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Abstract—Building extraction is an important task in many
fields. The use of convolutional neural networks has been proven
to be of great success in building extraction from satellite images.
This paper presents a deep learning based vertex aided building
polygonization method, which takes RGB satellite images as
input and outputs building polygons. Unlike other methods
which rely on vertex extraction followed by polygonization, our
method requires neither pre-defined number of vertices nor
thresholding to obtain extracted vertices. The proposed method
has the advantage of simplicity in sense of model complexity, and
achieved good performance with average precision of 48.1% and
intersection over union of 84.1%.
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I. INTRODUCTION

Building extraction has been a topic of interest for a long
time. Efficient and accurate building extraction methods are
needed to support various studies. Deep learning is proven to
be powerful in many fields, including building extraction and
footprint delineation.

With the development of deep learning and convolutional
neural networks (CNNs), the general workflow of building
extraction can be defined as first to extract image features
using a backbone network [1, 2], and then to delineate build-
ing footprints. Usually, the delineation is done by semantic
segmentation with post-processing refinement [3, 4] or by
edge/corner extraction with additional graph neural network
(GNN) models [5–7].

For semantic segmentation based methods, backbone net-
works are used to predict building segments. The output is then
refined to generate the final building prediction. This refine-
ment is treated as a problem of regularization, and carried out
through polygon regularization [3], automatic regularization
by introducing another CNN [8, 9], or by height filtering based
on digital surface model (DSM) [10].

Another approach is to generate a different representation of
building footprints, instead of a segmentation mask, as training
target. For example, frame field is the representation, in which
two orthogonal directions are calculated for each pixel, and it
is proven to be successful in building extraction [11]. The
authors in [12] convert each pixel into vectors describing 3D
cuboids and extract the cuboid with the highest score as the
building footprint. Similarly, the authors in [13] represent each

roof as 4D vectors with facade facings and this representation
is learned by the neural network.

In contrast to representation learning approaches, the strate-
gies which directly extract edges and/or corners from images
for building footprint seem more straightforward, since they
output directly vectorized data. Instead of generating segmen-
tation maps, the authors in [6] extract classified rooflines and
use these lines to reconstruct roof planes. Another approach
is to solve the polygonization problem as connecting corner
points in a series manner [14, 15]. Extracting both edges and
corners has also been studied in [16].

GNNs are helpful in edge/corner based methods. These
methods first extract image features using a backbone network,
then construct graphs with initial vertices [7] or rooflines [5].

Inspired by aforementioned works, we develop a vertex
aided building polygonization algorithm. Our method relies
on extraction of building segments and building vertices, and
we solve this problem in a regression manner to encounter the
problem of imbalance in training data. The workflow is shown
in Fig. 1.
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Fig. 1: The workflow of proposed method. Our method first
regresses truncated signed distance, then outputs Gaussian
density map and segmentation map. These two maps are used
for generating building polygons.

Our model consists of two stages. For the first stage, the im-
ages are first fed to a feature extractor, and the truncated signed
distance (TSD) regressor outputs the predicted TSD map [4]
based on the extracted features. The TSD map provides useful
information on building boundaries with implication of vertex
locations. Two branches are included after the TSD regressor,
namely Gaussian density regressor and outline refiner. These
two branches predict Gaussian density of building vertex at
each location and building boundaries respectively. At the sec-
ond stage, we perform the vertex aided building vectorization.
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The initial polygons are extracted from outline refiner, and are
adjusted and regularized by the extracted building vertices.

II. METHODOLOGY

Unlike the methods based on GNNs to connect the extracted
vertices, we propose an algorithm to guide the connection of
the extracted vertices with help of the predicted segmentation
map. Our method has the advantage of being simple, and can
process the whole scene without multiple stages. The whole
architecture of the network is illustrated in Fig. 2.

Backbone

TSD map

Gaussian density map

Segmentation map Concatenation
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Fig. 2: Double branched network. The backbone is shown on
the left with two separate branches on the right.

A. TSD and Gaussian density regression

1) Feature extractor design: We propose a backbone net-
work with U-Net [1] architecture and ResNet-34-like [2]
implementation. The down-sizing network extracts features
at different scales with skip connections inside each residual
block. The up-sizing network takes the concatenated input of
upsampled features and previously extracted features in the
down-sizing network. This backbone network is shown on the
left side in Fig. 2, referred as feature extractor.

2) TSD and Gaussian density: The binary mask as prob-
ability map has the advantage in sense of clear semantic
interpretation, but learning the probability map directly is
detrimental, due to the imbalanced negative and positive
training samples. This is true for masks of segments, lines
and points. Instead of learning directly the binary masks, we
apply the TSD function and Gaussian function to segment and
vertex extraction respectively, inspired by [4] and [17].

The TSD function applied in this paper is the same as in
[4], defined as

TSD (p) =


0 if p along b,
1 + min(Db(p),τ)

τ if p inside b,
−1− min(Db(p),τ)

τ if p outside b,
(1)

where Db (p) is the Euclidean distance between point p and
its nearest point along boundary b, and τ is a hyperparameter
which controls the truncation of the signed distance.

The Gaussian density map is obtained by filtering the binary
vertex map with a 2-D Gaussian filter, constructed based on
2-D Gaussian function as

g (p,p0, σ) =
1

2πσ2
exp

(
− (x− x0)

2
+ (y − y0)

2

2σ2

)
, (2)

where p0 = (x0, y0) is the coordinate of peak value, i.e.
the coordinate of ground-truth building vertex.

Based on Eq. (2), the density map is then calculated as

D =

N∑
i=1

max (g (p,pi, σ)) , (3)

where N is the total number of pixels with probability 1,
p is the coordinate of each pixel center, pi is the coordinate
of each ground-truth vertex.

Using Eq. (3) for each location of ground-truth building
vertices, we calculate the Gaussian density and generate the
final ground-truth map. By taking the maximal response value,
each peak is retained. Note that the center of the pixel, where
the ground-truth vertex falls into, is not necessarily the location
of the peak. The peaks always coincide with ground-truth
building vertices locations. Theoretically, this setting allows
for sub-pixel accuracy.

With these two learning targets, the building segments and
vertices detection problems can now be solved in a regression
manner.

3) Proposed double-branched network: Building segments
and building vertices are predicted in parallel using two
prediction heads. The TSD regressor outputs predicted TSD
map, which contains intrinsically information of both building
vertices and boundaries. These two kinds of information are
extracted by two branches, i.e. Gaussian density regressor and
outline refiner. With concatenation of the extracted features,
the two branches have the chance to reuse the features that
are helpful for predicting TSD map, which potentially improve
the final predictions.

B. Vertex aided building polygonization
The predicted segmentation map is still not ideal for direct

polygonization, due to building parts in shadows, confusion
with background, and irregular shapes. Thus, in this paper,
we propose a novel yet simple algorithm to generate building
polygons automatically, based on the predicted segmentation
map and Gaussian density map.

The predicted segmentation map is first binarized, so that
each building instances are well separated. This threshold
should be large enough to avoid merging neighbouring build-
ings, but small enough to retain basic shapes of the buildings.
Based on this binarized predicted segmentation map, the initial
polygons are generated, with area filtering to get rid of noise.

Our goal at this stage is to generate regularized building
polygons based on the predicted Gaussian density map and
the initial polygons. In order to make the final polygons
as close as possible to manually delineated polygons, we
adjust the initial polygons according to the predicted Gaussian
density response. For each vertex in the initial polygon, we
inspect a surrounding circular area with a certain radius, and
replace each vertex with the location of highest Gaussian
density response. If this response is smaller than a threshold,
then we discard the corresponding initial polygon vertex. The
output after removing redundant vertices is the final predicted
building polygon.
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TABLE I: Evaluation metrics

Method AP AP50 AP75 APS APM APL AR ARS ARM ARL

Mask R-CNN [18] 41.9 67.5 48.8 12.4 58.1 51.9 47.6 18.1 65.2 63.3
PANet [19] 50.7 73.9 62.6 19.8 68.5 65.8 54.4 21.8 73.5 75.0

PolyMapper [15] 55.7 86.0 65.1 30.7 68.5 58.4 62.1 39.4 75.6 75.4
VABP 48.2 75.7 54.5 29.8 70.4 81.1 61.6 44.7 78.5 88.6

III. EXPERIMENT

A. Dataset and experiment setup

We used the CrowdAI dataset as training and testing dataset
[20]. This dataset contains satellite images of size 300×300 as
RGB images, as well as annotations of building footprints. In
this paper, we used the training dataset which contains in total
280,741 image tiles, and testing dataset with 60,317 image
tiles.

In order to avoid padding in down-sample and up-sample
path, we resized each image to spatial dimension 224× 224.
The annotations were re-calculated using linear transforma-
tion. The ground-truth TSD maps and Gaussian density maps
were generated using Eq. (1) and Eq. (3), respectively.

B. Implementation and network training

The loss function for the TSD regressor LT was chosen
to be a pixel-wise mean squared error (MSE) loss, which is
suitable for regression problems. To deal with high imbalance
in Gaussian density regression, we used weighted MSE loss
for the Gaussian density regressor, defined as

LG =
∑
i,j

(
δ
(
tbij − 1

)
N1

(
t̂ij − tij

)
+

δ
(
tbij
)

N0

(
t̂ij − tij

))
,

(4)

where N0 and N1 are the total number of zeros and positive
samples respectively, t̂ and t are prediction and target respec-
tively, tb is the binarized Gaussian density map thresholded at
0.

The binary cross-entropy loss (BCE) was chosen to be the
loss function for the outline refiner LO. The whole network
is trained in an end-to-end manner with total loss

L = αLT + βLG + γLO, (5)

where α, β and γ are empirically selected weights for each
loss.

C. Evaluation

The evaluation of the predicted building polygons were
carried out by calculating the intersection over union (IoU),
which is the ratio of the overlap area and the union area with
regard to the ground-truth building polygons.

In order to better compare with other methods, we also
calculated the average precision (AP) and average recall (AR)
according to MS COCO [21].

IV. RESULTS AND DISCUSSION

A. Quantitative evaluation

Table I reports the AP and AR at IoU thresholds from
0.5 to 0.95 with step 0.05. We compare our method VABP
to three published methods. We found out that our method
works better for larger objects than smaller objects. We suspect
that the TSD helps extract large footprints but tends to blend
out small objects, as is shown in Eq. (1). When the building
is too small, the surrounding area has more non-zero values
than the building itself, which leads to potential false negative.
By comparing to PolyMapper [15], our method is capable of
processing a whole image scene, and has the advantage of fast
inference, since we do not have multiple stages to predict each
building vertex sequentially.

B. Qualitative evaluation

(a) (b) (c)

Fig. 3: Qualitative results. Column a: ground truth. Column b
predicted Gaussian response. Column c: predicted building
polygons.

In Fig. 3, three image scene examples are shown. The first
row shows qualitative results of our method in easy scene,
where buildings are all visible. The second row shows the
performance in case of occlusion. The last row shows the
performance for buildings with inner “holes”. In general,
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our method produces visually satisfying results with regular
polygons, and works relatively well even in occlusion. Addi-
tionally, since we connect the vertices in a guided way, we do
not have falsely generated polygons as reported in [7].

V. CONCLUSION

In this paper, we propose a vertex aided building polygo-
nization method, which generates building polygons directly
from satellite images. Our method has good performance with
less model complexity, and is capable of processing image
scenes with multiple buildings. We will work further on this
method, e.g. testing with other satellite images in different
countries, improving location accuracy of the extracted ver-
tices.
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