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Abstract
This study presents an approach to two-pulse 3D particle tracking using methods developed within the Shake-The-Box (STB, 
Schanz et al. in Exp Fluids 57:70, 2016) Lagrangian particle tracking (LPT) framework. The original STB algorithm requires 
time-resolved data and reconstructs 3D trajectories using a particle position prediction–correction scheme. However, dual-
frame 3D acquisition systems, consisting of a dual-cavity laser and double-frame cameras, remain commonly used for many 
particle-image-based investigations in a wide range of flow velocities and applications. While such systems can be used 
to capture short Multi-Pulse particle trajectories (Multi-Pulse STB, MP-STB—Novara et al. in Exp Fluids 57:128, 2016a; 
Novara et al. in Exp Fluids 60:44, 2019), the most widespread application is still a single-pulse illumination of each of the 
two available frames. As a consequence, 3D LPT approaches capable of dealing with two-pulse recordings are of high interest 
for both the scientific community and industry. Several methods based on various evaluation schemes have been developed 
in the past. In the present study, a Two-Pulse Shake-The-Box approach (TP-STB) is proposed, based on the advanced IPR 
algorithm presented by Jahn et al. (Exp Fluids 62:179, 2021), in combination with an iterative scheme of reconstruction and 
tracking, ideally with the help of a predictor gained by Particle Space Correlation. It basically constitutes a lean version of 
the MP-STB technique, with lower demands on experimental setup and processing time. The performances of TP-STB are 
assessed by means of comparison with the results from the time-resolved STB algorithm (TR-STB) both concerning synthetic 
and experimental data. The suitability of the algorithm for the analysis of dual-frame 3D particle imaging datasets is assessed 
based on the processing of existing images from a tomographic PIV experiment from 2012. The comparison with the results 
published by Henningsson et al. (J R Soc Interface 12:20150119, 2015) confirms the capability of TP-STB to accurately 
reconstruct individual particle tracks despite the limited time-resolution information offered by two-frame recordings.

1  Introduction

The problem of reconstructing the three-dimensional posi-
tions of particle flow tracers from their projections on mul-
tiple cameras lies at the heart of several 3D particle-image-
based velocimetry and Lagrangian particle tracking (LPT) 
measurement techniques (Schröder and Schanz 2023).

While cross-correlation-based techniques such as tomo-
graphic-PIV (Tomo-PIV, Elsinga et al. 2006) make use of 
algebraic methods (e.g., MART, Herman and Lent 1976) to 
reconstruct particles as intensity peaks in a discretized voxel 
space, triangulation-based methods (3D-PTV, Nishino et al. 
1989, Maas et al. 1993 and Iterative Particle Reconstruc-
tion, IPR, Wieneke 2013, Jahn et al. 2021) leverage epipolar 

geometry to reconstruct individual particles as positions and 
intensity values in the 3D domain.

Despite the inherent differences concerning accu-
racy, robustness and computational cost between the two 
approaches, in both cases the 3D reconstruction represents 
a bottleneck when the spatial resolution (i.e., particle image 
density, indicated in particles-per-pixel, ppp ) of the measure-
ment is considered.

In fact, as the number of particles to be reconstructed 
increases (assuming constant properties of the imaging sys-
tem), the reconstruction process becomes increasingly dif-
ficult due to the underdetermined nature of the problem. This 
typically results in a lower number and positional accuracy 
of the reconstructed particles, as well as an increasing num-
ber of spurious particles (ghost particles, Elsinga et al. 2011) 
which affect the accuracy of the measurement.

As a consequence, during the last decade, several meth-
ods have been developed to increase the performances of the 
reconstruction technique; an overview of these developments 
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can be found in Scarano (2012) and Jahn et al. (2021). 
Among these methods, a number of techniques have been 
proposed to improve the accuracy of the reconstruction of 
instantaneous recordings by exploiting the coherence of the 
particle tracers moving with the flow over two or more reali-
zations in the recording sequence.

Concerning cross-correlation-based methods, the Motion 
Tracking Enhancement technique (MTE, Novara et al. 2010) 
proposed the combined use of two or more recordings (for 
double-frame and time-resolved acquisition, respectively) to 
produce an enhanced initial guess for the Tomo-PIV alge-
braic reconstruction algorithm; for time-resolved recording 
sequences, a time-marching approach was introduced by 
Lynch and Scarano (2015) (sequential MTE, SMTE).

On the other hand, when Lagrangian particle tracking 
techniques are considered, the Shake-The-Box algorithm 
(STB, Schanz et al. 2013b, 2016) introduced a predictor/
corrector scheme to integrate the temporal domain into the 
IPR-based reconstruction process. While Wieneke (2013) 
reported 0.05 ppp as an upper limit for IPR (already one 
order of magnitude larger than typically employed for 
3D-PTV single-pass triangulation), STB can deliver practi-
cally ghost-free tracks at particle image densities NI exceed-
ing 0.15 ppp (Huhn et al. 2017; Bosbach et al. 2019); particle 
image densities up to NI = 0.2 ppp have been successfully 
tackled for synthetic data (Sciacchitano et al. 2021). The 
combination of accurate LPT results from STB and data 
assimilation algorithms (FlowFit, Gesemann et al. 2016, 
VIC+, Schneiders and Scarano 2016) allows to further 
enhance the spatial resolution of the measurement and pro-
vides access to the spatial gradients (i.e., flow structures) and 
to the instantaneous 3D pressure field.

When high-speed flows are considered, time-resolved 
sequences of recordings are not available due to the fre-
quency limitation of current acquisition systems. In order to 
overcome this limitation and extend the advantages of STB 
to higher flow velocities, the use of multi-pulse systems (i.e., 
capturing four illuminations with a dual imaging setup) in 
combination with an iterative STB approach (Multi-Pulse 
Shake-The-Box, MP-STB) was proposed by Novara et al. 
(2016a); an iterative strategy based on the sequential appli-
cation of IPR and particle tracking is employed to progres-
sively reduce the complexity of the reconstruction problem. 
The use of multi-exposed frames (Novara et al. 2019) allows 
to acquire multi-pulse recordings for MP-STB with a single 
imaging system.

While performing LPT with STB requires either the avail-
ability of time-resolved recordings (TR-STB) or the use of 
a relatively complex multi-pulse setup for MP-STB, dual-
frame 3D acquisition systems, consisting in a dual-cavity 
laser and a system of double-frame cameras, are commonly 
used for many particle-image-based investigations in a wide 
range of flow velocities and applications. As a consequence, 

particle tracking methods for two-pulse recordings are of 
high interest for the scientific community as they allow to 
extend the benefits of accurate LPT analysis to a wider range 
of applications and users and enable the processing of exist-
ing datasets recorded with dual-frame systems (i.e., older 
Tomo-PIV experiments).

These considerations motivated a number of attempts 
to perform Lagrangian particle tracking with dual-frame 
recordings. Fuchs et al. (2016) proposed a hybrid method 
that leverages tomographic PIV and 3D particle tracking. An 
iterative algorithm based on IPR reconstruction, 3D cross-
correlation and two-pulse tracking was used by the DLR 
Göttingen group to analyze the single-exposed double-frame 
recording of Case C of the 4th International PIV Challenge 
in 2014 (Kähler et al. 2016). The same synthetic dataset 
was analyzed by Jahn et al. (2017) adopting the simultane-
ous IPR reconstruction of the two frames combined with 
a particle-matching-based filtering technique. A non-iter-
ative 2D/3D particle tracking velocimetry algorithm was 
proposed by Fuchs et al. (2017); the authors reported that 
the technique was successful in tackling images with a par-
ticle image density up to 0.06 ppp . Lasinger et al. (2020) 
presented a variational approach to jointly reconstruct the 
individual tracer particles and dense 3D velocity fields. 
A novel technique for performing 3D-PTV from double-
frame images (DF-TPTV) has been proposed by Cornic et al. 
(2020) where particle tracers are reconstructed on a voxel 
grid with a sparsity-based method and then tracked with the 
aid of a low-resolution displacement predictor from corre-
lation; the algorithm has been applied to experimental data 
from a round jet in air at 0.06 ppp.

Recently, an advanced version of the IPR algorithm 
has been proposed (Jahn et al. 2021), which significantly 
improves the performances of the reconstruction; in syn-
thetic test cases, single recordings can be reconstructed up to 
a particle image density of 0.14 ppp with a very low occur-
rence of ghost particles even at realistic conditions concern-
ing the image noise.

In the present study, a Two-Pulse STB approach (TP-
STB) is presented which makes use of the enhanced IPR 
algorithm combined with the iterative STB strategy com-
monly adopted for MP-STB (Novara et al. 2016a, 2019), and 
aided by velocity field prediction from Particle Space Cor-
relation (PSC, Novara et al. 2016b). The TP-STB algorithm 
was already successfully applied to analyze two-pulse syn-
thetic images from the First Challenge on Lagrangian Par-
ticle Tracking and Data Assimilation (Leclaire et al. 2021), 
conducted in the framework of the European Union’s Hori-
zon 2020 project HOMER (Holistic Optical Metrology for 
Aero-Elastic Research). Results presented in Sciacchitano 
et al. (2021) showed that, using TP-STB, nearly the totality 
of particle tracers could be reconstructed up to 0.16 ppp , 
with an almost negligible number of spurious ghost particles 
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and a very high particle position accuracy (positional mean 
error magnitude of approximately 0.06 px).

In the present study the working principle and processing 
scheme of TP-STB are thoroughly described and its perfor-
mances further characterized.

The TP-STB algorithm is presented in Sect. 2. A per-
formance assessment is carried out in Sect. 3 based on 
the application of TP-STB to two recordings from a time-
resolved sequence, where the TR-STB results provide a ref-
erence for the ground-truth solution. Both synthetic data 
from a significantly more challenging (higher image noise 
level) database generated within the HOMER project (Sciac-
chitano et al. 2022) and experimental data from a Rayleigh 
Bénard convection investigation (Weiss et al. 2022) have 
been used for the assessment (Sects. 3.1, 3.2, respectively). 
Finally, the TP-STB algorithm is applied to an existing data-
set from a double-frame tomographic PIV investigation of 
the wake flow behind a flying desert locust (Henningsson 
et al. 2015); results from the LPT analysis, as well as the 
comparison with velocity fields from Tomo-PIV are pre-
sented in Sect. 4.

2 � Iterative STB for two‑pulse recordings

The iterative particle reconstruction/tracking strategy for 
TP-STB is shown in Fig. 1-left; the working principle of 
the algorithm is based on the MP-STB processing technique 
from Novara et al. (2016a, 2019). The 3D particle positions 
and intensities are reconstructed by means of advanced 
IPR (Jahn et al. 2021) for both recordings in the two-pulse 
sequence. Then, two-pulse tracks are identified, possibly 
with the aid of a velocity field predictor, between the two 
reconstructed 3D particle fields (see Sect. 2.1).

As the position of ghost particles mainly depends on 
geometrical properties (i.e., relative position of the tracers 

with respect to the cameras lines-of-sight), depending on 
the spatial velocity gradients in the investigated domain, 
the displacement of spurious particles is typically not 
coherent with the flow field (Elsinga et al. 2011). For this 
reason, only the particles that can be tracked over the two 
recordings are retained; unmatched particles (in gray in 
Fig. 1-left), possibly ghosts, are discarded (i.e., filtering 
step).

The positions of the retained particles are back-pro-
jected onto the image plane (projected images) and sub-
tracted from the original recordings (recorded images) to 
obtain the residual images; the IPR reconstruction, track-
ing step and evaluation of projected/residual images con-
stitute a single STB iteration. The residual images are used 
as input for another TP-STB iteration, starting with an IPR 
reconstruction of the residual particle field.

Assuming that a number of tracks can be successfully 
identified in the first STB iteration, the residual images 
will exhibit a lower particle image density than the origi-
nal recordings, therefore offering a progressively easier 
reconstruction problem for the following iterations. If a 
particle is erroneously discarded during the filtering step 
(e.g., untracked particles due to insufficiently large search 
radii or to an inaccurate displacement predictor field) the 
related particle image will remain on the residual images, 
making it possible for the particle to be reconstructed 
again and tracked at a subsequent iteration. The two-
pulse tracks identified in each iteration are added to the 
ones already known and all will be used to determine the 
residual images for yet another iteration.

The number of STB iterations required to achieve con-
vergence depends on the experimental and imaging con-
ditions (i.e., particle image density and diameter, number 
of cameras, image quality); the effect of this processing 
parameter is discussed in the performance assessment 
(Sect. 3).

Fig. 1   Left: iterative processing strategy for TP-STB; two-pulse tracks are indicated in black, untracked particles in gray. Right: particle tracking 
scheme without (top) and with (bottom) the aid of a displacement predictor (orange arrow)
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2.1 � Particle tracking strategy

The two-pulse particle tracking strategy is shown in Fig. 1-
right. A search area is established around the reconstructed 
particles in the first pulse ( t1 ); if a particle from t2 is found 
within the search area, a track candidate is identified. If 
a predictor for the displacement field is available (orange 
arrow in Fig. 1-right), the search radius �2p can be reduced 
to avoid ambiguities.

For each candidate, a cost function is defined as the 
standard deviation of the particle intensity along the track 
candidate ( �I ); if a velocity predictor is available, the mag-
nitude difference between the velocity estimated from the 
track candidate and that from the predictor ( �pred ) is inte-
grated in the cost function. The relative contribution of 
these two parameters to the cost function can be weighted 
based on the confidence in the particle peak intensity con-
sistency and in the accuracy of the predictor field.

Two-pulse tracks are obtained by filtering the track 
candidates to solve possible ambiguities; among multi-
ple candidates sharing the same particle, the one which 
minimizes the cost function is retained, while the others 
are discarded.

An additional filtering of the tracks can be applied by 
defining maximum accepted values for the cost function 
terms; tracks exhibiting values exceeding these thresholds 
( �max

I
 and �max

pred
 ) are discarded from the reconstruction in 

order to avoid possible outliers.
For the first TP-STB iteration, an estimate of the instan-

taneous 3D velocity field to be used as a displacement 
predictor can be obtained by analyzing the two 3D point 
clouds reconstructed from IPR with the Particle Space 
Correlation algorithm (PSC, see Sect. 2.2).

The PSC consists of a 3D cross-correlation approach in 
the particle space; unlike for tomographic PIV, where the 
cross-correlation is applied to the voxel space, the PSC 
makes use only of the discrete particle locations and inten-
sities as obtained from IPR. A trilinear interpolation is 
used to evaluate the predicted displacement from the PSC 
result at the location of the reconstructed particles (orange 
arrow in Fig. 1-right).

Due to the large cross-correlation volumes, the resulting 
velocity field from PSC ( uPSC ) is typically strongly modu-
lated; for subsequent STB iterations, a displacement pre-
dictor can be obtained by interpolating the scattered veloc-
ity measurements from the tracks identified in the previous 
iterations ( utracks ). On the other hand, a constant shift can 
be used as a displacement predictor ( uconst ); uconst = 0 cor-
responds to a situation where no displacement predictor is 
used (Fig. 1-right-top).

A different set of particle tracking parameters (i.e., 
search radius �2p , cost function parameters �I, �pred , 

relative weights and threshold values ( �max
I

 , �max
pred

 ), the use 
and choice of velocity predictor ( uconst , uPSC, utracks )) can 
be employed for each TP-STB iteration, depending on the 
experimental conditions and image quality. Alternatively, 
multiple tracking iterations can be performed on the same 
reconstructed particle fields, typically adopting increas-
ingly relaxed tracking parameters as the predictor field 
from PSC is replaced by the more accurate result from the 
interpolation of tracks reconstructed at previous tracking 
iterations. This option is typically adopted in case a single 
TP-STB iteration is performed.

2.2 � Particle Space Correlation

A key aspect of the tracking strategy of the Two-Pulse STB 
algorithm is the availability (or the lack) of a predictor for 
the particle displacement. As illustrated in Fig. 1-right, the 
use of an educated guess for the particle position in the 
second frame allows for the reduction of the search radius 
employed for the nearest neighbor search during the particle 
matching step. A smaller search area greatly reduces the pos-
sible ambiguities in the determination of the particle tracks 
candidate, resulting in a lower chance in creating spurious 
tracks (ghosts), particularly in high particle image density 
conditions.

While tomographic reconstruction and 3D cross-corre-
lation would surely accomplish the purpose of providing 
a low spatial resolution estimate to be used as a predictor, 
the computational cost of the dense voxel-based reconstruc-
tion approach would nullify the benefits offered by LPT 
approaches in terms of computational efficiency.

As a result, in the framework of the development of the 
Multi-Pulse STB algorithm (which provided the basis for 
the current two-pulse approach) Novara et al. (2016b) intro-
duced the Particle Space Correlation (PSC) method. The 
PSC makes use only of the particle peak locations and inten-
sities as obtained from IPR to provide a lower resolution 
velocity field to be used as a predictor for particle tracking.

The PSC technique relies on a cross-correlation approach 
similar to that typically used in 3D PIV; after the IPR recon-
struction of the two pulses (frame 1 and 2 at times t1 and 
t2 , respectively), a Cartesian grid is defined. For each grid-
point, a 3D interrogation volume is established and the par-
ticles belonging to such volume are identified in the two 
IPR objects.

For each particle in the first frame, the possible displace-
ments (Fig. 2-left) are computed as:

where i and j indicate the particles at t1 and t2 , respectively, 
and k the number of possible matches.

Δ�⃗xk = �⃗xj − �⃗xi
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For each particle pair, the product of the particle peak 
intensities is computed as:

For each interrogation volume the possible displace-
ments are collected into a 3D map (2D in the example in 
Fig. 2-right) in the space of the particle shifts. Assuming 
that the particles within the interrogation volumes exhibit 
a rather uniform displacement, a cluster of points in the 
map of the shifts indicates the location of the most probable 
displacement.

The search for the location of the cluster is limited to a 
search area defined by the search radius �s ; by doing so, the 
size of the search area is decoupled from that of the inter-
rogation volume, allowing for a larger number of particles to 
contribute to the same peak without resulting in a significant 
increase of the computational cost needed to identify the 
cluster.

In the current implementation of the PSC, the search for 
the cluster position is performed by discretizing the search 
area in cubic elements, typically with an edge length of a 
pixel in world-space (a voxel); a Gaussian blob, typically 
of 3 × 3 × 3 elements and with a peak value proportional 
to I∗

k
 , is positioned at each shift location (orange dots in 

Fig. 2-right). By adding the contribution of each blob to 
the discretized map a peak is formed at the most probable 
displacement location; the signal-to-noise ratio is enhanced 
thanks to the I∗

k
 factor which ensures a higher weight for the 

contributions of the brighter particles. As for typical PIV 
evaluations, a Gaussian fit of the cross-correlation peak is 
applied to retrieve the three components of the displacement 
vector with sub-pixel accuracy.

An alternative method for the detection of the cluster 
location in the map of the shifts can be envisioned. A clus-
tering algorithm (HDBSCAN, McInnes et al. 2017), together 
with a weight of each point based on the I∗

k
 factor, could 

be employed to identify the position of the most probable 

I∗
k
= Ij ⋅ Ii

displacement cluster without the need for a computationally 
expensive discretization of the search volume.

Nevertheless, the computational cost of the PSC, even 
with the discretization approach, is still not comparable to 
that of the Tomo-PIV analysis, as no dense reconstruction 
of the particle field on a voxel grid is required.

An iterative procedure analogous to the volume defor-
mation multi-grid cross-correlation technique (VODIM, 
Scarano and Poelma 2009) is applied to progressively reduce 
the interrogation volume size, therefore increasing the spa-
tial resolution of the velocity field from PSC. Unlike for the 
case of a dense voxel intensity field, the volume deformation 
step within the PSC is not computationally expensive, as the 
individual particle peak locations are simply shifted accord-
ing to the previously estimated velocity field.

As a consequence, a quick trilinear interpolation is 
required, as opposed to a costly interpolation of the full 
voxel space. Furthermore, the search radius is progressively 
reduced after the first iteration, which further reduces the 
computational cost.

3 � Performance assessment: comparison 
with time‑resolved STB

Typically, the performances of a novel algorithm are 
assessed by applying it to a dataset where the ground-truth 
solution is known (i.e., synthetically generated dataset).

On the other hand, the results presented in Sciacchitano 
et al. 2021 concerning the assessment of STB applied to 
time-resolved recordings, show that TR-STB is capable to 
provide a close-to-perfect reconstruction up to 0.2 ppp with 
a very low number of ghost particles ( < 0.1% ) and a high 
particle peak positional accuracy (positional mean error 
magnitude < 0.05 px).

As a consequence, it can be assumed that, under a wide 
range of particle image densities and imaging conditions, the 
results offered by TR-STB provide an accurate reference for 

Fig. 2   Working principle of the Particle Space Correlation in a 
reduced-dimensionality 2D example. Left: particles within the inter-
rogation volume in the first and second frame (in black and gray, 

respectively). Right: map of the possible particle displacements; �s 
indicates the search radius while the black dotted circle the clustering 
around the most probable displacement (black arrow)
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the actual ground-truth 3D particle distribution. Therefore, 
in the present study, instead of creating a dedicated syn-
thetic test-dataset, the performance assessment of TP-STB 
is carried out by analyzing a two-pulse recording sequence 
extracted from a longer acquisition, where the reference 
solution is obtained from a TR-STB analysis in the con-
verged state (Schanz et al. 2016).

This approach offers the twofold advantage of allow-
ing the assessment of the performances of TP-STB based 
on a synthetic dataset where the actual ground-truth is not 
known (HOMER internal database, Sciacchitano et  al. 
2022, Sect. 3.1)—and therefore without any bias due to pre-
knowledge of parameters—and on experimental data from 
a time-resolved 3D investigation (Rayleigh Bénard convec-
tion, Weiss et al. 2022). The experimental images from the 
RBC investigation are of a superior quality when compared 
to those typically encountered in air experiments. In order to 
also assess the performance on TP-STB in more demanding 
imaging conditions, we use a synthetic test case that exhibits 
a high noise level and tracers’ diameter polydispersity. Addi-
tionally, we include another experimental case with images 
from a dual-frame investigation in air (see Sect. 4).

3.1 � Synthetic dataset: HOMER Lagrangian particle 
tracking database

A detailed description of the HOMER LPT database can be 
found in Sciacchitano et al. (2022); synthetic images from a 
3D imaging system have been generated based on a simula-
tion of the air flow around a cylinder in ground effect, where 
the wall contains a flexible oscillating panel. Among the 
several cases within the database, a time-resolved sequence 
of recordings from a four-camera system is produced, where 
particle images with a significant noise level have been 
generated at particle image densities of NI = 0.05 ppp and 
NI = 0.12 ppp . For each particle image density, a two-pulse 
sequence is analyzed by means of TP-STB; as mentioned 
above, performances in terms of track yield and recon-
struction positional accuracy are assessed against a result 
extracted from a converged time-resolved STB (Schanz et al. 
2016) analysis.

The simulated free-stream velocity V∞ is 10m∕s , the cyl-
inder has a diameter D of 10mm and it is located 15 mm 
upstream of the upstream edge of the 100 × 100 mm2 panel 
at a distance of 10mm from the undeformed wall location 
( Z = 0mm ). The X axis is aligned with the streamwise 
direction, the wall-normal Z axis is directed away from the 
wall and the spanwise Y  axis orientation follows the right-
hand rule.

The measurement volume spans 100 × 100 × 30mm3 in 
the X, Y  and Z directions, respectively; the 1920 × 1200 px 
camera sensors have a pixel pitch of 10 μm . The four cameras 
are arranged in in-line configuration with viewing angles of 
−30◦,−10◦,+10◦ and +30◦ with respect to the Z axis; the 
average digital resolution is approximately 10.94 px∕mm . 
The time-resolved sequence (TR) contains 251 recordings 
with a time separation between pulses of 40 μs (recordings 
183–184 have been chosen for the TP-STB analysis); the 
maximum particle image shift is approximately 4.4 px.

The relatively low particle displacement between the two 
recordings would allow for the selection of a larger interval 
between the instants chosen for the TP-STB analysis (i.e., 
recordings 183–185 for Δt = 80 μs and maximum shift of 
8.8 px , or recordings 183–186 for Δt = 120 μs and maximum 
shift of 13.2 px ). However, for sake of comparison with the 
results reported by Sciacchitano et al. (2022), the authors 
decided to keep the time separation originally proposed 
for the two-pulse analysis ( Δt = 40 μs ); the capability of 
TP-STB to tackle more realistic particle shifts typical of 
dual-frame investigations (10–15 px)are demonstrated for 
the experimental applications presented in Sects. 3.2 and 4, 
where the maximum particle displacement is approximately 
11 and 10.5 px , respectively.

Approximately 59, 400 and 140, 000 tracks are identified 
by the TR-STB analysis for the 0.05 and 0.12 ppp cases; 
details on the TR-STB analysis can be found in Sciacchitano 
et al. (2022).

A detail of the original particle images for camera 2 is 
presented in Fig. 3 for both particle image densities. The 
position of the detected particle images peaks is indicated 
with red markers (approximately 100 and 140 peaks for 0.05 
and 0.12 ppp , respectively), while the locations of the back-
projection of the particles tracked by TR-STB is marked 

Fig. 3   Details of particle images 
at 0.05 (left) and 0.12 ppp 
(right); red markers indicate the 
particle image peaks detected 
on the original images (first 
IPR iteration), while the blue 
markers show the position of 
the back-projected tracked par-
ticles from TR-STB (reference 
solution)
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in blue (approximately 150 and 330 particles for 0.05 and 
0.12 ppp , respectively). The lower number of detected peaks, 
particularly for the higher seeding density case, confirms 
how peak detection algorithms, as well as the human eye, 
struggle in identifying individual peaks where a significant 
particle image overlap occurs. The very low percentage of 
ghost tracks in the reference TR-STB reconstruction (0.1 
and 0.9% for the low and high seeding density cases, respec-
tively—Table 3 in Sciacchitano et al. 2022) ensures that no 
significant portion of the back-projected peaks are caused by 
spurious particles in the reconstruction.

To counteract the relatively high image noise level, a con-
stant value of 100 counts is subtracted from the recorded 
images before TP-STB processing. The main processing 
parameters are summarized in Table 1; the TP-STB analysis 
was carried out applying 11 STB iterations. The IPR settings 
have been optimized for the 0.12 ppp case and applied for 
the lower seeding density as well for sake of consistency 
and ease of description; however, for the 0.05 ppp case a 
leaner processing would have sufficed to produce results of 
the same quality.

A single 3D particle field is reconstructed in about 1 and 
2 min for 0.05 and 0.12 ppp , respectively; as the particle 
image density on the residual images decreases with the STB 
iterations so does the IPR processing time, depending on the 
fraction of tracks successfully reconstructed in the previous 
iterations. For a detailed description of the IPR algorithm 
and settings used within the TP-STB the authors refer to 
Jahn et al. 2021.

The displacement field predictor was estimated by PSC 
with a final cross-correlation volume of 20 × 20 × 5 px 
(approximately 1.8 × 1.8 × 0.45mm3 ). The search for two-
pulse track candidates was conducted without the aid of a 
predictor field (search predictor in Table 1 set to uconst = 0 ); 
instead, a large enough search radius ( 8 px ) was used which 
ensures that even the largest particles displacements with the 
time separation between the pulses can be captured. On the 
other hand, the displacement predictor fields uPSC and utracks 

have been used to evaluate the cost function term �pred (resid-
ual predictor in Table 1); a linearly increasing value from 1 
to 10 px of �max

pred
 is used to filter out possible outliers.

The performance assessment of the TP-STB results fol-
lows the same approach presented in Sciacchitano et al. 
(2021, 2022); a reconstructed particle is considered cor-
rect (i.e., hit) if a reference particle (from TR-STB) is found 
within a radius of 1 px . On the other hand, a particle is con-
sidered a ghost either when no reference particle is present 
in its vicinity, or when a found reference particle has already 
been matched to a closer reconstructed particle (i.e., when 
two particles are reconstructed near a reference particle, the 
closest one is labeled as hit and the other one as ghost).

As only particles that could be tracked between the two 
pulses are considered for the analysis, the terms particle 
and track are used interchangeably in the present document.

Two processing strategies have been implemented, 
namely the iterative and the single-iteration TP-STB strat-
egy. The iterative TP-STB follows the scheme presented in 
Fig. 1-left, where a new set of particle images is recon-
structed with IPR at each iteration (original recordings for 
the first TP-STB iteration, and residual images for the fol-
lowing ones). At each of the 11 TP-STB iterations, a single 
particle tracking iteration is performed making use of a dif-
ferent set of parameters; the value of �max

pred
 is progressively 

increased when the PSC predictor is replaced by a more 
accurate one based on the interpolation of previous tracks. 
The processing parameters are indicated in Table 1.

On the other hand, for the single-iteration TP-STB, the 
IPR reconstruction is performed only once starting from the 
recorded images, and the processing is concluded after the 
particle tracking step (i.e., without the iterative evaluation 
of back-projected and residual images shown in Fig. 1-left-
bottom). The same particle tracking parameters shown in 
Table 1 are employed. The 11 tracking iterations are per-
formed on the same 3D particle clouds from the single 
IPR reconstructions of the two pulses; after each tracking 

Table 1   Summary of TP-STB 
processing parameters for the 
synthetic test case

STB iteration(s) 1 2–11

Main IPR parameters
  Number of outer iterations 50

  2D peak intensity threshold [counts] 60

  Allowed triangulation error [px] 0.4–1.0 (linearly increasing)
  Number of shaking iterations 8

Particle tracking parameters
  Predictor (search/residual) uconst = 0/uPSC uconst = 0/utracks
  Search radius �2p [px] 8.0

  Cost function terms (weight factor) �I(0.5)∕�pred(1.0)

  �max
I

 [counts]/�max
pred

 [m/s] ∞∕1.0 ∞∕1.0–10.0 
(linearly 
increasing)
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iteration, the tracked particles are removed from the recon-
struction and the tracking continues on the remaining parti-
cles using the updated parameters set.

The fraction of correct and ghost particles as obtained 
from the analysis of both particle image density levels is 
presented in Fig. 4 as a function of the number of STB itera-
tions applied. For the iterative TP-STB case (solid lines with 
markers) the rather conservative choice for the tracking 
parameters used for the first iterations (i.e., �max

pred
 ) is respon-

sible for the lower number of reconstructed tracks attained 
for STB iterations 1–5. The star markers and dotted lines 
refer, instead, to the final result of the single-iteration TP-
STB processing (i.e., after the last particle tracking 
iteration).

Due to the already excellent performances of the single-
recording enhanced IPR (Jahn et al. 2021), the beneficial 
effect of the iterative STB scheme depicted in Fig. 1-left 
can only be appreciated at the higher seeding density condi-
tions; for 0.12 ppp , 4% more of the ground-truth tracks can 
be correctly identified when an iterative approach is adopted 
( ≈ 86% ) with respect to the single-iteration result ( ≈ 82%).

The relatively small advantage of the iterative over the 
single-iteration approach can be attributed to the advanced 
IPR algorithm used for reconstruction (Jahn et al. 2021), 
which is highly effective at this seeding density and noise 
level. Cases with even more particles, higher noise levels 
or less controlled imaging conditions (like in most experi-
ments) will show a higher gain from the iterative processing.

On the other hand, the ghost particle level remains very 
low for both seeding densities ( 0.2 and 0.5% for 0.05 and 
0.12 ppp , respectively). When the fraction of spurious parti-
cles is considered, it is interesting to note that the ghost level 
for a single-recording IPR reconstruction (i.e., no particle is 
discarded when failing to build a two-pulse track) is approxi-
mately 0.6 and 3.2% for 0.05 and 0.12 ppp , respectively. This 

result shows once again the impact of exploiting the time 
information embedded in a sequence of recordings.

Given the better performances in terms of tracks yield, 
the results presented in the remainder of this section refer to 
the iterative TP-STB processing results; the fraction of cor-
rectly reconstructed tracks in the converged state is around 
91% ( 54, 300 tracks) and 86% ( 120, 400 tracks) for 0.05 and 
0.12 ppp , respectively.

The analysis of the HOMER Lagrangian Particle Track-
ing and Data Assimilation database presented in Sciacch-
itano et al. (2022) allows to put these values in relation to 
the actual ground-truth, despite it not being available to the 
authors. In fact, Table 3 in Sciacchitano et al. (2022) reports 
that TR-STB is capable of accurately reconstructing approxi-
mately 98 and 96% of the actual particle tracks at 0.05 and 
0.12 ppp , respectively. Based on these values, the perfor-
mances of TR-STB with respect to the actual ground-truth 
can be estimated as 89 and 82%, respectively.

It should be noted that the missing particles for the 
time-resolved case are mainly due to the high image noise; 
because of the simulated particle diameter polydispersity, a 
significant portion of the particle images cannot be detected 
on the recordings because their peak value drops below the 
noise level (Fig. 3).

On the other hand, the lower performances at higher seed-
ing density, are mainly due to the increase in overlapping 
particle images which pose a challenge for the reconstruc-
tion approach, particularly when no time-resolution is avail-
able, as confirmed by the relatively poor performances of 
the peak detection algorithm when applied to the recorded 
images shown in Fig. 3. The fact that more than 80% of the 
ground-truth particles can be found despite the weak perfor-
mance of the peak detection on the original images confirms 
the ability of the iterative processes to reveal previously hid-
den peaks by subtracting the images of known particles.

Fig. 4   Fraction of reconstructed tracks from TP-STB with respect to 
the number of tracks from the reference TR-STB solution for both 
particle image densities. The fraction of correctly reconstructed 
tracks (hits in blue) and of ghost tracks (ghosts in orange) are shown 

for a reconstruction using only a single iteration (star marker and dot-
ted line) and for the complete iterative TP-STB strategy (solid lines 
and markers)
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The analysis of the 3D particle peak positional accuracy 
is carried out by comparing the TP-STB results with the ref-
erence TR-STB solution making use of the matched particles 
(hits) for both seeding densities; the histograms of the errors 
in the streamwise ( X ) and wall-normal ( Z ) directions are 
presented in Fig. 5. The results in the spanwise component 
( Y  ) are not shown as they resemble closely those for the X 
direction. For the low seeding density case (Fig. 5-left), the 
root-mean-square (RMS) errors for the X and Z positions 
are approximately 4.2 μm ( 0.05 px ) and 11 μm ( 0.12 px ), 
respectively; the 2.6 factor between the accuracy in the two 
directions can be ascribed to the viewing direction of the 
imaging system being aligned with the wall-normal direc-
tion ( Z ). For the 0.12 ppp case, due to the higher complex-
ity of the reconstruction problem (i.e., overlapping particle 
images), as expected, the positional errors increase to 5.5 μm 
( 0.06 px ) and 14 μm ( 0.16 px ) for X and Z , respectively. The 
results shown in Fig. 5 compare well with those presented 
in Sciacchitano et al. (2022), confirming that the TR-STB 
method is capable of providing a good approximation of the 
actual ground-truth particle distribution.

3.2 � Experimental dataset: Rayleigh Bénard 
convection flow

The performance assessment of TP-STB based on experi-
mental data is carried out by analyzing a two-pulse sequence 
from the time-resolved recordings from the Rayleigh Bénard 
convection cell investigation presented by Weiss et  al. 
(2022). As for the analysis presented in the previous sec-
tion, the results from TR-STB are taken as a reference of the 
unknown ground-truth 3D particle tracks field.

The convection flow is issued within a rectangular cell of 
320 × 320 × 20mm3 filled with water; a heated copper plate 
is located at the bottom of the cell, while a water-cooled 
borosilicate glass plate is used at the top in order to provide 
optical access for the imaging system (Fig. 6-left).

The applied temperature difference between the top and 
the bottom plate varies between 2 and 20 K . The flow was 
seeded with fluorescent 50 μm polyethylene microspheres, 
illuminated by two-pulsed UV-LED arrays. A detailed 
description of the experimental setup can be found in Weiss 
et al. (2022).

Fig. 5   Histograms of the 
particle peak positional error for 
the streamwise ( X in blue) and 
wall-normal ( Z in orange) com-
ponents for 0.05 and 0.12 ppp . 
Right: results from the 0.05 ppp 
case shown as shaded areas for 
sake of comparison

Fig. 6   Left: Sketch of experimental setup (reproduced from Weiss et al. 2022). Right: detail of CMOS camera image; the full-frame image size 
is 2160 × 2560 px
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A system of six scientific CMOS cameras was operated 
at a frequency facq= 40–60 Hz to acquire time-resolved 
sequences of recordings; a detail of a 2160 × 2560 px camera 
image is shown in Fig. 6-right. The particle image density 
is approximately 0.075 ppp ; around 332, 000 instantaneous 
particles are successfully reconstructed and tracked by the 
TR-STB algorithm.

In order to increase the dynamic range of the TP-STB 
evaluation, a time separation of three frames has been 
chosen between the two recordings used for the two-pulse 
reconstruction. Given a digital resolution of approximately 
7.15 px∕mm , a maximum particle displacement of 11 PX is 
expected for the case presented in this section ( facq = 19 Hz , 
maximum flow velocity magnitude of Vmax ≈ 0.01m∕s).

Due to the relatively low image noise and good image 
quality (i.e., consistent particle peak intensity for all cameras 
in the imaging system and over the recording sequence), a 
single-iteration of TP-STB has been employed for the results 
shown in the present section; the main processing param-
eters are presented in Table 2. The displacement field predic-
tor was estimated by PSC with a final cross-correlation vol-
ume of 20 × 20 × 10 px (approximately 2.8 × 2.8 × 1.4mm3).

The number of correct tracks reconstructed by TP-STB, 
as well as their positional error, is computed with respect 
to the reference tracks from TR-STB obtained after filter-
ing the particle positions along the tracks by means of the 

TrackFit spline interpolation scheme (Gesemann et al 2016); 
the cut-off frequency of the low-pass filter is determined 
from the spectral distribution of the unfitted tracks in order 
to remove the high-frequency measurement noise and pre-
serve the physical part of the fluctuations.

The reference velocity values are computed by a linear fit 
of the reference particle positions from the fitted TR-STB 
tracks extracted at the two time-instants used for the TP-
STB processing; this allows to isolate the contribution to 
the velocity error associated to the random positional noise 
due to the IPR reconstruction.

On the other hand, the truncation error due to the finite 
time separation between the two pulses is not included in 
the present analysis. This choice is motivated, on the one 
hand, by the fact that the magnitude of the truncation error 
strongly depends on the particular investigated flow (i.e., 
ratio between the temporal scales and the chosen time sepa-
ration between pulses). On the other hand, the smallest time 
separation adopted for dual-frame investigation is not a free 
parameter that can be changed in post-processing, but it is 
typically set in order to limit the maximum particle displace-
ment between the two frames to a value that would allow a 
robust velocimetry analysis either by cross-correlation or 
particle tracking ( ≈ 11 px in the present investigation).

Approximately 87% of the reference tracks ( ≈ 290, 000 
tracks) are correctly reconstructed by TP-STB; the ghost 
particle level remains below 1% (≈ 2800 tracks). The posi-
tional and velocity analysis based on the correctly recon-
structed tracks is presented in Fig. 7. In the chosen reference 
system, the XY  plane is parallel to the top and bottom plates 
of the cell; on the other hand, Z is aligned with the imaging 
system viewing direction. The limited aperture of the imag-
ing system (41.1 degree between the outer cameras) justifies 
the larger errors in the Z direction by a factor of approxi-
mately 3.5 . The positional RMS errors are approximately 
5 μm ( 0.04 px ) and 19 μm ( 0.14 px ) for X and Z , respectively; 
the velocity RMS errors are approximately 0.69%Vmax and 
2.27%Vmax for the in-plane and wall-normal components, 
respectively.

Table 2   Summary of TP-STB processing parameters for the Ray-
leigh Bénard convection case

Main IPR parameters
  Number of outer iterations 5

  2D peak intensity threshold [counts] 600

  Allowed triangulation error [px] 0.6–0.9
  Number of shaking iterations 6

Particle tracking parameters
  Predictor (search/residual) uPSC/uPSC
  Search radius �2p [px] 2

  Cost function terms (weight factor) �I(0.5)∕�pred(1.0)

  �max
I

 [counts]/�max
pred

 [m/s] ∞∕0.02

Fig. 7   Histograms of the par-
ticle peak positional (left) and 
velocity (right) errors for the 
in-plane (X in blue) and out-of-
plane ( Z in orange) components
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A visualization of the 3D instantaneous tracks obtained 
with TP-STB is presented in Fig. 8.

The scattered results from TP-STB are interpolated onto 
a regular grid by means of the FlowFit data assimilation 
algorithm (Gesemann et al 2016); the FlowFit algorithm 
makes use of the input from the Lagrangian velocities and 
leverages Navier–Stokes constraints to fit a system of smooth 
3D B-splines, avoiding low-pass filtering effects and deliver-
ing access to the full velocity gradient tensor via analytical 
derivatives.

The results from the FlowFit algorithm applied to the 
reference and TP-STB Lagrangian tracks are presented in 
Fig. 9-top on the left and right column, respectively; an 
internal cell size of 1mm3 was used ( ≈ 0.11 particles-per-
cell), while the solution was sampled with a resolution of 
0.25mm in all three directions.

Contours of the vertical velocity component ( w ) are 
shown for the Z = −18mm position along the vertical axis 
Z , in proximity of the warm plate. Furthermore, the magni-
tude of the difference between the two results is presented 
over the right half of the plotted area in Fig. 9-top-right.

The visual inspection of these velocity fields confirms 
the relatively good quality of the TP-STB results in terms 
of percentage of retrieved tracks and positional and veloc-
ity errors; TP-STB is capable of resolving the same small 
structures that can be identified in the reference solution. As 
expected, a slight modulation of the velocity fluctuations, 
as well as a higher noise level can be noticed when closely 
inspecting the two results.

These considerations are confirmed when looking at 
the velocity spatial gradients. In Fig. 9-bottom the flow 
structures identified by means of the Q criterion (Hunt 
et al. 1988) are presented; iso-surfaces at Q = 0.25 1∕s2 are 

color-coded by the Y  component of the vorticity ( �y ). The 
reference results are shown on the left and the Two-Pulse-
STB result on the right; for sake of visualization, these 
results are presented for a small portion of the investigated 
volume.

While, as observed concerning Fig. 9-top, the same 
structures can be identified in both results, the lower noise 
of the TR-STB solution can be inferred by the smoother 
Q criterion field. At the same time, the higher values 
of Q attained allow for the reconstruction of connected 
structures that appear incomplete in the two-pulse result 
(e.g., elongated ring at approximately X = 10mm and 
Y = −30mm , Fig. 9-bottom).

When comparing the two results, it must be taken into 
consideration that the reference result is obtained by the TR-
STB algorithm in a fully converged state (Schanz et al 2016); 
in fact, the time instants chosen for the comparison refer 
to recordings 190 and 193 in the images sequence. As also 
shown for synthetic data (Sciacchitano et al. 2021, 2022), 
the STB algorithm is able to perform a close-to-perfect 
reconstruction with very low values of ghost particles and 
high positional, velocity and acceleration accuracies, when 
the information embedded in time-resolved recordings is 
exploited.

Furthermore, when the acceleration is available (as for 
TP-STB results), the full non-linear FlowFit optimization 
can be applied (second generation FlowFit, Gesemann et al 
2016); on the other hand, since only the particle position 
and velocity can be extracted from the two-pulse tracking, 
the linear (first generation) FlowFit is used for the TP-STB 
results, where only the difference from the scattered velocity 
input and the velocity divergence are minimized as part of 
the cost function during the optimization problem.

Fig. 8   Instantaneous result from TP-STB; particles color-coded with 
the velocity component along Z. Blue indicates sinking particles 
while yellow indicates rising ones. Left: complete track field (approx-

imately 290, 000 particles) marked with velocity vector. Right: spher-
ical particle markers in a 8mm XY-slice (top) and a 10mm XZ-slice 
(bottom)
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Given the above considerations, the accuracy of the 
reconstruction attained by the two-pulse particle tracking 
with TP-STB (i.e., percentage of actual tracks identified, 
ghost level, positional and velocity errors), as well as the 
level of detail achieved in the data assimilation results (i.e., 
contours of velocity components, spatial velocity gradients) 
is remarkable when considering the large difference in terms 
of the number of recordings used for the reconstruction (i.e., 
two against hundreds) with respect to the time-resolved ref-
erence result.

On the other hand, it must be added that the excel-
lent image quality attained in the present time-resolved 

investigation (unlike that of the synthetic case presented 
in Sect. 3.1) is expected to play an important role, par-
ticularly when the track yield and positional error are 
considered.

In order to assess the performances of TP-STB in more 
realistic imaging conditions for dual-frame experimental 
dataset, the tracking algorithm is applied to images from 
an actual tomographic PIV measurement from 2012 (using 
DEHS seeding tracers and dual-cavity laser illumination); 
the results of the TP-STB algorithm applied to this pre-
existing dataset are presented in the following section.

Fig. 9   Top: iso-contours of vertical velocity component obtained with 
the FlowFit data assimilation algorithm applied to the scattered LPT 
results ( Z = −18mm ); reference results from TR-STB (left), result 
from TP-STB (right). The magnitude of the difference between the 

two cases is shown over half the slice in the top-right plot. Bottom: 
3D iso-surfaces of Q criterion ( 0.25 1∕s2 ) color-coded by the vorticity 
component along the Y  axis ( �y ) in the area indicated by the black 
rectangle in the top-left plot
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4 � Application to dual‑frame 
tomographic PIV experimental data

The TP-STB Lagrangian particle tracking algorithm is 
applied to double-frame recordings from a 3D investiga-
tion of the wake flow behind a flying locust. The experi-
ment has been conducted as a collaborative work between 
the Department of Biology of Lund University, LaVision 
GmbH (Göttingen, Germany), the Structure and Motion 
Laboratory (University of London) and the DLR Göttingen 
in 2012.

A tethered desert locust was flying in the 1-m wind-
tunnel facility at the DLR Göttingen (Fig. 10-left); a flow 
speed of approximately 3.3m∕s was chosen to match the 
locust's equilibrium flight speed.

The air f low was seeded with 1 μm DEHS drop-
lets and illumination was provided by a dual Nd: YAG 
laser system (Spectra Physics Quanta Ray Pro) with a 
pulse energy of ≈ 1 J∕pulse ; a volume of approximately 
200 × 240 × 50mm3 was illuminated along the streamwise 
( X ), spanwise Y  and vertical ( Z ) directions.

A system of eight LaVision Imager CMOS cameras 
( 2560 × 2160 px ) in Scheimpflug configuration were used 
to acquire particle images (Fig. 10-left). The imaging sys-
tem was calibrated making use of a 3D calibration target; 
the volume self-calibration correction (VSC, Wieneke 
2008) was applied to reduce the calibration error down 
to the sub-pixel range; the optical transfer function (OTF, 

Schanz et al. 2013a) was calibrated alongside. The digital 
resolution is approximately 10.85 px∕mm.

Several flight postures were investigated; for each con-
figuration, a sequence of 230 double-frame recordings were 
acquired at a frequency ranging between 5 and 10Hz ; the 
time separation between the two frames was set to 200 μs ; 
the maximum particle displacement between the frames is 
≈ 10.5px (maximum flow velocity magnitude up to ≈ 5m∕s

).
The experiment was designed for the reconstruction and 

velocity analysis of the particle images by means of tomo-
graphic PIV, a detailed description of the measurement 
scope is presented in Henningsson et al. (2015), as well as 
the analysis of the Tomo-PIV results, particularly concern-
ing the flow patterns identified in the locust wake flow.

Given the double-frame acquisition strategy, unlike for 
the TP-STB applications presented in the previous sections, 
a reference solution from TR-STB is not available. There-
fore, in the present study, the Two-Pulse STB results are 
compared with those obtained with tomographic PIV pre-
sented in Henningsson et al. (2015).

The choice of this particular experimental dataset to 
assess the suitability of TP-STB for double-frame recordings 
is motivated by the fact that this is an already existing data-
set (from 2012), where no optimization of the experimental 
parameters for particle tracking purposes was performed.

On the contrary, given the maturity of the multiplica-
tive algebraic reconstruction technique and the robustness 
of the 3D cross-correlation velocimetry of Tomo-PIV, the 
particle images where recorded at a relatively high particle 

Fig. 10   Left: Experimental setup for the investigation of the wake 
flow of a flying desert locust by means of a 3D double-frame acquisi-
tion system (adapted from Henningsson et al. 2015). Right: instanta-

neous dual-frame recordings from two of the eight cameras; first and 
second frames on top and bottom row, respectively)
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image density (0.04–0.06 ppp ). Furthermore, as reported 
in Novara et al. (2016a, 2019) concerning four-pulse track-
ing, a few issues typical of double-frame laser illumination 
(e.g., inconsistent particle peak intensity across the cameras, 
laser pulse intensity difference between the two frames) are 
particularly critical in case individual particle tracers need 
to be triangulated and tracked.

Exemplary images from two of the eight cameras are pre-
sented in Fig. 10-right (cameras 1 and 2 on left and right, 
respectively); the two frames are shown in the top and bot-
tom rows. The inhomogeneity of the laser illumination in the 
sensor plane (roughly parallel to the XY plane) is significant, 
a result of the laser beam profile, optical path (lenses and 
back-reflection mirror) and the aperture installed to cut the 
illumination to a rectangular beam. Also, a clear difference 
in terms of particle peak intensity is visible both between the 
two cameras and across the two frames from each camera.

This difference can be better appreciated in the detailed 
zoomed-in images presented in Fig. 11 where the same par-
ticles can be identified moving from left to right from frame 
1 to frame 2; however, the peak intensities on the second 
frame appear approximately 70% of those on the first frame.

As a consequence, it is expected that a relevant number of 
particle peaks will drop below the image noise level in the 
dimmer frame, while being detectable in the brighter one; in 
this situation, the particles will still appear in one of the two 
IPR reconstructions, but fail to produce a two-pulse tracks 
during the tracking step of TP-STB (i.e., loss of tracks).

Another source of loss of tracks is due to the different 
particle peak intensity levels of the same tracer when imaged 
from different directions (i.e., cameras) with respect to the 
Mie scattering lobes, as some particles could disappear 
below the noise level in some camera images while being 
visible in others.

To mitigate this problem, and ensure that as many par-
ticles as possible can be reconstructed by IPR, the final 
triangulation iterations are performed with fewer cameras 
required to register a peak at the projection point (down 
to five cameras out of the eight available for the last two 
outer IPR iterations), following Wieneke (2013). Also, as 
proposed in Jahn et al. (2021), multiple triangulations using 
a permutation of the camera order are used, and the three 

brightest cameras are ignored during the particle-intensity 
update step of IPR, in order to suppress ghost particle crea-
tion. A summary of the IPR parameters is presented in 
Table 3-top.

Furthermore, before TP-STB processing, the images are 
pre-processed in order to equalize the particle peak intensity 
across the sensor plane, the different cameras and the frames 
via minimum image subtraction, division by the average 
image, multiplication by the mean average-intensity image 
over the two frames and multiplication of the second frame 
by the intensity ratio of the first and second frame of the 
average image. Finally, the intensity of the second frame is 
multiplied by a factor 1.3.

The result of the image pre-processing is shown in Fig. 12 
for the same portion of the images presented in Fig. 11; 
while the pre-processing operation cannot resolve the issue 
of particle peaks disappearing below the noise level in the 
weaker frame, the more consistent peak intensity values 
represent an advantage during the peak detection step of 
the IPR, where the same intensity threshold can be used for 
all images.

Approximately 370, 000 particles are reconstructed by 
IPR for each frame of recording 79 from the recording 
sequence considered in Henningsson et al. (2015) (velocity 

Fig. 11   Detail of dual-frame 
particle images from camera 1 ; 
first and second frame on left 
and right, respectively

Table 3   Summary of TP-STB processing parameters

STB iteration(s) 1 2–3

Main IPR parameters
  Number of outer iterations 7

  Number of cameras for trian-
gulation

8, 7, 7, 6, 6, 5, 5

  2D peak intensity threshold 
[counts]

50

  Allowed triangulation error [px] 0.6–0.9
  Number of shaking iterations 6

Particle tracking parameters
  Predictor (search/residual) uPSC/uPSC utracks∕utracks

  Search radius �2p [px] 5.0 3.0–5.0
  Cost function terms (weight 

factor)
�I(0.1)∕�pred(1.0)

  �max
I

 [counts]/�max
pred

 [m/s] ∞∕1.6
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field from Tomo-PIV at file B00079.vc7 in the online data-
base, https://​datad​ryad.​org/​stash/​datas​et/​doi:​10.​5061/​dryad.​
1cn55).

Given the relatively high noise levels and the large depth 
of the reconstruction volume, it is expected that the single-
frame reconstruction will show considerably higher ghost 
levels as seen in the synthetic results in Sect. 3.1. However, 
these spurious reconstructions are typically not coherent 
with the flow motion (Elsinga et al. 2011) and can be fil-
tered out by means of an accurate particle tracking scheme.

The TP-STB processing parameters are presented in 
Table 3. A total of three TP-STB iterations are performed; 
an outlier detection and removal procedure similar to what 
proposed by Schanz et al. (2016) is applied after the last 
STB iteration. As for the applications presented in Sect. 3, 
the tracking process is aided by a predictor from Particle 
Space Correlation. The multi-grid correlation approach was 
applied starting from a 128 × 128 × 128 px interrogation vol-
ume, progressively reduced to 48 × 48 × 48 px during four 
PSC iterations. The final size of the interrogation volume 
( 4.42 × 4.42 × 4.42mm3 ) is similar to that used for the tomo-
graphic PIV analysis presented in Henningsson et al. (2015); 

for the Tomo-PIV analysis a 75% overlap factor was used, 
resulting in a 1.07 mm vector spacing.

Approximately 140, 000 particles are tracked between the 
two frames; 20 mm-thick volume slices are shown in Fig. 13, 
where tracked particles markers are color-coded with the 
spanwise velocity component ( v , along Y).

The stripy pattern observed in the light sheet from visual 
inspection of the camera images (Fig. 10-right) can be iden-
tified in the tracking result as well, particularly from the top 
view (local lower density of the markers at X ≈ −125 mm ). 
While the investigation of the flow topology and dynamics 
goes beyond the scope of the present study, the pattern out-
lined by the high and low spanwise velocity fluctuations is 
consistent with the findings reported in Henningsson et al. 
(2015).

In order to assess the accuracy of the TP-STB recon-
struction, given the absence of a reference solution for the 
ground-truth velocity field, a comparison with the Tomo-
PIV results obtained by Henningsson et al. (2015) is carried 
out.

As tomographic PIV results are obtained on a regular grid, 
the scattered LPT results are interpolated onto a comparable 

Fig. 12   Detail of the pre-
processed particle images from 
camera 1 ; first and second frame 
on left and right, respectively

Fig. 13   Top ( XY  plane) and 
side ( XZ ) views of 20mm-thick 
slices of the tracked particles 
from TP-STB; markers color-
coded with spanwise velocity 
component. For each view, the 
dotted lines indicate the location 
of the slice in the other plane

https://datadryad.org/stash/dataset/doi:10.5061/dryad.1cn55
https://datadryad.org/stash/dataset/doi:10.5061/dryad.1cn55
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grid by means of the FlowFit algorithm; the size of the inter-
nal cell used for the B-splines fit was 1.5 × 1.5 × 1.5mm3 
( ≈ 0.15 particles-per-cell), while the result was sampled 
using a resolution of 0.375 × 0.375 × 0.375mm3 . The 
direct comparison between the Tomo-PIV and TP-STB/
FlowFit results is presented in Fig. 14, where iso-surfaces 
of Q criterion are color-coded with the streamwise vorticity 
component �x . For the full FlowFit regularization approach 
(i.e., divergence free optimization based on position and 
velocity input from TP-STB) two results are shown, cor-
responding to the complete TP-STB processing (three itera-
tions, Fig. 14-bottom-left) and to a single TP-STB iteration 
(Fig. 14-top-right).

As observed in Sect. 3.2, the visual inspection of the 
velocity spatial gradients provides an accurate feedback on 
the errors affecting the velocity field; spurious iso-surfaces 
of Q criterion indicate a higher noise level, while broken 
vortex filaments suggests a modulation of the signal (i.e., 
underestimation of the velocity fluctuations). Smoother and 
thicker vortex filaments suggest, instead, an improvement of 
the spatial resolution of the measurement.

The results shown in Fig. 14 confirm the capability of 
TP-STB LPT and FlowFit data assimilation in matching the 

flow topology of the results from tomographic PIV even in 
experimental conditions not expressly optimized for parti-
cle tracking. Furthermore, noticeable improvements in the 
areas marked with A, B and C in Fig. 14-middle suggest that 
the TP-STB algorithm is able to resolve regions of the flow 
where the filtering effect of the cross-correlation volume 
size results in a modulation of the signal (i.e., disconnected 
flow structures). On the other hand, the major improvement 
observed in the area marked with the letter D for the TP-STB 
result (longitudinal vortex connecting upstream structure 
with the downstream one) is to be ascribed to the smaller 
reconstruction volume along Z chosen for the Tomo-PIV 
analysis. The comparison between the full TP-STB process-
ing result (Fig. 14-bottom-left) and the one from the faster 
single-iteration processing (Fig. 14-top-right), where the 
number of tracked particles reaches only 110, 000 , confirms 
the benefit of the iterative STB approach shown, for synthetic 
data, in Fig. 4. However, even this lower-quality reconstruc-
tion compares well with the result from tomographic PIV.

Furthermore, a FlowFit result obtained with the three-
iterations TP-STB result while omitting the penalization 
of the velocity divergence is presented in Fig. 14-bottom-
right. This result presents what can be achieved by a simple 

Fig. 14   Iso-surfaces of Q criterion ( 10, 000 1∕s2 ) color-coded by the 
streamwise vorticity component. Top-left: result from tomographic 
PIV (adapted from Henningsson et  al. 2015). Top-right: result from 
TP-STB (single iteration) and FlowFit (full regularization). Bottom-

left: result from TP-STB (three iterations) and FlowFit (full regu-
larization). Bottom-right: result from TP-STB (three iterations) and 
FlowFit (interpolation)
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B-spline interpolation of the LPT results if a data assimila-
tion algorithm is not available. While the performances of 
this simpler approach do not match those of the full FlowFit 
optimization (e.g., region D), this result still shows a quality 
that is comparable to the Tomo-PIV solution. The computa-
tional time of the simple interpolation ( ≈ 85 s ) is 30% lower 
than that required by the full regularization ( ≈ 120 s) , and 
should compare well to a high-quality 3D cross-correlation.

In conclusion, the overall smoothness of the LPT solu-
tion, and the fact that flow structures are more clearly defined 
(e.g., larger diameter of the vortex filaments), combined with 
a similar, if not lower, noise level when compared to the 
Tomo-PIV result, suggest that some of the advantages of 
LPT approaches (i.e., in spatial resolution) can be extended 
to the domain of double-frame measurements, even in non-
ideal imaging conditions.

The results presented above focus on the performance 
assessment of the TP-STB algorithm concerning the quality 
of the reconstructed flow field rather than on the track yield. 
In fact, as the evaluation of the particle image density based 
on particle peak detection on the recorded images becomes 
increasingly difficult for densities above 0.04 ppp (Novara 
2013), the number of imaged particles cannot be accurately 
estimated, particularly for the camera images exhibiting the 
larger number of peaks. Furthermore, the number of parti-
cles detected on a camera image does not necessarily cor-
respond to the number of particles that could potentially 
be tracked. In fact, mainly due to the Mie scattering lobes 
(Manovski et al. 2021), a particle visible to one camera 
(i.e., viewing direction) would not necessarily appear in the 
recorded images from other cameras in the imaging system.

Nevertheless, while the exact number of particles 
expected in the 3D volume cannot be accurately deter-
mined, an indication of a plausible range can be given by 
considering the variability of the particle image density 
across the imaging system as well as the properties of the 
IPR algorithm.

A conservative estimate for the number of particles in 
the volume can be obtained by counting the particle image 
peaks on the camera frame exhibiting the lowest particle 
image density (approximately 0.036 ppp for the second 
frame in camera 4); given the active size of the camera 
sensor, this amounts to approximately 152, 000 particles. 
However, the IPR algorithm makes use of a number of 
iterations where a reduced number of cameras is consid-
ered for the triangulation; this allows for the reconstruc-
tion of particles images compromised on a particular 
camera, possibly due to noise or overlapping situations 
(Jahn et al. 2021). Since the minimum number of cameras 
used for the IPR reconstruction for the present case is 5 
(see Table 3), the number of peaks identified on the fourth 
weakest cameras ( ≈ 182, 000 on the second frame of cam-
era 1, ≈ 0.043 ppp ) can be used to provide an estimate for 

the lower bound of the track yield range of TP-STB. Based 
on these considerations, it can be concluded that the TP-
STB is capable of successfully reconstructing between 77 
and 92% of the total number of particles expected in the 
imaged 3D domain.

While the upper bound of 92% is consistent with the 
track yield performances of the algorithm presented in 
Sects. 3.1, 3.2, the challenges posed by experiments in 
air (low image signal-to-noise ratio, inhomogeneity of the 
illumination, particle diameter polydispersity, Mie scatter-
ing lobes among others) could result in the poorer perfor-
mances indicated by the lower bound of the range.

Nevertheless, even if the conservative figure of 77% 
track yield is considered, it is interesting to note that this 
relatively low number of reconstructed tracks, combined 
with the FlowFit data assimilation algorithm, is enough to 
provide a better result (in terms of spatial resolution) than 
that from tomographic PIV.

Furthermore, the tracking scheme seems capable of 
filtering out spurious particles, even with the limited tem-
poral resolution provided by two pulses only. The latter 
point is proven by the absence of characteristic artifacts 
introduced in the FlowFit solution by outliers in the input 
tracks, typically appearing as unphysical small vortex 
rings (donut-shaped) in the visualization of 3D iso-sur-
faces of Q criterion.

A final consideration is devoted to the subject of com-
putational cost. Henningsson et al. (2015) reported that 
the analysis of the full dataset analyzed in the study took 
96 days of around-the-clock processing on a server with 
48 AMD cores and 64 Gb of RAM, in 2012. Assuming 
that the processing of the different recordings was not 
performed in parallel, it follows that the complete Tomo-
PIV processing (reconstruction and 3D cross-correlation) 
required for a single double-frame realization was approxi-
mately 10 h. Despite the significant improvements in pro-
cessors architecture that occurred in the last ten years, it 
can be safely assumed that the Tomo-PIV analysis would 
still result in a significant computational cost today.

On the other hand, the sparse reconstruction approach 
offered by the IPR reconstruction and individual particle 
tracking of the STB, greatly reduces the processing time 
required for the LPT analysis.

For the results presented in Fig. 14, on a 16 cores AMD 
Threadripper 1950X machine, the computational time for 
the full TP-STB processing (three iterations) amounted to 
7.5 min (PSC: 60 s , IPR + tracking: 260 s , FlowFit: 120 s ), 
while a single TP-STB iteration took 5 minutes (PSC: 60 s , 
IPR + tracking: 122 s , FlowFit: 120 s ). The processing of 
the entire recording sequence would take under 30 h for 
three-iteration TP-STB, without making use of parallel 
processing.
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5 � Conclusions and outlook

An iterative Two-Pulse Shake-The-Box (TP-STB) approach 
has been presented aimed at extending the benefits of 3D 
Lagrangian particle tracking (accuracy, spatial resolution, 
computational efficiency) to double-frame particle image 
recordings from a multi-camera imaging system.

The method makes use of the advanced Iterative Particle 
Reconstruction algorithm presented by Jahn et al. (2021) 
in combination with the iterative scheme of reconstruction 
and tracking proposed in the framework of the Multi-Pulse 
STB algorithm development (Novara et al. 2016a, 2019), 
in order to take advantage of the, despite limited, temporal 
information contained in a two-pulse recording sequence.

An independent performance assessment of the TP-STB 
algorithm (Sciacchitano et al. 2021) already demonstrated 
the potential of the technique.

Here, the performances of TP-STB are further assessed 
in terms of particle yield and accuracy of the reconstruc-
tion, based on its application to a higher image-noise syn-
thetic dataset (up to 0.12 ppp ) and to an experimental one 
(at 0.075 ppp ); in both cases a reference for the ground-
truth solution is provided by the results from time-resolved 
STB (TR-STB, Schanz et al. 2016) applied to the time-
resolved recordings.

The results confirm the capabilities of the TP-STB tech-
nique and show that the majority of the tracers can be 
reconstructed, while the fraction of spurious peaks (ghost 
particles) remains low. As reported in the literature for the 
case of Multi-Pulse STB, the iterative STB strategy yields 
a higher number of correct tracks for TP-STB as well, 
particularly at higher particle image densities.

The positional accuracy is in good agreement with that 
reported from Sciacchitano et al. (2021) for similar data, 
thus confirming the suitability of adopting the TR-STB 
solution as a proxy for the ground-truth when a time-
resolved sequence of recordings is available.

Finally, the TP-STB algorithm has been applied to exist-
ing double-frame images from a desert locust wake tomo-
graphic PIV investigation dataset acquired in 2012. The 
comparison of the LPT results to those from Tomo-PIV 
reported in Henningsson et al. (2015), confirmed the accu-
racy of the TP-STB reconstruction (combined with the Flow-
Fit data assimilation algorithm) when operating on actual 
double-frame recordings where the imaging conditions had 
not been optimized for a particle tracking approach.

The visual inspection of the flow structures detected in 
the tracking result, matching and sometimes surpassing the 
accuracy of those from Tomo-PIV, suggests that the main 
advantages in terms of spatial resolution of LPT approaches 
can be extended to the domain of two-pulse recordings by 
making use of the proposed TP-STB technique.

The successful application of this tracking algorithm, 
even in challenging imaging conditions and high particle 
image density (up to 0.12 and 0.075 ppp for synthetic and 
experimental data, respectively), can be mainly ascribed to 
the recent advances in IPR reconstruction (Jahn et al. 2021), 
particle tracking strategies (Schanz et al. 2016; Novara et al. 
2016a and 2019) and the FlowFit data assimilation algo-
rithm (Gesemann et al. 2016).

The large number of cameras used in the desert locust 
experiment enables a more accurate reconstruction when 
compared to typical three- or four-cameras system as both 
the tomographic reconstruction and IPR benefit from the 
higher number of projections. This feature opens the possi-
bility of using the present dataset to investigate the effect of 
the number of views on the reconstruction accuracy; in fact, 
a reference solution could be obtained by making use of the 
full imaging system, and the sensitivity of the methods to 
the number of projections assessed making use of a subset 
of cameras. This analysis, however, goes beyond the scope 
of the present study.

Furthermore, a study of the uncertainty quantification 
in the determination of statistical quantities from TP-STB 
instantaneous track fields could be envisioned. Despite the 
fact that the results presented here do not indicate a strong 
presence of spurious tracks, the possible bias introduced by 
ghost tracks could be investigated, and the introduction of 
filtering techniques that would allow to mitigate this effect 
discussed. This investigation, possibly aided by dedicated 
tailored experiments, is devoted to a future study.

Appendix: Examples of Particle Space 
Correlation results

Two examples from the analysis of the experimental data 
presented in Sects. 3.2 and 4 are shown in Fig. 15 (top and 
bottom, respectively). In order to provide a reference for the 
overall quality of the velocity field, the PSC results are com-
pared to those from the FlowFit data assimilation algorithm 
applied to the final TP-STB results.

Regarding the RBC case, the PSC was applied over 
approximately 290, 000 particles with a final interrogation 
window of 2.8 × 2.8 × 1.4mm3 ; the computational time 
for a single velocity field was approximately 3 minutes. 
The FlowFit internal cell size was 1 × 1 × 1mm3 . For the 
desert locust flow, the PSC was applied over approximately 
370, 000 particles with a final interrogation window of 
4.42 × 4.42 × 4.42mm3 ; the computational time for a sin-
gle velocity field was approximately 1 minute. The FlowFit 
internal cell size was 1.5 × 1.5 × 1.5mm3.

The computational times indicated here, as well as the 
quality of the velocity fields, are not representative of the 
performances of the PSC when an optimal choice of the 
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processing parameters is adopted, and are merely provided 
as a rough estimate of what can be expected given the cur-
rent implementation of the algorithm. In fact, for the results 
presented here, the processing parameters have been adjusted 
with the goal of obtaining a suitable low-resolution predictor 
for TP-STB (not the best possible result from PSC).

Nevertheless, it can be observed that, for both experi-
mental applications, the velocity fields from PSC, despite 
exhibiting a significant higher noise level and stronger 

signal modulation, are capable of capturing the main 
topology of the flow, and proved effective when used as a 
predictor for the tracking step within the Two-Pulse Shake-
The-Box algorithm. The possibility of applying a com-
bined approach of IPR and PSC as a standalone processing 
technique (without tracking) for double-frame recordings 
is not investigated in the present work and could be con-
sidered for a future dedicated study.

Fig. 15   Top: Rayleigh Bénard convection flow; contours of vertical 
velocity component at the center of the cell ( Z = −13mm ). Bottom: 
Desert locust wake flow; contours of spanwise velocity component at 

Z = 7mm . Left: result from PSC. Right: result from FlowFit applied 
to tracks from TP-STB
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