EROSION OF REFLECTORS AND SANDSTORM SIMULATION

SolarTwins 2nd Summer School – Next Generation CST Technologies

Standardized reflector testing and advanced optical characterization tools

- Theoretically 1% of the area of the Sahara used for CSP would be sufficient to supply for all global energy.
- The current global installed CSP is at 6 GW, a bit less than 50% of it in Spain.

222

- IEA forecasts (2050) 4380 TWh CSP contribution which corresponds to 11% of worldwide electricity output.
- One technical problem
 high material wear

MOTIVATION

Issues implementing CSP in desert environments

Deposited particles

- Soiling of mirrors leads to losses of optical plant efficiency
- Permanent damage on mirrors and other materials

Suspended particles

 Atmospheric dust load causes extinction of radiation in tower plants

PSA: owned by CIEMAT

Issues implementing CSP in desert environments

Aluminum mirror

Specular reflectance drop after 20 months in Zagora: aluminum glass

32,9%

glass 5,2%

 \rightarrow annual economical loss of average 50MW plant due to 1% reflectance drop = 600 000\$

Glass mirror

Objective

Three different erosion simulation setups: a) soil pipe, b) closed loop wind tunnel and c) open loop wind tunnel.

Outdoor campaign

- Extensive outdoor exposure campaign on 13 sites: Almeria, Tabernas, Gran Canaria, Abu Dhabi, Oujda, Missour, Erfoud, Zagora, Tan Tan, Maan, Tatauine, Adrar, Cairo
- Variety of site conditions, from urban over coastal to desert
- On-site measurements of parameters (temperature, wind, irradiation, humidity, particles, etc.)

Operation of severall passive sampling devices.

 \rightarrow particle size distribution, maximum particle size, mineralogical details, mean dust flux

Three different active dust measurements samplers:

- Dusttrak 8533 from TSI (optical)
- EDM164 from Grimm (optical)
- HVS-TSP16 from MCZ (gravimetrical)

\rightarrow additional time resolution

HVS Grimm

 \rightarrow additional time resolution

\rightarrow additional time resolution

1) first particle dislodgement from the ground which later impacts the ground, releasing a new particle wave; 2) small particles in suspension mode; 3) the saltation cloud; 4) surface creep Dust movement is a complex, nonlinear process.

One key parameter is threshold friction velocity u_{τ}^* = minimum velocity to initiate soil particle motion (meteorological and land surface conditions)

- Zagora high erosion, Missour low erosion
- Strong wind ≠ Strong dust movement/erosion

Absolute hours of u/rh couples

Zagora (a) high erosion, Missour (b) low erosion

Cumulated dust concentration [µg/m³]

Zagora (a) high erosion, Missour (b) low erosion

Cumulated dust concentration divided by frequency of u-rh couple = Dust activity

Zagora (a) high erosion, Missour (b) low erosion

Dust damage potential

Particle size distribution

2-Theta Scale

Dr. Florian Wiesinger, Institute of Solar Research, 2. September 2022

Lin (Counts) *

200

2-Theta Scale

Outdoor campaign – dust movement identified risks

- PSD maximum at 65-200µm
- PSD bimodal
- Open terrain with winds larger than 10m/s
- Low relative humidity and high wind present at the same time
- Low clay content
- High Quartz content

Outdoor erosion – field study on height and orientation

Erosion tree in Zagora equipped with 27 reflectors.

- Exposure on three different heights *z* above ground (**1.2**, **2.4** and **3.6**m).
- For every *z*, four principal orientations (North, East, South and West).
- For every orientation, two elevation angles θ (45° and 90°). In addition one elevation at 180° per *z*.
- In addition wind measurement
- Reflector characterization after 1 year.

\rightarrow Erosion damage decreases with increasing height *z*, but different proportionality factor ζ

Outdoor erosion – field study on height and orientation

\rightarrow Erosion damage decreases with increasing height *z*, also confirmed in another outdoor campaign (more severe site)

Outdoor erosion – field study on height and inclination

→ For all orientations samples exposed at ϑ =45° are less degraded than corresponding reflectors at ϑ =90°. Kinetic impact energy \propto (sin α)²

→ Different orientations lead to different optical degradation.
 ?Where does this anisotropic effect come from?

Outdoor erosion – field study on height and orientation

Wind velocities greater than 5 m/s are present over 25% of the time. Most prominent direction is SW, ca. 10%.

Only winds stronger than 17 m/s

Strong winds (>22 m/s) exclusively from NW.

High velocities more important than duration

short break & discussion afterwards: artificial erosion simulation

Objective

Three different erosion simulation setups: a) soil pipe, b) closed loop wind tunnel and c) open loop wind tunnel.

Erosion setup 1: soil pipe

sand container

meshes

Used erosive material: Silica particles (diameter between 300-625 µm).

rotating sample under impact angle α

According to DIN 52348 Investigated influences of:

- Total sand mass
- Impact angle
- Different reflector materials
- Impact speed
- Erosive material

Outdoor - Zagora

Laboratory – soil pipe

Erosion setup 1: soil pipe

sand

container

rotating sample under impact angle α

Ultrasonic wind sensor

Inductive particle concentration measurement

Flow rectifier and particle mixer

Connection for gravimetric particle measurement

Dust injection system

Sample compartment

Return flow in blower

Technical parameters:

- Wind velocities from 5 m/s to 30 m/s.
- Various different test dust types possible (ISO 12103-1 A4 Arizona Quartz dust)
- Dust concentration ranges from 50 mg/m³ to 3000 mg/m³.
- Flexible test duration from few minutes to many hours.
- Homogeneous erosion on the sample.
- Requirement for sample dimension: around 6 x 6 cm

92 -

90

88

86

84

82

80 0.0

0.5

1.0

Disadvantages: no satisfying dust concentration control, no easy change of dust type, no complete adjustment of erosion results.

Search for a new parameterization that characterizes erosion defects more accurately than reflectance/transmittance losses.

control box for electronics

Item table construction

Open loop wind tunnel in suction mode with high variability of input parameters allowed for a comprehensive study of erosion determining influences coming from: **particle velocity, impact angle, erodent material**

- Theory differentiate brittle and ductile materials.
- Fit because $E_g \approx \vec{u}^2 = (u \cdot \sin \beta)^2$


```
DOR-sand: 15-300µm
```


MIL-dust: <150µm DOR-sand: 15-300µm

- Mechanical wear exhibits minimum threshold; below negligible.
- Relation between impact energy (E_{a}) and wear can be described as power law.
- For DOR-sand also maximum threshold observed →All particles do maximum damage.

- MIL-sand largest particles and smallest Δp.
 → Threshold effects and particle number per impact mass.
- Same investigation with higher resolution...

MIL-dust: <150µm DOR-sand: 15-300µm MIL-sand: 150-850µm

 \rightarrow Aeolian erosion at typical field conditions becomes inefficient for quartz particles smaller than 50µm.

Sieve MIL-sand in four size fractions: see subscript range

- → Material from Zagora more aggressive than Missour material.
- Particle characteristics (shape, mineralogy)

All particle types sieved to same size range.

- → Quartz highest erosion potential, due to its hardness. (quartz 7, gypsum 2, calcite 3)
- → Gypsum and calcite contents in natural material not responsible for erosion effects under typical conditions.

All particle types sieved to same size range.

- How to quantify erosion ?
- Reflectance loss ρ not meaningful, since one large defect can cause similar Δρ as a lot of small defects while the consequences might be completely different.
- Instead of p use image analysis to obtain *defect size density distribution DSDD*.

Similar image analysis technique as for optical sand particle size determination.

Use two different magnifications of microscope and combine them to account for whole range of defect sizes. Best (100 x 100 with high magnification but kills RAM)

- Rank outdoor sites regarding the observed DSDD in three different erosion classes.
- Find adequate parameters in the Sandstorm chamber to simulate the same DSDD.

Lifetime assessment:

- Outdoor exposure for X years
- Determine DSDD and find necessary particle mass in artificial aging test to simulate X years.
- Multiply the determined particle mass in order to achieve simulation for e.g. 10 years.
- Class 1 for 10 years, use 0.06g/cm² → Δρ around 2.5% (1 year Δρ ca. 0.25%) linear behavior.

Lifetime assessment:

• Class 3 for 10 years $\Delta \rho$ around 38% (1 year $\Delta \rho$ ca. 5%) NON-LINEAR behavior.

Thank you for your attention

Contact: Florian.Wiesinger@dlr.de

References

[1] A techno-economic feasibility study on the use of distributed concentrating solar power generation in Johannesburg - Scientific Figure on ResearchGate. Available from: https://www.researchgate.net/figure/Parabolic-Trough-CSP-Plant-in-the-Mojave-Desert-Sitenet-2008_fig2_265231140 [accessed 31 Aug, 2022]

[2] Hanrieder, Natalie, Bernhard Mayer, and Robert Pitz-Paal. Determination of atmospheric extinction for solar tower plants. No. RWTH-2016-06390. Lehrstuhl für Solartechnik (DLR), 2016.

[3] Wiesinger, Florian, et al. "Sand erosion on solar reflectors: Accelerated simulation and comparison with field data." Solar Energy Materials and Solar Cells 145 (2016): 303-313.

[4] Reichenspurner, Sebastian. Particle erosion on solar mirrors: Construction and first experimental stage of an open loop wind tunnel. Diss. Hochschule Kempten, 2016.

[5] Darmenova, Kremena, et al. "Development of a physically based dust emission module within the Weather Research and Forecasting (WRF) model: Assessment of dust emission parameterizations and input parameters for source regions in Central and East Asia." *Journal of Geophysical Research: Atmospheres* 114.D14 (2009).

[6] Wiesinger, Florian, et al. "Assessment of the erosion risk of sandstorms on solar energy technology at two sites in Morocco." Solar Energy 162 (2018): 217-228.

[7] Wiesinger, Florian, et al. "Sandstorm erosion on solar reflectors: Highly realistic modeling of artificial aging tests based on advanced site assessment." Applied energy 268 (2020): 114925.

[8] Wiesinger, F., et al. "Sandstorm erosion on solar reflectors: A field study on height and orientation dependence." Energy 217 (2021): 119351.

[9] DIN 52348, Prüfung von Glas und Kunststoff, in: Verschleißprüfung-Sandrieselverfahren, DIN, 1985.

[10] Wiesinger, Florian, et al. "Sandstorm erosion testing of anti-reflective glass coatings for solar energy applications." Solar Energy Materials and Solar Cells 179 (2018): 10-16.

[11] Arabnejad, Hadi & Mansouri, Amir & Shirazi, Siamack & McLaury, Brenton. (2015). Evaluation of Solid Particle Erosion Equations and Models for Oil and Gas Industry Applications. 10.2118/174987-MS.

[12] Wiesinger, Florian Werner, Robert Pitz-Paal, and Martin Schmücker. Erosion of solar reflectors in desert environments. No. RWTH-2019-00903. Lehrstuhl für Solartechnik (DLR), 2019.