated and exported as a .csv-file.

4 Results

The aim of the analysis of both dispatch models is to understand how implemented uncer-
tainty information impact the model performance. They have been compared using system
costs differentiated in day-ahead- and balancing costs, shedding and curtailment and their
relation with total system costs and quality of forecast is investigated. Further, the effect of
the grid design in particular of level and spatial distribution of generator flexibility and link
capacity is explored.

4.1 Comparison of Conventional and Stochastic Dispatch Model

System Costs

The main goal of optimizing the energy dispatch is to minimize the operational costs under
consideration of the system constraints while ensuring that the energy demand is met at all
times. Hence, the comparison of system costs is essential to evaluate model performance
(Fig. 3). Overall, the stochastic model reduces the average price per MWh for the total
system by 0.34AC from 2.72AC/MWh by the conventional model to a price of 2.38AC/MWh.
Considering the total load of ca. 140 × 106MWh this amounts to a total cost reduction of
around 47.5 Mio AC per year.

More specifically, the system costs can be differentiated in day-ahead costs and balanc-
ing costs. In the day-ahead market the average price per MWh for the stochastic model is
2.58AC/MWh, while the conventional model is cheaper at 2.29AC/MWh. This is as expected
as the stochastic model takes future balancing costs into account, while the conventional
model optimizes the energy dispatch only considering the day-ahead market. In total, the
stochastic day-ahead market is 39.6MioAC more expensive. The positive effect of considering
expected balancing costs can be seen when comparing the average price per MWh during
balancing. In case of the stochastic model it is -0.20AC/MWh, while for the conventional
model it is 0.43AC/MWh. Considering the total load needed for balancing, the balancing
costs of the conventional model are 87.5MioAC more expensive than the stochastic model.
The difference in balancing costs can be split into two contributing factors, generator flexi-
bility and shedding, where the generator flexibility makes up 45.7% of the difference in costs
and shedding measures the remaining 54.3%.

When analyzing the balancing costs plot, one can notice the spikes in price up to
17.16AC/MWh of the conventional model, which are not apparent in the stochastic model.
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This indicates the use of shedding, which is with a price range from 250AC/MWh to 150AC/MWh
the most expensive balancing measure.

Figure 3: Comparison of system costs in 2021. Orange: conv. model,
blue: stoch. model, dashed line style: average costs. Top to bottom: 1)
Total system costs, 2) Day-Ahead market costs, 3) Balancing costs.

The effect of shedding on the total system costs can be nicely seen in Fig. 4. In the
stochastic case there exists a limit of 4.45AC/MWh for total system costs, whereas the con-
ventional model goes up to 17.67AC/MWh. Generally, it can be seen that the higher the
observed wind power, the lower the system costs as the marginal cost of on- and offshore
wind parks is 0AC/MWh. The day with the maximal stochastic total system costs coincides
with a day with very low observed wind power of only 4% of the system capacities. This indi-
cates that the majority of the demand was covered by the OCGT generators with a marginal
price of 4.50AC/MWh and hence, explains the upper bound of stochastic total system cost.
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Figure 4: Comparison of total system costs in 2021 for conventional and
stochastic dispatch. Size of points is proportional to obs. wind power
given as avg. utilization of wind park capacity (e.g. if obs. wind power is
50% all wind parks have an avg. utilization of 50% of their nom. capacity)

Curtailment

Curtailment is the deliberate suspension of (wind) power generation to balance electricity
supply in case of an excess electricity supply on the grid. It is defined as the difference of
observed available maximal wind power and actual dispatch of the wind parks. Due to their
marginal costs of 0AC/MWh it is of great advantage to minimize the share of curtailed wind
energy.

The curtailment is differentiated by wind park and summarized in Table 4. The wind park
with the highest amount of shedding (offshore Ems, offshore Büttel, onwind Wilhelmshaven)
are all buses, where the available onshore wind power alone is a multiple of the local demand.
Hence, the energy cannot alone be used to cover the local load but needs to be transported
to other buses. The limiting factor here are the link capacities, which e.g. in the case of
Whv-Ems and Büttel-HH are bottlenecks. The impact of link capacity on curtailment is
further investigated in section 4.3.
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Bus Carrier Model Tot. Curtailment [MWh] Rel. Curt. [%]
Ems offshore conv. 84.7040× 105 27.3

stoch. 84.8816× 105 27.3
onshore conv. 0.4235× 105 0.6

stoch. 0.1105× 105 0.2
Büttel offshore conv. 61.2630× 105 32.5

stoch. 63.2603× 105 33.6
onshore conv. 6.0075× 105 9.8

stoch. 0.3986× 105 0.6
Whv offshore conv. 1.1074× 105 7.8

stoch. 10.4421× 105 72.1
onshore conv. 30.9758× 105 50.4

stoch. 21.3451× 105 34.7
HH onshore conv. 0.0052× 105 0.3

stoch. 0.0 0.0
Ruhr onshore conv. 0.0 0.0

stoch. 0.0 0.0

Table 4: Overview of total curtailment per year depending on wind park. From bus with
most shedding to bus (top) to bus with lowest shedding (bottom).

Comparing curtailment in both models in Fig. 5, one notices that both show high levels
of curtailment (conv.: orange area, stoch.: blue line - left y-axis) of on average 22.7% of total
available wind power, but only very slight differences (green line, right y-axis) between the
stochastic and the conventional model can be noticed. In total, 184.4× 105MWh in case of
the conventional model and 184.0× 105MWh in case of the stochastic model were curtailed.
Seasonal variations can be seen in observed wind power and correspondingly, curtailed wind
energy is decreasing towards the summer.

In order to investigate the relation between difference in curtailment, observed wind
power and share of curtailed energy, the same data was plotted as a scatter plot in Fig. 6.
It can be seen that 1) the higher the observed wind power, the higher the curtailed energy
and 2) that differences are more frequent and more pronounced in the lower two thirds of
observed wind power. This can be explained considering 1) that the more wind is available,
the higher the chance is that it partly has to be curtailed as the transmission links will
overload and 2) that at very high observed wind power and correspondingly curtailment
levels, the transmission links will most likely run consistently at nominal capacity leaving
little leeway for differences between the models.
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Figure 5: Comparison of daily curtailment in 2021. Left y-axis: Obs. wind power
(red dotted line), stoch. curtailment (blue line), conv. curtailment (orange area).
Right y-axis: Difference (stoch. - curt.) in curtailment between models (green line).

Figure 6: Total observed wind power per day summed over all wind parks vs.
difference in curtailment between stochastic and conventional model in 2021. Size
of points is proportional to share of curtailed energy from tot. available wind power.
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Shedding

Shedding is the temporarily cutting off of electricity supply to some consumers to maintain
the stability of the power grid during high demand or low supply periods. It is the most
expensive balancing measure. Thus, as already shown the amount of shedded load has
a significant impact on the total system costs. The two models show large differences in
behavior (Fig. 7).

Figure 7: Comparison of total amount of shedding in 2021 between con-
ventional and stochastic model. Red dots: Stochastic tot. system costs >
conventional tot. system costs, green dots: Stochastic tot. system costs
< conventional tot. system costs. Size of dots is proportional to observed
wind power.

Analyzing the shedding events (red dots, Fig. 7), one can observe that the frequency
and magnitude of shedding in the conventional model is much higher than in the stochastic
model. In the conventional case a total of 318034 MWh (0.228% of total yearly load) is
shedded compared to only 1448 MWh (0.001%) in the stochastic model.
The difference can be also quantified using the Loss of Load Expectation (LOLE) (see Ap-
pendix), which is a common measure for the security of supply and describes the statistically
expected number of hours per year in which the demand will not be fully covered. For the
stochastic model, LOLE is 5 hours, whereas it is 392 hours for the conventional model.
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Analysis of day with highest shedding

In order to understand the difference in model behavior, the day with the highest conven-
tional shedding event, 15.02.2021, of on average 1531 MW per hour was analyzed in more
detail. On the same day no stochastic shedding occurs, making it an interesting example
to compare the models. As the implemented load profiles only exhibit regular daily- and
small seasonal variation a sudden spike in demand as a reason for shedding can be excluded.
Hence, possible sources include very inaccurate deterministic wind power forecasts result-
ing in disadvantageous day-ahead schedule and the overload of link capacities disabling the
transmission of energy to buses, where it is needed.

First, the accuracy of the forecast as a potential source of the shedding event was analyzed
(Fig. 8).

Figure 8: Forecast and observation summed up over all wind parks on
15.02.2021. Shows deterministic forecast (red line) and probabilistic fore-
cast (blue area: 25- to 75- quantile) to ERA5 observation (black line)
as well as shedding in conventional model (orange line) and in stochastic
model (blue line).

The shedding event in the conventional model (orange line) can be observed in the after-
noon of the 15th of February. Simultaneously, a deviation between the deterministic forecast
(red line) and the ERA5 observation (black line) of roughly 19500 MWh in predicted wind
power occurs. The probabilistic forecast (blue area) being in between the two other ones
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predicts more accurately the severe downward ramp slightly earlier and matched better the
observation.

As shedding is bus-specific, the next step of the analysis was to investigate individual
nodes. For this the bus with the shedding event was identified to be Ruhrgebiet. Ruhrgebiet
has by far highest demand and often relies on energy transported from Ems or Hamburg.
Fig. 9 shows the bus Ruhrgebiet and again a deviation between deterministic forecast and
ERA5 observation can be observed, while the probabilistic forecast matches the observation
better and predicts the decrease in available wind power in the afternoon earlier. The time
of the deviation corresponds to the onset of the shedding event. What happens in detail is
analyzed when looking at the day-ahead schedule and dispatch as shown in Fig. 10.

Figure 9: Forecast and observation of onshore wind park in Ruhrgebiet
on 15.02.2021. Deterministic forecast (red line) and probabilistic forecast
(blue area: 25-to 75-quantile) to ERA5 observation (black line), shedding
in conventional model (orange line) and in stochastic model (blue line).

Generally, in Fig. 10 the conventional model is displayed by thin lines and the stochastic
model by thick lines and only the OCGT is displayed as the generator most of interest.
It has the highest nominal capacity Gn,s out of all generators and is - as a conventional
generator unlike the wind parks - bounded by its flexibility availability. Hence, it relies on an
accurate day-ahead schedule for an efficient operation. Comparing the day-ahead schedules
(green dotted line) of the two models, one notices that the stochastic model planned for
a significantly higher energy generation from the OCGT generator than the conventional
model in the afternoon. Combined with the flexibility to increase generation even more
during balancing, it allows for producing additional 14947 MWh from the OCGT in the
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afternoon (green area), which is used to avoid shedding. Nevertheless, the energy surplus
produced in the stochastic model compared to the conventional one at the Ruhrgebiet bus,
does not fully cover the amount of shedded load of 36989 MWh and the role of the remaining
buses has to be taken into account.

Figure 10: Comparison of model behavior on 15.02.2021 in Ruhrgebiet.
Compares day-ahead schedule of OCGT (conventional: thin dotted green
line, stochastic: thick dotted green line) and dispatch of OCGT (conven-
tional: thin dash-dotted green line, stochastic: thick dash-dotted green
line). Difference in dispatch is marked by green shaded area. Day-ahead
schedule and dispatch of onshore wind park have been emitted for better
overview.

Fig. 11 shows the probabilistic forecast at the Hamburg bus, which better predicts the
decrease in available wind power towards the afternoon while the deterministic forecast over-
estimates wind power. As the conventional model is based only on the deterministic forecast,
that predicts a high share of available wind power, no OCGT in Hamburg is scheduled (thin
green dotted line, Fig. 11). On the contrary, the stochastic model schedules the OCGT at
nearly nominal capacity (thick green dotted line) in the day-ahead allowing to generate a
surplus of in total 22506 MWh compared to the conventional model.

For conciseness reasons, the comparison of model behaviour of the complete set of buses
can be found in the appendix as the remaining buses shows only small differences between
the two models. Further, the same analysis was done for the day with the second highest
shedding event, the 24.05.2021, of on average 1419 MWh per hour (see Appendix).
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Figure 11: Analysis of model behavior in Hamburg on 15.02.2021.
Top: Forecast and observation of onshore wind park. Deterministic forecast (red
line) and probabilistic forecast (blue area: 25-to 75-quantile) to ERA5 observa-
tion (black line), shedding in conv. model (orange line) and in stoch. model
(blue line).
Bottom: Day-ahead schedule of OCGT (conv.: thin dotted green line, stoch.:
thick dotted green line) and dispatch of OCGT (conv.: thin dash-dotted green
line, stoch.: thick dash-dotted green line). Difference in dispatch: green shaded
area. Day-ahead schedule and dispatch of onshore wind park have been emitted
for better overview. 27



The additional energy produced in Hamburg was then transported to the Ruhrgebiet
(orange area, Fig. 12). Partly, the nominal capacity of Gn,s = 6106 MW is reached. If
the transmission is positive, the energy is transported from the first mentioned bus to the
second one and if negative, vice versa. For the remaining links no significant differences
between the models can be observed. Coinciding with the decrease in available wind power at
roughly 3 pm, Büttel-Hamburg (blue) decrease in transmission to nearly 0 MWh, Hamburg-
Ems (green) remains at full nominal capacity of 2539 MW delivering energy from Ems to
Hamburg, Ems-Ruhrgebiet (red) first decreases in the afternoon and switches direction such
that energy is transported from Ruhrgebiet to Ems, while Ems-Wilhelmshaven (purple) very
slightly decreased after remaining constant at its nominal capacity of 428 MW. As the load
of Ems is comparatively low, the energy supplied by Ruhrgebiet and Wilhelmshaven in the
afternoon exceeds the local demand. Hence, it has to be transported to Hamburg to cover the
load there and partly be further transported to the Ruhrgebiet via the Hamburg-Ruhrgebiet
link. That Ruhrgebiet delivers energy to Ems while simultaneously shedding load suggests
a tendency of the solution algorithm to push variables to their boundaries (either 0 or here
total load). Hence, as the total amount of shedded load exceeds the load in other buses, it
prefers to shed the entire amount in Ruhrgebiet than distributing it on multiple buses. As
these tendencies are not found in the reality, it can either be avoided by adding noise to the
marginal costs or by considering transmission losses of the links.

Figure 12: Comparison of link transmissions on 15.02.2021. Conv. model: thick
dash-dotted lines, stoch. model: thin dash-dotted lines. Difference in transmission
per link: shaded area in color corresponding to link.
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Impact of Shedding and Curtailment on System Costs

The impact of shedding and curtailment on system costs is visualized in Fig. 13. The green
bubbles mark days, where the conventional model was more expensive, whereas the red
bubbles mark that the stochastic model was more expensive. Here, a different scaling was
chosen in order to make them visible. Overall, in case of a more expensive stochastic model,
the cost difference is marginal. Interestingly, this was always the case in the conventional
model when no shedding took place. Further, on the same days an inverse relationship
between curtailment levels and difference in costs can be observed. This suggests that in
case of an accurate day-ahead schedule with no unexpected deviations as discussed in the
previous chapter the conventional model yields slightly better results, while the stochastic
model’s day-ahead schedule tends to be less accurate as it has due to a certain amount
of spread in the forecast that needs to be considered. Nevertheless, this is overshot by the
inaccurate planning on days with shedding events. These are days, where both high generator
flexibility and shedding costs especially in the conventional model occur as shedding only
takes places once generator flexibility is insufficient to balance out missing wind power. Since
the higher the shedding, the higher the difference in costs with the conventional one being
more expensive and the maximum difference being 16.00AC coinciding with the day with the
second highest amount of shedding of 1419 MWh. The highest stochastic shedding event of
59 MWh is the 10.05.2021. Nevertheless, the stochastic model remains slightly cheaper as
simultaneously 155 MWh are shedded in the conventional model.

Figure 13: Comparison of impact of shedding and curtailment on total sys-
tem costs between conventional model (left) and stochastic model (right).
Red dots: Stochastic tot. system costs > conventional tot. system costs,
green dots: Stochastic tot. system costs < conventional tot. system costs.
Size of dots is proportional to difference in tot. system costs.
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CRPS and RMSE

The relation between quality of forecast, observed wind power and model performance quan-
tified in form of system costs is compared in Fig. 14. While the RMSE and CRPS cannot be
compared directly, a higher score in both measures mark a higher deviation between forecast
and observation. Both scores are normed with the total observed wind power per day in
order to counter the effect, that the CRPS increases proportional to the observed wind power
(see Appendix for formula).

Figure 14: Comparison of correlation between quality of forecasts and
total system costs. Top: CRPS vs. total system costs. Bottom: RMSE
vs. total system costs. Size of dots is proportional to observed wind power.
Cost axis has different scaling in plots.

In case of the stochastic model an increase in the CRPS corresponding to an increase
in system costs can be observed meaning that a lower quality of forecasts results in higher
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system costs. Further, the probabilistic forecast is more accurate in predicting high wind
speeds than low ones. The RMSE shows a slightly different behavior. Up to system costs
of 4.50AC/MWh it strongly resembles the CRPS: It increases with decreased observed wind
power resulting in higher system costs. This corresponds to days where small amounts of
wind power is available and the great majority of the load is covered by OCGT generators.
For system costs above 4.50AC/MWh no clear correlation between RMSE, observed wind
power and system costs can be observed. As shown before these are the days, where shedding
takes place. This indicates that an inaccurate forecast cannot be considered per se as a
reason for shedding. Taking the nature of the inaccuracy of forecasts in the shedding events
analyzed so far into account, it suggests that rather it is decisive is to have a overly positive
prediction of available wind power across the wind parks at the same time. The RMSE does
not differentiate between an over- or underestimate of wind power, and by being averaged
over a day tends to undervalue the occurred inaccuracy of forecast in a shedding event.
Hence, it does not show a conclusive relation.

4.2 Impact of Grid Flexibility

In the second part of the thesis the impact of provided flexibility by OCGT generators on
shedding and curtailment level is investigated. First, the overall level of grid flexibility are
varied using the previous configuration as a reference scenario. Second, the impact of the
distribution of flexibility are analyzed by comparing a scenario with the majority of the
flexibility contributed by one very flexible generator to a scenario with the same amount of
flexibility in MW but more evenly distributed.

Level of Flexibility

The three scenarios summarized in Table 5 are compared with the reference scenario repre-
senting a ’Medium’ scenario.

Scenario Flex. up [%] Flex. down [%] Tot. flex. up [MW] Tot. flex. down [MW]
Low 15 35 3382 7891
Reference 20 40 4509 9018
High 25 45 5614 10146

Table 5: Overview of generator flexibility Levels

The model was run for each scenario using the conventional model (Fig. 15) and the stochas-
tic model (Fig. 16). The months January to June are displayed as they show both high levels
of shedding and curtailment. The results for the entire year can be found in the appendix.
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Figure 15: Daily comparison of impact of generator flexibility on the con-
ventional model in 2021. From top to bottom: 1) Low Flexibility Scenario
(FS), 2) Reference FS, 3) High FS. Generation is differentiated by flexible
generator (blue) and renewable generator (green). Curtailment (black)
and shedding (red), observed wind power (red dotted line) are shown.
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Figure 16: Daily comparison of impact of generator flexibility on the
stochastic model in 2021. From top to bottom: 1) Low Flexibility Scenario
(FS), 2) Reference FS, 3) High FS. Generation is differentiated by flexible
generator (blue) and renewable generator (green). Curtailment (black)
and shedding (red), observed wind power (red dotted line) are shown.

The amount of shedding and curtailment for the entire year was calculated for each model
and flexibility level of the OCGT generators (Table 6). With increasing flexibility, the cur-
tailment decreases slightly for the conventional model by 23780 MWh (0.1%) from scenario
’Low’ to ’High’ (black area, Fig. 15). Meanwhile curtailment level in the stochastic model
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decreases by 8080 MWh (0.04%) from scenario ’Low’ to ’Reference’ to then slightly increase
again with increasing flexibility (black area, Fig. 16). Overall, curtailment remains mostly
stable at a high level. This suggests that curtailment rather stems from the high wind power
input or restrictions in the link capacities than due to limited generator flexibility.

A strong decrease of shedding with increasing generator flexibility can be observed for
both models. The conventional model reduces shedding by 0.98% (651705 MWh) from
scenario ’Low’ to ’High’ (red area, Fig. 15), while no shedding (red area, Fig. 16) occurs
in the stochastic model anymore for high flexibility. This supports the observations made
in the analysis of a shedding event on 15.02.2021, where the conventional model performed
suboptimal by its inaccurate day-ahead schedule and lacked sufficient flexibility to balance
the deviations between forecast and observation.

Model Low [MWh] Reference [MWh] High [MWh]
curt. conv. 184.6223× 105 184.4863× 105 184.3845× 105

stoch. 184.1063× 105 184.0255× 105 184.0258× 105

shed. conv. 66.6277× 104 31.8034× 104 1.4572× 104

stoch. 1.0744× 104 0.1768× 104 0.0

Table 6: Overview of shedding and curtailment depending on generator flexibility levels in
2021 with total yearly load of ca. 140× 106MWh.

Spatial Distribution of Generator Flexibility

The impact of spatial distribution of flexible generators has been investigated by comparing
the two scenarios with the reference scenario (Table 7). Both configurations contribute a
comparative level of flexibility (localized - up: 4828 MW, down: 8684 MW, distributed -
up: 4918 MW, down: 8393 MW). The ’localized’ scenario centers the provided generator
flexibility on the OCGT generators in Ruhrgebiet, Hamburg and Wilhelmshaven and the
’distributed’ scenario shares the flexibility among all generators. The aim of the ’localized’
scenario was to focus the flexibility as much as possible on the OCGT generator in Ruhrge-
biet while still avoiding infeasibilities when optimizing. The idea of the ’distributed’ scenario
was to distribute the provided flexibility in MW as evenly as possible between the generators.
Considering the huge difference in nominal capacities of the OCGT generators, this resulted
in setting the smaller generators (Büttel, Wilhelmshaven, Ems) to maximal flexibility and
distributing the remaining flexibility evenly between Hamburg and Ruhrgebiet.
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Scenario Generators Flex. up [%] Flex. down [%] Flex. up [MW] Flex. down [MW]
HH 23 23 488 488

Loca-
lized

Whv 78 78 484 484

Ruhr 20 40 3856 7712
Büttel 100 100 216 216
HH 87 100 1846 2122

Distri-
buted

Whv 100 100 621 621

Ems 100 100 306 306
Ruhr 10 28 1929 5398
Büttel 20 40 43 86
HH 20 40 425 850

Refer-
ence

Whv 20 40 124 248

Ems 20 40 61 122
Ruhr 20 40 3856 7712

Table 7: Overview of generator flexibility levels

The amount of shedding and curtailment for the entire year was calculated and summa-
rized in Table 8.

Model Localized [MWh] Distributed [MWh] Reference [MWh]
curt. conv. 184.1206× 105 184.3204× 105 184.4863× 105

stoch. 184.0255× 105 184.2087× 105 184.0255× 105

shed. conv. 29.5015× 104 30.2883× 104 31.8034× 104

stoch. 0.1201× 104 1.8297× 104 0.1768× 104

Table 8: Overview of shedding and curtailment depending on flexibility distribution for a
total yearly load of 140× 106MWh.

In general, the ’distributed’ scenario shows slightly higher curtailment and shedding for both
models. For the conventional model curtailment increases by 19980 MWh and shedding by
7868 MWh. For the stochastic model curtailment increases by 18320 MWh and shedding
by 17096 MWh compared to the ’localized’ scenario. While intuitively distributed flexibility
might appear to be more reasonable, looking at the shedding of individual buses (Table 9)
explains the increase in the ’distributed’ scenario. One can observe that for the conventional
model with distributed flexibility all buses experience less shedding except for Ruhrgebiet.
But since the load in Ruhrgebiet is significantly higher than at the remaining buses, the
shedding overall increases. Hence, one can conclude that not just the overall level of flexi-
bility is important but that the provided flexibility needs to ideally coincide with the buses
with high demand and correspondingly high potential for shedding. The dependency on

35



Model Bus Localized [MWh] Distributed [MWh] Difference [MWh]
conv. HH 179 89 90

Ems 367 0 367
Whv 15109 7446 7663
Ruhr 279359 295347 -15988

stoch. Whv 0 1577 -1577
Ruhr 1202 16321 -15119

Table 9: Overview of shedding depending on flexibility distribution

the location of provided flexibility can be lifted by having sufficiently high link capacity to
transport energy to any bus. This will be tested in the next section. While in the stochastic
model, overall shedding is lower and restricted to only Ruhrgebiet and Wilhelmshaven, the
same effect of having a significant increase in shedding in Ruhrgebiet can be observed.

4.3 Impact of Link Capacity

The impact of varying link capacity on the model performance is investigated and compared
to the transmission line usage in the reference scenario (Fig. 17, top). The link HH-Ruhr has
the highest nominal capacity and transports the most energy from Hamburg to Ruhrgebiet.
Ruhrgebiet also receives energy from Ems but the link Ems-Ruhr reaches partly its nominal
capacity limit of 3567.35 MW. Hence, Ems also transports energy to the Ruhrgebiet via
Hamburg using the HH-Ems link, which is permanently at its full capacity of 2538.58 MW.
This could again be an artefact of the solution algorithm, which pushes the variables to their
boundaries as it is physically unreasonable to transport energy to Ruhrgebiet via Hamburg
from Ems, if the link Ems-Ruhr is not fully occupied. Again, this could be avoided by im-
plementing transmission losses proportional to link lengths. The three scenarios ’Reference’,
’Ems’ and ’Both’ (Table 10) are compared to investigate the energy transport with a focus
on the bus Ruhrgebiet and its impact on shedding, curtailment and system costs.

Nom. Cap. [MW] Reference Ems Both
HH-Ruhr 6105.94 3567.35 6105.94
Ems-Ruhr 3567.35 6105.94 6105.94

Table 10: Link capacities of HH-Ruhr and Ems-Ruhr for different scenarios
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Figure 17: Distribution of transmission line usage of links in scenarios
’Reference’ (top), ’Ems’ (middle) and ’Both’ (bottom). Conv. model:
orange, stoch. model: blue. Bar plots from left to right in all plots:
Büttel-Hh, HH-Ruhr, HH-Ems, Ems-Ruhr, Ems-Whv.
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For scenario ’Ems’ (Fig. 17, middle) the relative transmission from HH-Ruhr increases
significantly due to the decrease in nominal capacity. Consequently, the energy s to Hamburg
from Büttel and Ems both decrease. Instead the energy transports from Wilhelmshaven to
Ems and from Ems to Ruhrgebiet increase.

For scenario ’Both’ (Fig. 17, bottom) the transmission via the HH-Ruhr link increases
again compared to ’Ems’ to slightly below the transmission level in the ’Reference’ scenario.
Similarly, HH-Ems returns to running at full capacity as already in ’Reference’. The utiliza-
tion Büttel-HH slightly increases compared to ’Ems’, while Ems-Whv remains comparatively
stable.

The average total system cost per MWh, yearly curtailment and shedding is given for
each scenario in Table 11. By increasing the nominal capacity of Ems-Ruhr and decreasing
the nominal capacity HH-Ruhr by the same amount in scenario ’Ems’, the total amount of
curtailment is reduced by 336159 MWh and 331550 MWh for the conventional and stochastic
model compared to reference scenario, respectively. However, shedding increases by 131141
MWh and 1070 MWh, respectively. Overall, the total system costs increase for the con-
ventional model from 2.72 to 2.76AC/MWh and decrease from 2.38 to 2.28AC/MWh for the
stochastic one. Comparing ’Both’ with the reference scenario similar observations can be
made. Curtailment decreases by 483694 MWh for the conventional model and by 579085
MWh for the stochastic one. Shedding increases by 175669 MWh and 1483 MWh, respec-
tively. Similarly, the total system costs also increase for the conventional model from 2.72
to 2.77AC/MWh and decreases from 2.38 to 2.24AC/MWh for the stochastic model. Overall,
for total system costs an increasing trend in total system costs for the conventional model
and a decreasing trend for the stochastic model can be observed. This is explained by the
effect of curtailment and shedding. Curtailment decreases in ’Ems’ and ’Both’ compared to
the reference scenario as in both cases, the link Ems-Ruhr doubles in nominal capacity and
previously curtailed energy can be transported now to the Ruhrgebiet bus. In the reference
scenario, in total 85.13× 105 MWh in conventional and 85.00× 105 MWh in the stochastic
model are curtailed compared to only 21.73×105 MWh (conventional) and 21.73×105 MWh
(stochastic) in scenario ’Both’. Hence, more wind energy with a marginal cost of 0AC/MWh
is utilized in both systems. For the stochastic model a proportional relationship is observed:
The lower total curtailment, the lower are the total system costs as more free wind energy is
used in place of the OCGTs with a marginal cost of 4.50AC/MWh. Further with an increased
share of wind energy in the power system the importance of an accurate forecast increases
too. As shown before the probabilistic forecast more accurately predicts a sudden decrease
in available wind power and hence, avoids a shedding event resulting in lower system costs
compared to the conventional model. For the same reason, total system costs increase for
the conventional dispatch model for lower shares of curtailment. It has been observed that
during shedding events the deterministic forecast tends to overestimate available wind power,
which leads to a disadvantageous day-ahead schedule. This can be seen when considering
the difference in balancing costs, the share of costs stemming from shedding events increases
with lower share of curtailment. In the reference scenario shedding was responsible for 54.3%
of the cost difference compared to 61.4% in scenario ’Ems’ and 63.1% in scenario ’Both’.
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Scenario Model Tot. system cost [AC/MWh] Curtailment [MWh] Shedding [MWh]
Reference conv. 2.72 184.4864× 105 31.8034× 104

stoch. 2.38 184.0255× 105 0.1768× 104

Ems conv. 2.76 150.8705× 105 44.9175× 104

stoch. 2.28 150.4475× 105 0.2838× 104

Both conv. 2.77 136.5150× 105 49.3703× 104

stoch. 2.24 126.1170× 105 0.3251× 104

Table 11: Comparison of system costs, curtailment and shedding for link capacity scenarios

5 Discussion and Conclusion

The increasing share of stochastic producers like wind parks in electricity grids in order to
meet urgent climate goals requires an adaption of today’s energy dispatch strategies based
on reliable conventional producers like OCGT. This thesis discusses a stochastic model for
the clearing of the day-ahead market, which - based on ensemble forecast - includes expected
balancing costs when determining the optimal day-ahead schedule. The stochastic dispatch
model is compared to a conventional model, which optimizes the day-ahead schedule using
a least-cost merit order. Both model performances are evaluated by comparing total system
costs as well as the amount of curtailment and shedding. Further, the impact of the level
and spatial distribution of generator flexibility as well as of link capacities has been analyzed.

Overall, the stochastic model yields a decrease in total system costs by 0.34AC/MWh from
2.72AC/MWh to 2.38AC/MWh equalling savings of around 47.5 MioAC when considering total
system load. While the day-ahead market is more expensive in the stochastic model than
in the conventional model due to already taking potential balancing measures into account,
costs for balancing measures are decreased from 0.43AC/MWh for the conventional model
by 0.63AC/MWh to -0.20AC/MWh. The cost differences in balancing between both models
is caused by 54.3% due to higher shedding in the conventional dispatch model. Regarding
curtailment, the stochastic model reduces the total amount of curtailed wind energy by ca.
4000 MWh from 184.4× 105MWh (22.8%) to 184.0× 105MWh (22.7%), while in shedding
the difference is ca. 317000 MWh. In total, the conventional model sheds 318034 MWh of
load (0.228%), while the stochastic model only sheds 1448 MWh (0.001%). An analysis of
the day with the highest shedding event suggests that a sudden deviation between determin-
istic forecast and the observed ERA5 data across all buses can trigger a shedding event. In
this case a bad conventional day-ahead schedule limits generation of OCGT generators and
flexible generation is unable to ramp up to the needed level. Since the analysis of RMSE and
system costs shows no clear correlation between shedding events and general quality of the
deterministic forecast, it suggests that it is important that 1) the forecast strongly overesti-
mates available wind power and 2) the sudden deviation between forecast and observation
is temporarily correlated between all or most buses.

The sensitivity analysis of the impact of generator flexibility levels and spatial distri-
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butions and link capacities prompted four conclusions: 1) The higher the overall generator
flexibility within in the power system, the lower shedding levels occur as OCGT generators
can balance out higher unexpected deviations in provided wind power. No strong effect on
curtailment has been observed. 2) The most flexible generators ideally should be located
at the bus with the highest load. 3) Increasing the nominal capacity of links starting at
a bus with a high wind power input to buses with a high load, strongly decreases curtail-
ment. 4) An increased share of wind energy in the power system increases the importance of
having skillfull weather forecasts to avoid shedding, which benefits the stochastic dispatch
model, while it worsens the performance of the conventional model due to high shedding
costs resulting in increased total system costs. This shows that with an increasing share of
wind energy and other stochastic energy producers, the advantage of the stochastic dispatch
model is reinforced and implementing uncertainty information becomes extremely beneficial.

In general, the aim of this thesis is to understand and explore the behaviour of the
stochastic model, its advantage against the conventional model and its interaction with the
grid design. Thus, a rather generic, simple network is implemented, which clearly highlights
the working mechanisms of the model and its dependency on grid parameters instead of
being as close as possible to a real power system. Hence, it is important to note some of its
limitations. The network was based on a simplified model of the power system and neglects
features of real-world power systems such as transmission losses, detailed representations of
different generator types, storage units, price elasticity, a large number of buses and links
and flexibility-dependent marginal costs. This leads among others to (in the real world)
unacceptably high shedding levels, which affect negatively the performance of the conven-
tional model. Nevertheless, shedding was responsible for only 54.3% of the cost difference in
balancing between the models in the reference scenario, which still shows that the stochastic
model also reduces balancing costs that emerge from OCGT flexibility. Further, the study
only considered a single day-ahead time horizon and did not account for the intraday market
that is based on updated and improved forecasts.

6 Outlook

The results of this thesis suggest that utilizing uncertainty information from ensemble fore-
cast for optimizing the energy dispatch can significantly improve the performance of the
power system. The stochastic dispatch model resulted in a decrease in total system costs
and reduced the amount of curtailment and shedding considerably compared to the con-
ventional model. The analysis of the impact of generator flexibility levels, spatial flexibility
distribution and link capacities provided valuable insights into the design and operation of
power networks with high shares of stochastic renewable energy sources.

Future research could integrate above mentioned features for a more detailed represen-
tations of transmission networks and generator types in order to improve the realism of the
model and its applicability in real-world applications. Further, different methods of imple-
menting expected balancing costs in the optimization such as utilizing historic balancing
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costs or only taking specific members of the ensemble forecast such as the median or the
minimum and maximum can be tested and compared in terms of accuracy and computa-
tional complexity.

The results of this study show that with an increasing share of wind power as a repre-
sentative stochastic producer, considering their intermittent nature in the electricity market
by implementing uncertainty information becomes more and more beneficial to an efficient
power system operation. This finding can support the design and operation of power systems
with high shares of stochastic renewable energy sources, which are inevitable for a successful
transition to a low-carbon future in order to meet urgent climate goals. The insights gained
in this study as part of research in the field of renewable energy and power system optimiza-
tion can also support political decisions related to energy dispatch and the grid integration
of renewable energy source using more skillfull forecasts i.e. forecasts including uncertainty
information.
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A Appendix

The sections included here serve for deeper explanations or additional information of ideas
discussed in the main text.

A.1 Quality Evaluation of Forecasts

RMSE

The quality of the deterministic forecasts was evaluated using a normed root-mean-square
error (RMSE), which quantifies the difference between the forecast (Ft,S) and the observation
(Ot,S) for each generator S and time step t in a day. The difference was weighted using pnom,S.
Furthermore, it was normalized using the weighted, average observed wind speed for each
generator for the entire day (⟨O⟩t).

RMSE =

√
⟨(Ft,S · pnom,S −Ot,S · pnom,S)2⟩t

⟨O⟩t
(1-32)

CRPS

Subsequently, the quality of the probabilistic forecasting was quantified using a normed
continuous ranked probability score (CRPS). It is a quadratic measure of the difference
between the cumulative distributive function (CDF) of the ensemble forecast denoted as Ft,S

and the empirical CDF of the observation 1(x ≥ y) [30] with 1 being the indicator function.
Mathematically, it can be expressed as:

CRPS =

〈∫
⟨[Fs,T − 1(x ≥ y)]2dx

〉
t

⟨O⟩t
(1-33)

A.2 Loss of Load Expectation (LOLE)

The Loss of Load Expectation quantifies the number of years, in which it is statistically
expected that supply does not cover demand and load will be shedded [31]. It can be
computed as follows:

LOLE =
∑
t

1(gn,s,t + g+n,s,t − g−n,s,t < Ln,s − g∗n,s,t) (1-34)
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A.3 Analysis of Shedding Event on 15.02.2021

Figure 18: Comparison of forecast and observation for all buses
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Figure 19: Comparison of model behavior for all buses
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A.4 Analysis of Shedding Event on 24.05.2021

Figure 20: Comparison of forecast and observation for all buses
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Figure 21: Comparison of model behavior for all buses
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A.5 Impact of generator flexibility

Figure 22: Comparison of impact of generator flexibility on conventional model.
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Figure 23: Comparison of impact of generator flexibility on stochastic model.
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