Probing gravity with two-photon interference of frequency-entangled pairs

Albert Roura

Institute of Quantum Technologies (Ulm)

für Luft- und Raumfahrt German Aerospace Center

Knowledge for Tomorrow

Outline

1. General relativistic effects in the quantum regime: Matter-wave measurements

- Quantum-clock interferometry
- Spacetime curvature and proper-time difference
- Alternative: interferometry with quantum states of light

2. Gravitational redshift measurement with two-photon interferometry

- Hong-Ou-Mandel two-photon interference
- Two-photon interferometry with frequency-entangled pairs
- Gravitational redshift measurement

3. Conclusions

General relativistic effects in the quantum regime: Matter-wave measurements

(i) Quantum-clock interferometry

PHYSICAL REVIEW X 10, 021014 (2020)	
Gravitational Redshift in Quantum-Clock Interferometry	Qı
Albert Roura [®]	

Quantum superposition of a single clock at two different heights

- Initialization pulse after the spatial superposition has been generated.
- Doubly differential measurement:
 - state-selective detection
 - compare different initialization times

(i) Quantum-clock interferometry

(i) Quantum-clock interferometry

(ii) Spacetime curvature and proper-time difference

RESEARCH PHYSICS Observation of a gravitational Aharonov-Bohm effect Chris Overstreet¹†, Peter Asenbaum^{1,2}†, Joseph Curti¹, Minjeong Kim¹, Mark A. Kasevich¹*

Overstreet et al., Science 375, 226–229 (2022) 14 January 2022

- Effect of spacetime curvature on a delocalized wave function.
- Proper-time time difference between the two atom interferometer arms.
- Gravitational analog of the scalar Aharonov-Bohm effect.

(ii) Spacetime curvature and proper-time difference

Stanford (USA)

(iii) Alternative: interferometry with quantum states of light

- Compared to state-of-the-art matter-wave interferometers, optical interferometers with quantum states of light offer the following appealing features:
 - ► Use of *relativistic* particles → quantum field theory
 - Multiparticle entanglement including external degrees of freedom.
 - *Multiparticle interference* with no classical analog.
 - Long baselines and large arm separations (up to hundreds of kilometers or more)
 greater sensitivity to *spacetime curvature* effects.

Gravitational redshift measurement with two-photon interferometry

Hong-Ou-Mandel two-photon interference

- Destructive interference of the two possibilities for simultaneous single-photon detection at each port.
- Strong evidence of the quantization of the electromagnetic field.

Frequency-entangled photon pair as input state

 $\frac{1}{\sqrt{2}} \left(|\omega_1\rangle_a |\omega_2\rangle_b + e^{i\varphi} |\omega_2\rangle_a |\omega_1\rangle_b \right) \longrightarrow \frac{1}{2} \left(i^2 |\omega_1\rangle_d |\omega_2\rangle_c + e^{i\varphi} |\omega_2\rangle_c |\omega_1\rangle_d \right)$

$$P(c,d) = \frac{1}{4} \left(1 - \cos\varphi\right)$$

Two-photon interferometer with frequency-entangled pairs

 $\frac{1}{\sqrt{2}} \left(|\omega_1\rangle_u |\omega_2\rangle_l + |\omega_2\rangle_u |\omega_1\rangle_l \right) \longrightarrow \frac{1}{\sqrt{2}} \left(e^{i\omega_1\tau} |\omega_1\rangle_u |\omega_2\rangle_l + e^{i\omega_2\tau} |\omega_2\rangle_u |\omega_1\rangle_l \right)$

$$P(c,d) = 2 \times \frac{1}{4} \left(1 - \cos(\omega_1 - \omega_2)\tau \right)$$

Gravitational redshift measurement

- Equal-length delay lines on Satellite and Ground station.
- Both calibrated and stabilized with identical frequency references.
- Different relativistic time dilation for both delay lines (special relativistic + gravitational).

$$\tau_{\rm rel} = \frac{l}{c} \left(\left(\frac{1 - (\hat{\mathbf{n}} \cdot \mathbf{v}_{\rm G})(t_{\rm r})/c}{1 - (\hat{\mathbf{n}} \cdot \mathbf{v}_{\rm S})(t_{\rm r})/c} \right) \left(\frac{dt/d\tau_{\rm G}}{dt/d\tau_{\rm S}} \right) - 1 \right)$$

"classical" Doppler effect

$$\sim 10^{-5}$$
relativistic time dilation

$$\sim 10^{-10}$$

$$\left(\frac{dt/d\tau_{\rm S}}{dt/d\tau_{\rm G}} \right) \approx 1 + \left(\frac{1}{2} \frac{\mathbf{v}_{\rm S}^2 - \mathbf{v}_{\rm G}^2}{c^2} - \frac{U(\mathbf{x}_{\rm S}) - U(\mathbf{x}_{\rm G})}{c^2} \right)$$
special relativistic

$$\sim 10^{-10}$$
gravitational redshift

$$\sim 10^{-10}$$

Quantitative estimates

Lunar Gateway \longrightarrow $\tau_{\rm rel} = 2.3 \times 10^{-15} \, {\rm s} \, (l/1 \, {\rm km})$

$$\delta\varphi = \left(\omega_1 - \omega_2\right)\tau_{\rm rel} = 0.2\,{\rm rad}\,\times \left(\frac{\Delta\lambda}{100\,{\rm nm}}\right)\left(\frac{1600\,{\rm nm}}{\lambda_2}\right)\left(\frac{1500\,{\rm nm}}{\lambda_1}\right)\left(\frac{l}{1\,{\rm km}}\right)$$

	gravitationa	redshift	special	relativistic
--	--------------	----------	---------	--------------

Lunar Gateway	7×10^{-10}	smaller
GEO spacecraft	6×10^{-10}	smaller
LEO spacecraft	4×10^{-11}	-3×10^{-10}

Single-uplink configuration

$$\left|\Psi_{0}
ight
angle=rac{1}{\sqrt{2}}\Big(\left|\omega_{1},H
ight
angle\left|\omega_{2},V
ight
angle-\left|\omega_{1},V
ight
angle\left|\omega_{2},H
ight
angle\Big)$$

Single-uplink configuration

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(e^{i\omega_2 \tau_{\rm rel}} |\omega_1, H\rangle_{BD} |\omega_2, V\rangle_{AC} - e^{i\omega_1 \tau_{\rm rel}} |\omega_2, H\rangle_{BD} |\omega_1, V\rangle_{AC} \right)$$

Single-uplink configuration

$$|\Psi\rangle = \frac{1}{\sqrt{2}} \left(e^{i\omega_2 \tau_{\rm rel}} |\omega_1\rangle_{BD} |\omega_2\rangle_{AC} - e^{i\omega_1 \tau_{\rm rel}} |\omega_2\rangle_{BD} |\omega_1\rangle_{AC} \right) \otimes |H\rangle_{BD} |H\rangle_{AC}$$

• Part of a study by the Science Definition Team for a future space mission.

- Ground-based demonstration experiments for preliminary results and TRL increase.
- Possible implementations being explored in collaboration with
 - Spencer Johnson, Paul Kwiat (University of Illinois Urbana-Champaign)
 - Alex Lohrmann, Makan Mohageg (Jet Propulsion Laboratory)

Paul Kwiat²

Experiments in Paul Kwiat's group (UIUC)

Recent results for frequency-entangled two-photon interference

Entangled photons at 810 and 1550 nm

System Resolutions

~ 50k photon pairs every second

Current Experiment (fit): 0.7 nm (2.2 attoseconds)

Theoretical best (with perfect entangled state and optics): **0.6 nm (1.9 attoseconds)**

- Corresponding delay lines capable of resolving the gravitational redshift:
 - Lunar Gateway $\longrightarrow l > 1 \text{ m}$
 - LEO \longrightarrow l > 18 m

Conclusions

- Quantum interferometric measurement of general relativistic time dilation with no classical analog (two-photon interference, entanglement).
- Experimental test of quantum field theory in curved space time.
- Need to suppress the Doppler-shift contribution:
 - satellite laser ranging and post-correction,
 - alternatively, use of a "classical light" beacon as a distributed phase reference.
- For highly elliptical orbits, orbital modulation can be exploited to extract the signal.

Thank you for your attention.

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

Q-SENSE European Union H2020 RISE Project

Deutsches Zentrum
 für Luft- und Raumfahrt
 German Aerospace Center

Gravitational redshift

- Static spacetime with time translation invariance $t
 ightarrow t + \Delta t$.
- Proper time spent in each delay line:

 $\tau_{\rm delay} = l/c$

Scalar Aharonov-Bohm effect

Aharonov & Bohm, Phys. Rev. 115, 485 (1959)

Lee, Motrunich, Allman & Werner, Phys. Rev. Lett. 80, 3165 (1998)

charged particle in a homogeneous electric potential

q V(t)

experimental realization with neutron interferometry (magnetic dipole in a homogeneous magnetic field)

 $\vec{\mu}\cdot\vec{B}(t)$

Proposal for a gravitational version

Quantum-clock interferometry

PHYSICAL REVIEW X 10, 021014 (2020)	
Gravitational Redshift in Quantum-Clock Interferometry	
Albert Roura®	

Quantum superposition of a single clock at two different heights

- Initialization pulse after the spatial superposition has been generated.
- Doubly differential measurement:
 - state-selective detection
 - compare different initialization times

Quantum-clock interferometry

PHYSICAL REVIEW X 10, 021014 (2020)	
Gravitational Redshift in Quantum-Clock Interferometr	y Quantum
Albert Roura	

Quantum superposition of a single clock at two different heights

- *Relativity of simultaneity* for spatially separated events.
- Simultaneous initialization in the lab frame, BUT not in the *freely falling frame*.

Slide 32 > Probing gravity with two-photon interference of frequency-entangled pairs > Albert Roura > 24 May 2023

ARTICLE			
Received 13 Jun 2011 Accepted 5 Sep 2011 Published 18 Oct 2011		DOI: 10.1038/ncomms1498	
Quantum interferometric of general relativistic prop	vis per	ibility as a v time	witness

Magdalena Zych¹, Fabio Costa¹, Igor Pikovski¹ & Časlav Brukner^{1,2}

NATURE COMMUNICATIONS | 2:505 | DOI: 10.1038/ncomms1498 | www.nature.com/naturecommunications

PHYSICAL REVIEW X 10, 021014 (2020)

Gravitational Redshift in Quantum-Clock Interferometry

Albert Roura

PHYSICAL REVIEW D 104, 084001 (2021)

Measuring gravitational time dilation with delocalized quantum superpositions

Albert Roura⁽⁰⁾,¹ Christian Schubert,^{2,3} Dennis Schlippert,² and Ernst M. Rasel²

SCIENCE ADVANCES | RESEARCH ARTICLE

PHYSICS

Interference of clocks: A quantum twin paradox

Sina Loriani¹*, Alexander Friedrich²*[†], Christian Ufrecht², Fabio Di Pumpo², Stephan Kleinert², Sven Abend¹, Naceur Gaaloul¹, Christian Meiners¹, Christian Schubert¹, Dorothee Tell¹, Étienne Wodey¹, Magdalena Zych³, Wolfgang Ertmer¹, Albert Roura², Dennis Schlippert¹, Wolfgang P. Schleich^{2,4,5}, Ernst M. Rasel¹, Enno Giese²

Loriani et al., Sci. Adv. 2019; 5: eaax8966 4 October 2019

PHYSICAL REVIEW RESEARCH 2, 043240 (2020)

Atom-interferometric test of the universality of gravitational redshift and free fall

Christian Ufrecht[®],^{1,*} Fabio Di Pumpo[®],¹ Alexander Friedrich[®],¹ Albert Roura[®],² Christian Schubert,^{3,†} Dennis Schlippert[®],³ Ernst M. Rasel,³ Wolfgang P. Schleich[®],^{1,2,4} and Enno Giese[®],³

