TARGET DESCRIPTION USING THE FULL-POLARIMETRIC SCATTERING SPECTRUM
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ABSTRACT

Several orthonormal projections onto various bases have been
proposed to analyze Polarimetric Synthetic Aperture Radar
(PolSAR) data. For target scattering characterization, these
individual projections frequently lead to several additional
ambiguities. Therefore, substantial confusion is commonly
found when using unsupervised classification approaches to
classify targets. In this study, we do not impose an orthog-
onality requirement and project the scattering information
onto several realizations of the normalized scattering config-
uration. Using the full-polarimetric AIRSAR data over San
Francisco, USA, we compute the spectrum of the scattering-
type parameter, fgp, and go on to use this spectrum to catego-
rize various land-cover targets.

Index Terms— Polarimetry, RADAR, synthetic aperture
radar (SAR), scattering type parameter, spectrum analysis

1. INTRODUCTION

In Radar polarimetry, any invariant target characterization pa-
rameter is critical due to its ability to identify a target in vary-
ing basis sets (and therefore orientation conditions). This tar-
get characterization technique can be of two types: a) using
coherent scattering information and b) using incoherent scat-
tering information. Huynen [1] characterized a target using
six different target parameters in his well-known phenomeno-
logical concept of radar target characterization.

The lack of global invariance is one of the main issues
with the Huynen phenomenological radar target characteriza-
tion. Once the roll-invariance limitation was removed, Cloude
first draw attention to the global variance nature of the Huy-
nen theory. In order to address this issue, Cloude and Pot-
tier proposed the eigendecomposition of the coherency ma-
trix [2]]. This method yields a scattering entropy (H), a scat-
tering anisotropy (A), and a target characterization parameter
o.

While « can distinguish between some canonical targets,
it cannot differentiate between any target, as for instance
between a dihedral and a helical target. For this reason,
Corr and Rodrigues [3]] projected the scattering matrix onto

a sphere, and two left- and right-handed helices bases. This
approach was able to remove the ambiguity between the two
targets. Touzi [4]] suggested a new scattering vector model
by projecting the Kennaugh-Huynen scattering matrix con-
diagonalization into the Pauli basis to address the limitations
of the scattering-type parameter ««. This model represents a
radar target that is polarisation basis invariant in terms of five
distinct target parameters. A roll-invariant scattering-type
parameter (agp) was introduced by Ratha et al. [S]] utilizing
the geodesic distance between pairs of 4 x 4 real Kennaugh
matrices.

Later, Dey et al. [6l|7] presented fgp as a new target char-
acterization parameter in the linear H—V basis. Similar to
«, this roll-invariant parameter offers good target characteri-
zation capabilities. However, it also fails to discriminate be-
tween a helix or dihedral scattering. By projecting the scat-
tering information onto several scattering bases, the current
literature eliminates ambiguity. These projections, however,
produced a variety of other uncertainties. As a result, in con-
trast to projections onto various orthonormal bases, it is nec-
essary to produce the most information possible from the en-
tire spectrum of scattering phenomena. Dey et al. [8]] analyze
the complete spectrum of fgp by projecting the incoherent co-
herency matrix onto several scattering mechanism bases. In
this study, we have categorized several landcover classes us-
ing the Ogp spectrum.

2. METHODOLOGY

The complete target scattering information for full-polarimetric
SAR data is contained in the 2 x 2 scattering matrix, S. How-
ever, this matrix cannot describe an incoherent target. As a
result, the average of the elements of a scattering vector (e.g.
Pauli) can be used to deduce the second-order information in
terms of the coherency matrix, T. This is achieved by using
the Pauli basis matrices (V). The Pauli vector (E) obtained by
transforming the scattering matrix (S) can be expressed as,

— SHH SHV o _1
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Fig. 1: Histogram of Ogp (in degrees) for several canonical targets. The kernel-density estimate using the Gaussian kernels is
represented by the red bounding curve. @ = 45 — @ is represented by the vertical blue line.

where V (-) is the vectorization operator on the scattering ma-
trix, and Tr is the sum of the diagonal elements of the matrix.
This Pauli basis vector, k can be used to derive the 3 x 3 co-
herency matrix T by the ensemble average (-) of the outer
product of the scattering vector k with its conjugate trans-
pose ET. Therefore, the coherency matrix can be written as,
T = <E ET ). In general, the reciprocal theorem dictates that
the rank of T remains 3.

Now, this coherency matrix, T can be projected to any
scattering mechanism basis as,

‘35 = Tdn (@)

where, &, is the normalized scattering vector (&n = &/|@|)
of a parameterized scattering mechanism, &J,

Ael 1
Bel 2 3)
Ce' 3
where, A, B and C' are the magnitudes of each component
and ¢1, ¢2 and ¢3 are their phases, respectively. Since T is
positive semi-definite, (J,,&s) > 0. Therefore, the direction
of &s is same as the direction of . It can be noted that
WJs = Wp if T is rank one,

Following this, we obtained extra information, T's by uti-
lizing the projected vector, &g as,

‘_:;:

Ts = <‘:53‘33T> (4)

where T is Hermitian and positive semi-definite. The rank of
Ts is 1. This representation can be transformed into second-
order information by Theorem 1.

Theorem 1. Let A be a positive semi-definite matrix (real or
complex). Then, there is precisely one positive semi-definite
(and hence symmetric) matrix B such that A = B B.

This means that Ts can be written as Ts = T Tp. The
square root of the matrix is calculated using the Schur factor-
ization technique. The matrix T is unique and is called the
principal square root matrix. Additionally, because T is de-
fined as the outer product of the scattering vector represented
in the Pauli matrix basis, T}, can be intrinsically linked to a
canonical target representation on the same basis.

Further, the scattering-type parameter, OEP from the ele-
ments of T}, is derived as proposed by Dey et al., |]§|],

mgp Span (111 — Top — T33)
Ti1 (Taz + T3) + m2p Span®

tan 0F, = 5)
where, mgp is the 3D Barakat degree of polarization [9] and
T11,T>7 and T33 are the diagonal elements of Ty, with Span =
Th1+ T2+ Ts3. OF varies within the range: [—45 ,45 ]. For
a pure dihedral target, GEP = —45 , and for a pure trihedral
target, GEP =45 .

2.1. Analysis over different scatterers

We have shown the polarimetric spectrum over several scat-
tering targets in this section. We conducted 1000 simulated
random realizations of the normalized scattering configura-
tion &p, to get the spectrum. The median value of 68, was then
calculated as the average over 20 iterations. Additionally, we
compared the average scattering-type parameter @ [2]]. The
expression used in this work is @ = 45 — @. As a result, @
likewise varies from —45 to 45 , as 01'31,.
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