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Abstract—Global Navigation Satellite Systems (GNSS) is a
popular positioning solution able to provide high accuracy,
integrity, reliability and high coverage. GNSS performance may
be enhanced through aiding systems such as Differential GNSS
(DGNSS), which aims to mitigate disruptive sources of error
by using corrections sent from a reference station. In this
paper, we investigate a method that provides performance results
comparable to those by DGNSS without the need for a reference
station. We propose the Massive User-Centric Single Difference
(MUCSD) algorithm, which leverages a set of collaborative
receivers exchanging observables and, potentially, their noisy
estimates of position and clock bias. MUCSD is implemented as
an iterative weighted least squares (WLS) estimator and its lower
accuracy bound, as given by the Cramér-Rao Bound (CRB),
is derived as a performance benchmark for the WLS solution.
Simulation results are provided as a function of the number of
collaborative users and the exchanged information uncertainty.
Results show that, without having to access costly-to-maintain
reference stations, MUCSD asymptotically outperforms DGNSS
as the number of collaborative receivers grows.

Index Terms—Differential GNSS, Collaborative Positioning,
Iterative weighted least squares, Cramér-Rao Bound

I. INTRODUCTION

A wide range of current and future applications demand reli-
able knowledge of user position [1], such as Intelligent Trans-
portation Systems (ITS) (traffic monitoring, drone tracking,
autonomous driving, Vehicle-to-Everything (V2X)), eHealth
(patient tracking, emergency equipment location) and Industry
4.0 applications [2]. The integrity, reliability, high coverage
and wide deployment provided by Global Navigation Satellite
Systems (GNSS) make it a popular solution for positioning
[3], [4]. GNSS is able to provide high accuracies under
certain conditions, which depend on factors like receiver qual-
ity, atmospheric effects, multipath propagation and satellite
availability [5]. With the objective of assisting GNSS under
the presence of these eventualities, receivers often make use
of aiding systems. This is the case of assisted GNSS (A-
GNSS), Real-Time Kinematic (RTK) and Differential GNSS
(DGNSS). Furthermore, to address the need for high accuracy
and continuity of position information required by the afore-
mentioned applications, cooperative positioning and sensor
data fusion help stabilizing absolute position and baseline
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estimates under challenging conditions (e.g., tunnels and urban
canyons) [6], [7].

GNSS-only cooperative and collaborative systems are also
explored in the state-of-the-art literature [8]–[10]. Cooperative
positioning (CP) exploits location information from additional
measurements between users and thus increases localization
accuracy. Cooperation between receivers may even help in
the task of interference management and classification [11],
[12]. One of the main challenges of standard CP solutions
is to provide accurate positioning when a subset of receivers
is in GNSS-denied conditions, for which multidimensional
scaling (MDS) techniques may be employed [13]. Some
studies focus on the theoretical limits of CP in the GNSS
field. For example, in [14], the Cramér-Rao Bound (CRB)
for hybrid CP where GNSS information is combined with
terrestrial range measurements is assessed. In [15], IVRs are
measured by using raw GNSS observables, which is a similar
approach to Differential GNSS (DGNSS), with the difference
that both nodes are mobile and there is no presence of a
reference or base station, plus only the inter-user range is
estimated. Furthermore, it is possible to extract auxiliary inter-
vehicular ranges under non-line-of-sight (NLOS) conditions
between collaborative receivers by relying only on GNSS
observables with Inter-Agent Range (IAR) techniques [10],
[16], which use angle measurements from the observation of
a common satellite by two collaborative receivers [17]. The
study of distributed data-allocation schemes for CP algorithms
is also of increasing interest, as it provides flexibility in data
processing [18]. Another important aspect of CP is related to
the privacy of collaborative agents, which was explored for
instance in [19].

The use of both code and carrier-phase measurements for
GNSS-only CP is also being investigated [20], [21]. Carrier-
phase measurements are more precise but given their high
computational cost, they are not always the first option when
it comes to GNSS CP algorithms. We focus on the algo-
rithms of the type presented in [8] and [9]. These algorithms
suggest that, by using only GPS pseudorange measurements,
positioning accuracy can be improved in cooperative vehicular
localization systems, which is critical for Cooperative Vehicle
Safety (CVS) applications. The standard Double Difference
(DD) pseudorange solution is adapted to low-end navigation
level GPS receivers for its wide availability in ground vehicles.
The carrier-to-noise density ratio (CN0) of raw pseudorange
measurements is taken into account for noise mitigation and is
used to build the covariance matrix of the proposed weighted
least squares (WLS) estimator.



Tropospheric and ionospheric delays are strong sources
of error that affect the performance of GNSS positioning
algorithms. Multi-frequency users can cancel the ionospheric
delay via the so-called ionosphere-free combination of GNSS
measurements, while single-frequency users depend on iono-
spheric correction models such as Klobuchar in the case of
GPS and Nequick in the case of Galileo. Alternatively, single-
frequency users can avoid using those model-based iono-
spheric corrections (which have inherent errors) when GNSS
augmentation techniques such as the classical Differential
GNSS (DGNSS) are used. DGNSS uses Single Difference
(SD) of pseudorange measurements between the target receiver
whose coordinates are unknown and a closeby base station
whose coordinates are known with very high accuracy. The
main objective of these techniques is to cancel, or at least
mitigate, sources of error introduced by the satellite clock
and ephemeris prediction, as well as atmospheric delays. The
potential error magnitude of such atmospheric sources is on
the order of 2 to 10 meters, while it can be reduced to
decimeter level after system augmentation is applied under
short baseline conditions (i.e., distance between base station
and receiver under 10 km) [22]. Although reference stations
are the standard solution to provide correction services, ref-
erence station networks are extended throughout large areas
and consequently they are costly to deploy and maintain. Also,
some harmful sources of error cannot be mitigated by DGNSS,
as they are uncorrelated between receivers, or even between
antennae of the same receiver. The latter is the case of errors
introduced by multipath propagation. These errors are out of
the scope of this research.

In this paper, we propose a collaborative DGNSS scheme
that does not necessarily require the presence of a well-located
reference station. Our objective is to derive and implement a
method that provides a performance enhancement comparable
to the one provided by DGNSS without the need for DGNSS
corrections, or equivalently, without the need for precise
knowledge about the position of a reference station. The
hypothesis posed in this research states that it is possible to
increase GNSS accuracy with corrections provided by N col-
laborative users that have partial knowledge of their positions.
We will assume that we are provided with noisy observations
of their position and clock bias (through, for instance, a simple
undifferenced single point positioning solution) and also with
their pseudorange measurements. The proposed Massive User-
Centric Single Difference (MUCSD) algorithm [23] aims to
estimate the unknown parameter vector of a target receiver,
which includes its position and clock bias.

The remainder of this paper is structured as follows. The
scheme, observation model and WLS estimator of the pro-
posed MUCSD algorithm for collaborative positioning are
described in Section II. The lower accuracy bound of the pro-
posed estimator, as given by the CRB, is derived in Section III.
Section IV presents the simulation results, where MUCSD
is compared against the lower accuracy bound, the classical
DGNSS performance and global DGNSS performance. Fi-
nally, Section V provides a conclusion.

Fig. 1. Proposed scheme for the Massive User-Centric Single Difference
(MUCSD) algorithm, where N collaborative receivers send (1) noisy obser-
vations of their position and clock bias γ̄n, (2) the error covariance matrix of
these noisy observations Σγn and (3) their pseudorange measurements Pn to
the cloud. The target user m also sends its pseudorange measurements Pm.

II. MASSIVE USER-CENTRIC SINGLE DIFFERENCE
(MUCSD)

In the proposed scenario, N collaborative receivers provide
(1) noisy observations of their position and clock bias, (2)
the error covariance matrix of these noisy observations and
(3) their pseudorange measurements to the cloud, where the
proposed Massive User-Centric Single Difference (MUCSD)
algorithm is running. An illustration of the proposed system
can be found in Figure 1. User m refers to the target
user with respect to which the differentiation of pseudorange
measurements is calculated. We denote γm =

[
pT
m, cδtm

]T
as the unknown parameter vector of user m, where pm =
[xm, ym, zm]

T corresponds to the true user position in ECEF
coordinates and cδtm is the receiver clock bias. The aim of
the MUCSD algorithm is to estimate the parameter vector γm

without any prior knowledge and also without the need of
DGNSS corrections sent by a reference station. It is assumed
that users are under short baseline conditions.

A. Observation Model

MUCSD computes single differentiation between the pseu-
dorange measurements of the target user m and the N col-
laborative receivers. The pseudorange measurements between
reference user m and satellite k can be expressed as

P k
m = ρkm + c

(
δtm − δtk

)
+ ηkm, (1)

where ρkm =
∥∥pm − pk

∥∥ is the true range between user m
and satellite k, δtm and δtk are the receiver and satellite
clock biases and ηkm = c∆T k

m + c∆Ikm + ϵkm, being ∆T k
m and

∆Ikm the non-dispersive tropospheric delay and the frequency-
dependent ionospheric delay terms, respectively. The term



ϵkm ∼ N (0, σ2
ρ) takes into account errors from various sources

such as multipath, ephemeris and relativistic effects. It is
considered that for a same receiver the realizations of this error
are independent and identically distributed (i.i.d.) for different
satellites. For simplicity, it is assumed that the pseudorange
error standard deviation σρ is the same for the target and
collaborative receivers.

Given the non-linearity in ρkm and if hk
m (γm) = ρkm +

c
(
δtm − δtk

)
, the expression in (1) can be linearized with

respect to γ = γ0 by a first-order Taylor approximation and
extended to the number of satellites in view K as

Pm ≈ h(γ0,m) +H(γm − γ0,m) + ηm, (2)

where H is the measurements model matrix from the conven-
tional GNSS positioning algorithms.

In the proposed scheme, the position and clock bias of
the collaborative users are known with an error modeled
as ηγn

∼ N (0, Σγn), which we refer to as collabora-
tive noise and whose covariance matrix is assumed to be
diagonal and common between collaborative receivers, i.e.,
Σγn

= σ2
γI4 ∀n = {1, . . . , N}. The collaborative noise

standard deviation σγ may vary depending on the positioning
solution used by the collaborative users. It would be potentially
interesting to address the benefit of using a fully-populated
covariance matrix instead of a diagonal one, exploring whether
the tradeoff between communication requirements and po-
sitioning performance gain could be showcased. The noisy
observations of a collaborative user n can be expressed as
γ̄n = [p̄T

n, cδt̄n]
T = γn + ηγ ∼ N (γn, σ

2
γI4), where γn

contains the user true position and clock bias. The pseudorange
measurements of user n can also be approximated by a first-
order Taylor expansion as

Pn ≈ h(γ̄n) +H(γn − γ̄n) + ηn

= h(γ̄n) +Hηγ + ηn,
(3)

where Pn has been linearized with respect to γ̄n so that
the error term ηγ shows in the expression and its contribution
to the covariance matrix can be calculated in a straightfor-
ward manner. Given the geometry of the problem, it can be
assumed that the line-of-sight (LOS) vectors of matrix H
are approximately the same between receivers (i.e., H from
(2) and (3) is approximately the same). Combining (2) and
(3), the single differentiation of pseudorange measurements
between the target receiver m and a collaborative receiver n
is calculated as ∆Pm,n = Pm −Pn, which results in

∆Pm,n ≈ h(γ0,m) +H(γm − γ0,m)− h(γ̄n) + ϵm,n, (4)

where the tropospheric and ionospheric delays have been
canceled due to the differentiation between two users in a
short baseline scenario (distances under 10 km). The error
vector ϵm,n = ϵm − ϵn − ϵγ includes the difference between
the pseudorange error of the two users, ϵm ∼ N (0, σ2

ρIK)
and ϵn ∼ N (0, σ2

ρIK), and also the resulting error from the

collaborative noise, ϵγ = Hηγ ∼ N (0, σ2
γHHT). A linear

observation model can be built from (4) as follows

ym,n = ∆Pm,n − h(γ0,m) + h(γ̄n)

= H(γm − γm,0) + ϵm,n .
(5)

Considering that Γ̄1:N =
[
γ̄1 γ̄2 . . . γ̄N

]T
, the model in

(5) can be expanded to the case of N user pairs as

y = ∆P− 1N×1 ⊗ h(γ0,m) + h(Γ̄1:N )

= A
(
γm − γ0,m

)
+ ϵ.

(6)

where A = 1N×1⊗H. These observations can be modeled
as y ∼ N (µ, Σ), where µ = Aγm if the term Aγ0,m is
moved to the left side of the expression in (6).

B. Error Covariance Matrix

The error vector ϵm,n can be expanded to N instances of
single differentiation as

ϵ = 1N×1 ⊗ ϵm − ϵ1:N − (IN ⊗H)ηγ1:N
. (7)

Therefore, the error covariance matrix has dimension NK ×
NK and can be calculated as

Σ = E[ϵϵT] = E[(1N×1 ⊗ ϵm)(1N×1 ⊗ ϵm)T] (a)

+ E[ϵ1:NϵT1:N ] (b)

+ E[((IN ⊗H)ηγ1:N
)((IN ⊗H)ηγ1:N

)T] (c) .

(8)

The first term (8) (a) corresponds to

E[(1N×1 ⊗ ϵm)(1N×1 ⊗ ϵm)T]

= JN×N ⊗ σ2
γIK ,

(9)

where JN×N is the all-ones matrix with dimension N × N .
Regarding the second term (8) (b) and considering the afore-
mentioned assumptions, we obtain E[ϵ1:NϵT1:N ] = σ2

γINK .
Finally, regarding the third term (8) (c) is derived as

E[((IN ⊗H)ηγ1:N
)((IN ⊗H)ηγ1:N

)T]

= (IN ⊗H)E[ηγ1:N
ηT
γ1:N

](ITN ⊗HT)

= σ2
γIN ⊗HHT.

(10)

Consequently, the error covariance matrix of the MUCSD
observation model can be expressed as

Σ = σ2(JN×N ⊗ IK + INK) + σ2
γIN ⊗HHT. (11)

C. Iterative WLS Solution

As observations are non-i.i.d., a weighting matrix W =
Σ−1 is required for the WLS estimator as

γ̂m = (ATWA)−1ATWy. (12)

Due to the non-linearity in the pseudorange measurement
expression, this is a non-linear Least Squares problem. Con-
sequently, it is necessary to solve the estimator iteratively by



linearizing the function at some initial guess γ0,m. A new
estimate at time j can be computed as

γ̂j+1
m =

[
p̂m

j+1

c ˆδtm
j+1

]

=

[
pj
m

0

]
+ (AjTWjAj)−1AjTWjyj ,

(13)

where the superscript j in Wj and Aj indicates that these
matrices change at each iteration, as they are dependent on
matrix H. The LOS vectors in matrix H draw an imaginary
line between the receiver and the satellite and consequently
change for different values of pj

m. For this stochastic model,
the WLS estimator is equivalent to the Maximum Likelihood
Estimator (MLE) because the observations belong to a Gaus-
sian distribution.

III. PERFORMANCE BOUND

The lower accuracy bound of the estimator in (12) as given
by the CRB is derived as a performance benchmark for the
proposed WLS solution. The Fisher Information Matrix (FIM)
is calculated as

I(γm) = −E
[
∂2 ln f(y|γm)

∂γm∂γT
m

]
= ATΣ−1A, (14)

and therefore the CRB for element [γ̂m]i can be obtained as

var ([γ̂m]i) ≥ CRB ([γ̂m]i)

=
[
(ATΣ−1A)−1

]
ii
.

(15)

MUCSD performance is also compared to DGNSS (i.e., when
a base station of known coordinates and clock bias is available)
and to what we refer to as Global DGNSS, which assumes that
there is available knowledge on the coordinates of N base
stations.

We also define a performance global bound (GB), which is
an ideal bound equivalent to the bound provided by DGNSS
under the assumption that the pseudorange error of the base
station is negligible. This equates to the MUCSD algorithm for
N = 1 (i.e., one collaborative user, which would correspond
to the reference station), with σγ = 0 and σρ = 0 for
the collaborative receiver, which provides the following lower
accuracy bound

var
([

γ̂GB
m

]
i

)
≥ CRBGB

([
γ̂GB
m

]
i

)
=

[
(HTΣ−1

GBH)−1
]
ii

s.t. ΣGB = diag
(
σ2
ρ

)
.

(16)

This bound differs from the DGNSS CRB, as with DGNSS the
pseudorange error variances are added up, and consequently
ΣDGNSS = diag

(
2σ2

ρ

)
.

IV. RESULTS

A. Experimental Setup

Experimental results are provided in this section. A scenario
is simulated with K = 7 satellites in view and in common
between the target user and the N collaborative users. A total
of N + 1 users are uniformly distributed with a maximum
inter-user distance of 200 meters for each ECEF coordinate.

In Section IV-B, the performance of the MUCSD estimator
provided in (12) is compared to (a) the estimator lower bound
in (15), (b) the DGNSS CRB and (c) the ideal global bound
described in (16) as a function of a pseudorange error standard
deviation σρ between 1 and 20 meters.

To demonstrate the effectiveness of the proposed algorithm,
results are shown for an increasing number of collaborative
users N in Section IV-C. The estimator in (12) is compared
to (a), (b), (c) and also to the performance provided by (d)
Global DGNSS. We discuss results obtained for N = 2, 10, 50
and 100 under varying σρ and also for an increasing number
of collaborative users up to 2000. MUSCD performance is
studied under different values of σγ , namely 0 (low), 10 and
20 (moderate), and 100 (high) meters.

B. Influence of the pseudorange noise

Figure 2 shows the performance of the MUCSD algorithm
as a function of the pseudorange error standard deviation σρ.
In the scenario proposed by the left subfigure, we are assuming
that the position and clock bias of the collaborative receivers
are known with a noise of standard deviation σγ = 10 meters.
Under these conditions and with only one collaborative user,
the MUCSD algorithm is not able to achieve the DGNSS
bound. However, for N = 2 and 10 the DGNSS bound is
achieved at approximately σρ = 7.5 and 3 meters, respectively.
The right figure scenario, with σγ = 100 meters, is a very
pessimistic case. However, the MUCSD algorithm is able to
outperform DGNSS for N = 50 and 100 users at σρ = 11.5 and
8.5 meters, approximately. This leads to the conclusion that
the algorithm introduced in this paper is able to reach DGNSS
performance regardless of the collaborative noise value, for an
increasing value of N collaborative receivers. Consequently,
MUCSD is further assessed as a function of N in the following
section for the two values of σρ indicated in Figure 2 (left),
being (a) σρ = 2 meters and (b) σρ = 15.

The MUCSD bound gets closer to the GB defined in (16)
for high values of N and σρ. For example, for σγ = 10 meters,
the variance difference between MUCSD and GB is around 3
meters and remains constant for N = 10 and σρ > 4 meters.
Moreover, it can be seen how MUCSD approaches GB for high
values of N and σρ even under very pessimistic conditions,
when σγ = 100 meters, for N = 50 and 100 collaborative
users.

C. Influence of the number of collaborative users

In Figure 3, the MUCSD algorithm performance under a
varying number of collaborative users N is shown for σρ = 2
(left subfigure) and σρ = 15 (right subfigure) meters. Results
provided by the global DGNSS model (i.e., assuming that
there is available knowledge on the coordinates of N base
stations) are the ones in green (σγ = 0 meters). The gap
between MUCSD and DGNSS is higher for low values of σρ

and mostly for low values of N . For instance, for σρ = 2
meters, and N = 5, DGNSS outperforms MUCSD when
σγ = 10 meters by approximately 3 meters. However, for
σρ = 15 meters and N = 5, MUCSD when σγ = 10
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Fig. 2. MUCSD performance under varying pseudorange error standard deviation σρ (between 1 and 20 meters) and for two values of collaborative noise
standard deviation σγ , namely 10 m (left) and 100 m (right). In the left figure, (a) and (b) indicate the two values of σρ under study in Figure 3.

meters outperforms DGNSS by approximately 15 meters. Also
when σρ = 15, even for moderate values of σγ such as 20
meters the MUCSD algorithm asymptotically reaches DGNSS
performance for a low number of collaborative users (less than
5). Nevertheless, achieving GB is more challenging, as both
Global DGNSS and MUCSD need N > 40 for that purpose.

When σρ = 2 and for a moderate value of σγ = 10 meters,
MUCSD reaches DGNSS for N = 20, but for σγ = 20
meters, we are not able to see when DGNSS performance
is achieved. In order to answer the question of whether the
MUCSD algorithm can reach DGNSS performance for low
values of σρ and high values of σγ, we can inspect Figure 4.

Figure 4 shows the performance of the MUCSD algorithm
under a varying number of collaborative users, but this time for
very high values of N (between 200 and 2000). Tested values
of collaborative noise standard deviation are also very high
(and pessimistic). For σγ = 75 meters, the MUCSD bound
reaches DGNSS for N = 1000 users, meaning that even with a
noise in collaborative observations of 75 meters, our algorithm
is able to properly estimate the position and clock bias of
the target receiver when N = 1000 collaborative receivers.
The same happens for σγ = 100 meters, which although
being a very high value of collaborative noise allows the
MUCSD algorithm to outperform DGNSS when N = 1800.
Consequently, we can state that the algorithm introduced
in this paper is able to asymptotically outperform DGNSS
regardless of the magnitude of collaborative noise, for an
increasing value of N .

V. CONCLUSION

This paper presented a novel algorithm for massive single
differentiation of observables that achieves DGNSS perfor-
mance without the need for a reference or base station. Instead,
we showed that it is possible to work with noisy observations
of N collaborative receivers whose positions are not necessar-
ily accurately known. The higher the value of N the better the

performance is, as shown (both theoretically and experimen-
tally). The algorithm, named as Massive User-Centric Single
Difference (MUCSD), is implemented as an iterative weighted
least squares (WLS) estimator which is known to be optimal
under Gaussian models. The results of MUCSD are compared
against the lower accuracy bound, provided by the Cramér-
Rao Bound (CRB), the classical DGNSS performance (that
is, single differences of a user with observables of a well-
located base station), the global DGNSS performance (as a
benchmark, this is the case of having N collaborative users
with accurate knowledge of their positions, as in the case
of having N base stations) and an ideal global performance
bound defined by the authors. Results show that the proposed
scheme asymptotically achieves DGNSS performance for an
increasing value of N and that it can even outperform it
depending on the values of N and the uncertainty in the
location of the collaborative users, asymptotically reaching an
ideal global performance.
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Barcelona, Departament de Teoria del Senyal i Comunicacions, Sep
2022. [Online]. Available: http://hdl.handle.net/2117/373227


