
Citation: Fowdur, J.S.; Baum, M.;

Heymann, F.; Banys, P. An Overview

of the PAKF-JPDA Approach for

Elliptical Multiple Extended Target

Tracking Using High-Resolution

Marine Radar Data. Remote Sens.

2023, 15, 2503. https://doi.org/

10.3390/rs15102503

Academic Editors: Junkun Yan,

Xiaolong Li, Shisheng Guo,

Chenguang Shi and Avik Santra

Received: 20 March 2023

Revised: 26 April 2023

Accepted: 27 April 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

An Overview of the PAKF-JPDA Approach for Elliptical
Multiple Extended Target Tracking Using High-Resolution
Marine Radar Data
Jaya Shradha Fowdur 1,*, Marcus Baum 2, Frank Heymann 3 and Pawel Banys 1

1 Institute of Communications and Navigation, German Aerospace Center (DLR),
17235 Neustrelitz, Germany; pawel.banys@dlr.de

2 Institute of Computer Science, University of Göttingen, 37077 Göttingen, Germany;
marcus.baum@cs.uni-goettingen.de

3 Institute of Solar-Terrestrial Physics, German Aerospace Center (DLR), 17235 Neustrelitz, Germany;
frank.heymann@dlr.de

* Correspondence: jaya.fowdur@dlr.de

Abstract: Ground radar stations observing specific regions of interest nowadays provide detections in
the form of point-clouds. This article focuses on a framework that consists of an elliptical multitarget
tracker, referred to as Principal-Axes based Kalman Filter (PAKF)-based Joint Probabilistic Data
Association (JPDA) (PAKF-JPDA), to enable maritime traffic monitoring. The framework touches
on two major stages, target detection and target tracking. For the former, we employed a clustering
approach and for the latter, we presented a data-association-based version of the PAKF tracker with
an automatic track management functionality. The framework’s benefits are demonstrated when it
is applied to the radar streaming in a harbor setting based on a homogeneous multisensor tracking
system by comparing our results against their corresponding reference data with visualizations,
including performance measures.

Keywords: extended target tracking; marine radar; ellipse parameterization; data association; cooperative
multisensor system; clustering

1. Introduction

The global trade is dominated by ocean shipping, thus emphasizing the safety of life
and goods during transportation at sea as well as in harbors, where infrastructure protection
should also be considered. In order to achieve these, constant assessment and monitoring
of the traffic data is required to improve the safety margins, allowing us to detect potential
collisions and anomalies [1–3]. The introduction of autonomy in maritime also relies heavily
on the data received from multiple sensors for route planning and navigation, thus requiring
a reliable Maritime Traffic Situation Assessment and Monitoring (MTSAM) system.

Target tracking forms the basis of such systems by providing estimations of the number
of vessels and their properties of interest, such as their positions, and kinematic parameters
within an observation region. In this work, we aim at observing port regions by fusing data
from multiple cooperative ground-based radar stations, as illustrated in Figure 1.

Multiple target tracking is the specific problem of recursively estimating the states
of a varying number of targets, or vessels in our context, and their cardinality [4]. Im-
proved sensor technologies gave rise to Multiple Extended Target Tracking (METT), where
information about a vessel’s extent (shape) can also be estimated, as the measurements
acquired are in the form of point clouds [5]. There are different types of constructs that
can be used to approximate the extents of vessels, depending on two factors that we con-
sider: the measurement noise and the number of measurements. Under a highly cluttered
and noisy setting, basic shapes such as ellipses, circles, and rectangles are the preferred
options for extent approximation [6–10]. For nearer-range sensors and less noisy settings,
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more complex shape descriptions are possible, for instance, the star-convex and spline-
based methods [11–13]. Detailed reviews on extent approximation methods can be found
in [5,14,15]. Ellipses have so far been the most favored basic shape to approximate vessels’
extents in maritime applications, where we represent the length and width by means of the
ellipse’s axes and the true heading by the ellipse’s orientation [16–19]. Traditional methods
for elliptical target tracking are based on the Random Matrix Method (RMM) framework,
where a target’s kinematic state is modeled as a Gaussian distribution and its extent by a
Wishart distribution, which is represented using an Symmetric and Positive Definite (SPD)
matrix [6,20–22]. Based on the latter, uncertainties in the extent parameters are limited to a
single scalar value.

Figure 1. Visualization of simple port setting with three ground stations overlooking a region of
interest for monitoring vessel traffic.

Recent formulations for elliptical trackers, however, consider a flexible and explicit
parameterization, whereby individual uncertainty values can be assigned to each of the con-
cerned extent parameters [7,16,23–28]. While for the Multiplicative Error Model-Extended
Kalman Filter* (MEM-EKF*) [7,23] the ellipse’s semi-axes are modeled with multiplica-
tive noise [29] and estimated using an extended Kalman filter, the method in [28] is a
variant of the RMM, which uses variational Bayes inference to estimate the parameters
individually. A reformulation of the Random Hypersurface Model (RHM) tailored for
elliptical targets is found in [25]. The contributions in [16,24,26] make use of the eigen-
vector decomposition (EVD) approach under different assumptions. For instance, in [24],
the target orientation is assumed to be aligned with its velocity and is not estimated, an
assumption which is not always valid in maritime environments [30,31]. A recent method,
also known as the principal-axes-based Kalman filter (PAKF), was developed, particularly
considering the nonalignment of the velocity and true heading of vessels, as well as present-
ing an accurate and efficient performance, estimating the state parameters in a batch-like
fashion [16].

This work considers the extension of the PAKF for METT, which would require the
assignment of a point cloud to a vessel, also known as the measurement-to-track association
problem. Measurement set partitioning is often the approach applied to support the latter.
The work of [32] performed clustering on marine radar data to obtain specific cluster-to-
track association using a JPDA filter. The MEM-EKF*, in a similar direction, relied on the
assignment of multiple measurements to their respective tracks [33,34]. In addition to the
data-association-based schemes, the RMM has also been integrated within a probabilistic
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multi-hypothesis filter [35,36]. As the problem moves further to estimating the extent
from multiple sensors, appropriate fusion approaches are necessary. The RMM-based
fusion methods were implemented in [37,38], where the problem of multisensor Extended
Target Tracking (ETT) was considered. A dedicated near-range ellipse fusion approach was
developed in [39] for explicit elliptical parameterization and targeted automotive cases
in particular.

Given that the ground radar stations offer a relatively higher view, over a wider range
over the observation region, our objective is to have a centralized elliptical multitarget
multisensor tracker which estimates the kinematic and extent parameters of every po-
tential target present within the region. We would like to mention that this work was
conceived in [40] and is based on the combination of the methods published in two of our
former works, where a custom JPDA filter was developed by accounting a target’s extent
information from real-world radar measurements [41] and where the PAKF, an elliptical
target tracker, was introduced for specifically processing dense and noisy measurements
efficiently [16]. We established a framework consisting of different stages, from the mea-
surement acquisition to the visualization of our estimates on radar video streams from
multiple stations. Our twofold contributions are therefore listed as follows:

• A multisensor radar-based detection and tracking framework for our MTSAM system;
• A working application and evaluation of the elliptical METT algorithm, PAKF-JPDA cus-

tomized for processing high-resolution radar video streams from multiple ground stations.

This article is organized as follows. In Section 2, we define relevant variables and
formulate the problem. We introduce our proposed framework in Section 3, with elaborate
description of the data processing sequence from one stage to the next. We delve into
our proposed tracker for METT in Section 4. Results obtained when the method is then
applied on real-world data are presented with discussions in Sections 5 and 6. Section 7
summarizes the work.

2. Problem Description

The multitarget set is denoted by X k at observation step k, such that

X k =
{

xt
k
}Nk

t=1, (1)

where Nk is the number of confirmed targets, and the individual target state xt
k models the

combined properties of interest of vessel t (omitting index t for readability),

xk =
[
rT

k , pT
k

]T
. (2)

(.)T is the transpose operator. The kinematic state vector is defined as

rk =
[
mT

k , ṁT
k

]T
, (3)

with its position mk and its velocity vectors ṁk. Similarly, the extent state vector is defined
by vessel heading αk ∈ [0, 2π), with major-axis `1,k and minor-axis `2,k, respectively,
corresponding to the length and width as

pk = [αk, `1,k, `2,k]
T . (4)

The observation region is covered by S sensors. The measurement set, which is defined
by Y s

k = {ys,1
k , . . . , ys,Mk

k }S
s=1, contains Mk measurements from the surfaces of all targets

within the observation region, and also includes clutter that is assumed to be uniformly
distributed over the region.



Remote Sens. 2023, 15, 2503 4 of 18

The posterior multitarget state is sought to be estimated based on the measurements
using the Bayes formula, expressed as follows [40]:

p
(
X k|YS

k

)
∝

S

∏
s=1

Nk

∏
t=1

p
(
Y s

k|x
t
k
)

p
(

xt
k−1|Y

S
k−1

)
, (5)

with the likelihood and prior densities of individual target t given by p
(
Y s

k|xt
k
)

and

p
(

xt
k−1|Y

S
k−1

)
, respectively. From the Chapman–Kolmogorov equation, we can express

the prediction target state density, p
(

xt
k|Y

S
k−1

)
, as an integral over step k− 1 as

p
(

xt
k|Y

S
k−1

)
=
∫

p
(
xt

k|x
t
k−1
)

p
(

xt
k−1|Y

S
k−1

)
dxt

k−1, (6)

where the state transition density is given by p
(

xt
k|x

t
k−1

)
. When the new set of measure-

ments is acquired, the prediction combines it based on the likelihood so that the posterior
is given by

p
(
X k|YS

k

)
=

S

∏
s=1

Nk

∏
t=1

1
c

p
(
Y s

k|x
t
k
) ∫

p
(
xt

k|x
t
k−1
)

p
(

xt
k−1|Y

S
k−1

)
dxt

k−1, (7)

with normalization term c = p
(
Y s

k|Y
S
k−1

)
. In our work, the extended posterior target state

conditioned over all past measurements until the current ones, denoted as YS
k , is expressed

based on a Gaussian distribution,

p
(

xt
k|Y

S
k

)
≈ N

(
xt

k; x̂t
k, Cx

k
)
, (8)

where xt
k is the predicted state with zero-mean covariance Cx

k .

3. Processing Chain

With the objective to solve the METT problem defined above, we propose a dedicated
processing chain as shown in Figure 2. The latter is segregated into three main functional
blocks explained in the following subsections.

Figure 2. Processing chain depicting the main steps in our MTSAM system.
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3.1. Measurement Registration and Loading

Data transmitted from multiple cooperative ground radar stations are gathered, de-
coded, and registered around a common point of reference. For our system, the data are
transmitted using the All Purpose Structured EUROCONTROL Surveillance Information
Exchange (ASTERIX) [42] protocol.

3.2. Detection and Clustering

The radar measurements registered at a single observation step are in the form of point
clouds, each cloud often yielding measurements in the order of hundreds, with unknown
origins. For instance, the point clouds could have originated from true targets, aids-to-
navigation, and clutter formed due to environmental conditions or error sources within
the concerned sensor. In order to obtain the potential targets, the measurements are first
subjected to a clustering approach while they are being represented in pixel coordinates.
The idea is to identify specific clusters within the set of point clouds following the intuition
that a point cloud would most likely be originated from one of the abovementioned sources.
Clustering is an unsupervised approach and has been commonly implemented by simple
methods such as k-means [43], or the Density-based Spatial Clustering of Applications with
Noise (DBSCAN) [44], which is less susceptible to spherical distributions and does not need
to rely on a predefined number of clusters, as compared to the former [41]. Furthermore,
unlike in the former work, the sensor resolution from ground stations is higher, where we
can expect a pixel to represent appropriately 1 m.

The clustering step is an important factor affecting the efficiency of the tracking filter
overall, as instead of processing every measurement, only the identified clusters that
belong to potential targets are processed, to thereby calculate the so-called cluster-to-target
association probabilities.

3.3. Tracking and Visualization

At this stage, the clustered measurements are transformed to the local East North
Up (ENU)-based coordinates system to model the vessels’ extended states and motions
over time within our filter. As the standard JPDA filter assumes a known number of targets,
an external track management module for handling target creation and deleting duplicate
or out-of-range targets is employed. We note that since our major contribution is, in essence,
the application of METT on ASTERIX radar data, we use a sequential sensor-update scheme
in this work, and the use of more complex topologies is considered out of scope.

The estimates are finally projected back on the video stream or the specific user inter-
face, where the tracked vessels’ elliptical approximations are directly displayed. Screenshots
of the system shall be provided in Section 5.

4. The PAKF-JPDA Filter for METT

This section presents our filter for METT, based on [40], by describing the motion and
measurement models, the adaptive validation step, and the elliptical model involved in the
overall tracker itself.

Let Y s
k = {ȳs,1

k , . . . , ȳs,Ck
k }S

s=1 denote the set of all Ck clusters, defined by their respec-

tive centroids ȳ, and the set YS
k−1 denote all the measurements up until k − 1 from all

cooperating sensors. Rewriting the previous definition in (5), the posterior is expressed
as [40]

p
(
X k|Y

S
k

)
∝

S

∏
s=1

Nk

∏
t=1

p
(
Y s

k|xt
k

)
p
(

xt
k−1|Y

S
k−1

)
, (9)

since the multitarget state is now directly conditioned over the centroids, where Ck ≤ Mk
ideally holds at every step.

The concept adopted for the filter is shown in Figure 3, with an aim to optimize
the estimation process by the association of a cluster to a particular target. The spread
of a respective cluster is accounted for in the validation and association steps, and is
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eventually used to extract elliptical measurements based on an EVD approach to update
the extent parameters.

Figure 3. Overview of cluster-to-target association concept for METT. In (i), the black squares
represent unassociated measurements from the observation region. Step (ii) depicts the measurements
being partitioned into colour-coded clusters, as well as measurements that could be clutter (these
remain black). In Step (iii), ellipses represent the estimates of the targets, obtained from cluster-to-
target association probabilities.

4.1. Motion Model

The target kinematic state is assumed to temporally evolve based on an Nearly Con-
stant Velocity (NCV) model [45], while the target parameter vector evolves based on a
standard linear model to adapt for vessel extent changes over time and are each (omitting
the target index) given by

rk = Frrk−1 + ωr
k−1, (10)

pk = Fppk−1 + ω
p
k−1, (11)

where

• transition matrices Fr =


1 0 T 0
0 1 0 T
0 0 1 0
0 0 0 1

 with observation interval T and Fp = I3, I3

denoting the identity matrix of dimension 3;
• ω

(•)
k−1 are the vector-respective additive zero-mean Gaussian noises with covariances Cω

(•).
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The overall target’s dynamic uncertainties are accounted for by their respective covari-
ances Cr

k and Cp
k as follows:

Cr
k = FrCr

k−1(Fr)
T + Cω

r , (12)

Cp
k = FpCp

k−1

(
Fp
)T

+ Cω
p , (13)

4.2. Measurement Model

The centroid ȳj of clustered point cloud j, assumed to be distributed over the target’s
surface, is modeled as a perturbation by zero-mean additive Gaussian noise vr with co-
variance Cv

r . Omitting the sensor indices, the linear measurement model is defined as [40]

ȳj
k = Hrrt

k︸︷︷︸
:=ŷr

k

+vr
k, (14)

where Hr = [I2, 02]
T is the measurement matrix. We denote the predicted centroid of the

target by ŷr
k.

The measurement model for the extent parameter vector follows a similar model,
where the extent parameters are also assumed to be corrupted with Gaussian noise [40]:

yp,j
k = Hppt

k + vp
k , (15)

where Hp = I3 and the measurement noise covariance Cv
p consists of user-defined values

to account for uncertainty in the measurement. The generation of measurement vector yp,j
k

for updating the extent parameters is explained within the scope of our PAKF algorithm in
Section 4.5.

4.3. Validation

In order to establish an initial association between a centroid and its potential source,
a validation scheme is adopted with an adaptive gating approach. The centroid validity is
first checked based on target t’s ellipsoidal gate as follows:(

ȳj
k − ŷr

k

)T(
Cȳ,t

k

)−1(
ȳj

k − ŷr
k

)
≤ γ, (16)

where ŷr
k is the prediction, γ is the gating threshold, and Cȳ,t

k is the innovation covariance.
The latter is calculated as [41,46]

Cȳ,t
k = HrCr,t

k (Hr)
T + Cv

r + CD,t
k−1, (17)

with dispersion matrix CD,t
k−1 intuitively accounting for the target’s extent by the spread of

the measurements within the cluster in a two-dimensional space. The method is originally
based on our previous work [41], with the modification to now directly consider all of the
particular cluster members without additional gating for efficiency.

Therefore, at step k, the dispersion matrix obtained from the previous step is used in
the calculation of the innovation covariance as given in (17). This process can be visualized
in Figure 4, where we omitted target index for readability. For every validated centroid, the
dispersion of the corresponding cluster is then recalculated to be used in the next step, thus
gradually adapting the gate to changes in the target extent.
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Figure 4. Validating cluster measurements for the calculation of CD
k . A target is shown with a sample

previous and current measurements at k− 1 and k, respectively, including its positional predictions. At
first, the centroid is validated using ellipsoidal gate based on the target’s innovation covariance Cȳ

k−1,
visualized by the dashed ellipse at k− 1. Following this, the measurements belonging to the respective
cluster are employed to obtain the next CD

k , which is added to the innovation covariance Cȳ
k (ellipse at k)

for the adaptive gating at k, and so on.

4.4. Association Probabilities

Given the posterior definition from (9), the density of a target-specific posterior p
(

xt
k
)

can be represented as an approximation weighted by the marginal association probabilities
β as follows [40]:

p
(

xt
k
)
≈

Ck

∑
j=1

βs
jt p
(

xt
k|ȳ

s,j
k

)
. (18)

βs
jt is the probability that centroid ȳs,j

k recorded from sensor s has originated from t and is
computed from the following [41,47]:

βs
jt =

{
N
(

ȳj; ŷr
k, Cȳ,t

k

)
if origin is a target,

V−1 otherwise clutter.
(19)

The volume of the validation region is defined as in [47]:

V = ny

(
γny/2

)√
|Cȳ,t

k |, (20)

where ny is the dimension of the measurement (2 in our case), and γ corresponds to
the threshold. Clutter within the observation region is assumed to be spatially (Poisson)
distributed. For a more detailed review of the equations, our previous work can be referred
to [41].

4.5. PAKF for Extent Estimation

The PAKF approach was introduced in [16], where the dispersion matrix of a point
cloud was used to generate the measurement vector yp for updating the extent parameters
in p. In essence, the dispersion matrix of a cluster with centroid ȳk comprising d number of
points is given by the following:

CD =
1

d− 1

d

∑
i=1

(
yi

k − ȳk

)(
yi

k − ȳk

)T
, (21)

=

[
σ2

e σ2
en

σ2
en σ2

n

]
, (22)
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where the subscripts e and n represent the east and north axes, respectively. Under the
assumption and constraint of positive definiteness, CD can be expressed in terms of
yp = [a, b, θ] based on the following relationship:

CD =R(θ)

(
a2 0
0 b2

)
R(θ)T , (23)

with rotation matrix R(θ) and length of the semi-axes ab and b. By accounting for the
measurement noise and applying EVD, the extent measurements can be thus extracted
from the validated clusters. The algorithm for the updates, taken from [16], is provided in
Table 1.

In principle, the angular quantities are corrected at two steps. The first step is per-
formed right before updating the extent parameters: since the four quadrant inverse tangent
function atan2 returns θ values in [−π, π], 2π is added to the negative values to conform
to an interval of [0, 2π]. The second step, independent of the filtering equations, involves
shifting the final orientation estimate αk by π/2 to maintain a north-up heading. The head-
ing estimates in our algorithm are assumed to be uncoupled and unaligned from the vessel
kinematics due to the vessel’s current-based drifting propensities. As such, we explain how
the heading estimates are presented further in Section 5.

Table 1. Elliptical principal axes model updates, adapted with permission from [16] ©2021 IEEE.

Updating Kinematic Parameters

yr
k := ȳk =

1
dk

∑dk
i=1 yi

k
ŷr

k = Hrr̂k|k−1
Cry

k = Cr
k|k−1HT

r

Cyy
k = HrCr

k|k−1HT
r + Cυ

r

r̂k|k = r̂k|k−1 + Cry
k
(
Cyy

k
)−1(yr

k − ŷr
k
)

Cr
k|k = Cr

k|k−1 −Cry
k
(
Cyy

k
)−1
(

Cry
k

)T

Extent Measurements Extraction through EVD

CD = 1
dk−1 ∑dk

i=1

(
yi

k − ȳk
)(

yi
k − ȳk

)T

CD̂ = CD −Cυ
r

[V, λk] = eig
(

CD̂
)

[λ1, λ2]
T = diag(λk)

[ak, bk]
T =

√
[λ1, λ2]

T

θk = atan2
( v1,(n)

v1,(e)

)
Updating Extent Parameters

yp
k := [θk, ak, bk]

ŷp
k = Hpp̂k|k−1

Cpy
k = Cp

k|k−1HT
p

Cyy
k = HpCp

k|k−1HT
p + Cυ

p

p̂k|k = p̂k|k−1 + Cpy
k
(
Cyy

k
)−1(yp

k − ŷp
k
)

Cp
k|k = Cp

k|k−1 −Cpy
k
(
Cyy

k
)−1
(

Cpy
k

)T

4.6. Track Management and Fusion

Since the standard JPDA assumes a known number of targets, the current approach
was developed to account for estimating varying numbers of targets by the implementation
of a separate track management module. The latter is in charge of track initiation, confir-
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mation, and deletion, based on the M/N rule. For instance, every unassociated centroid
is treated as a potential target (initiation) which shall be confirmed upon M successful
validations over N continuous observation steps.

A target is deleted in two situations; when there are no longer further validations over
a number of steps and in the case of track duplication, either the older track is retained (for
example, if Tk exceeds a predefined limit), or the tracks are fused according to the standard
fusion approach in the work of Singer and Kanyuck [48].

An outline of the steps involved in our combined PAKF-JPDA filter can be found in
Figure 5 below.

Figure 5. PAKF-JPDA filter summarized in the flowchart, reprinted with permission from [40] ©2022
University of Göttingen eDiss.
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5. Application and Results

This section explains the setup of the port region from where the radar streaming was
recorded in a real-world setting, and provides the results of the detection and tracking
algorithms.

5.1. Real-World Radar Streaming

Participating ground stations stream their radar detections from the Port of Hamburg
over the ASTERIX protocol. The stations overlooking the region are located in the north,
northeast, and south directions along the banks of the river Elbe. The sampling is at every
2.5 s for all sensors. Furthermore, the sensors have the advantage of providing views from
at least 30 m above the ground.

5.2. Clustering

In the detection step, we applied the DBSCAN algorithm with the eps parameter set
at 20, while the minimum number of detection points min_samples to obtain a valid cluster
was taken to be 50. The parameters were tuned on a trial-and-error basis with consideration
given to the prevailing environmental conditions to ensure that the clusters were neither
over- nor underfitted.

For illustrative purposes, we present exemplar sensor-wise clustering results as well
as the overlaid measurements from a random step in Figure 6. The port structure, visible
from the figure, is masked out in our process for efficiency, so that only detections from the
extracted waterway are subject to DBSCAN. The centroids are then converted from image
coordinates to the local ENU coordinates before they are processed by our tracker.

Figure 6. Sample clustering output at a random step. (a) Detections from all the three sensors plotted
together, where orange, teal, and purple colors correspond to Sensor 1, Sensor 2, and Sensor 3,
respectively. (b–d) The final clustering results from each sensor. Colored clusters with their centroids
denoted by black crosses ‘×’. Black clusters are considered as noise.

In our work, the value for eps was set so as to maximize the likelihood that at most one
cluster per vessel is obtained. This factors in the possibility that measurements could be
denser over some parts of the vessel. A lower eps value could yield multiple clusters origi-
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nating from the same vessel, which would have challenged our tracker in the next phase.
With regard to the second parameter, any value within the range 45 < min_samples < 60
would yield almost the same number of clusters as long as the external conditions remained
unchanged. Values below the lower limit would, however, result in more clusters, including
those of clutter measurements with an increase in processing time, while values beyond
the upper limit could result in failure to detect potential vessels.

5.3. Multisensor METT Visualization

Detections from Sensor 1, based upon our experience, were the most reliable in terms
of target detectability and coverage among the other two, and centroids yielded from
them were used for track initiation at the start. Henceforth, centroids from the remaining
sensors were also used in track initiation. As Sensor 3’s detections were noisiest and yielded
occasional radar reflections and backscattering effects, they were given less certainty. The
relevant parameter settings for our clustering and tracking approaches are given in Table 2.

Table 2. Parameter settings and description.

Parameter Value Description

eps 20 eps value for DBSCAN in pixels
min_samples 50 Minimum number of pixel points for DBSCAN

Cr
k diag(22, 22, 32, 32) Kinematic state covariance at initiation step k, [m, m, km/h, km/h]

Cp
k diag(0.252, 12, 12) Extent state covariance at initiation step k, [o, m, m]

Cω
r diag(202, 202, 0.22, 0.22) Kinematic state process noise, [m, m, km/h, km/h]

Cω
p diag(0.52, 0.22, 0.12) Extent state process noise, [o, m, m]

Cυ,1
r diag(22, 22) Measurement noise for Sensor 1 in meters

Cυ,2
r diag(32, 32) Measurement noise for Sensor 2 in meters

Cυ,3
r diag(62, 62) Measurement noise for Sensor 3 in meters

Cυ
p diag(52, 0.52, 0.52) Measurement noise for extent parameters, [o, m, m]

γ 9.21 Gate threshold
M/N 5/6 Track confirmation condition

M−/N− 4/4 Track termination condition

The estimated vessel extent parameters, including its identification number that is
assigned at the time of initialization, are directly printed in our application, while the
kinematic ones are internally stored. Since orientation of ellipses can be ambiguous, we
consider two possibilities based on the velocity of a vessel. The typical annotation format,
with respect to (4), is as follows:

T# : αt
k|α̃

t
k︸ ︷︷ ︸

orientation

, 2`t
1,k × 2`t

2,k︸ ︷︷ ︸
length×width

, (24)

where

• # is the step at which the target was initialized.
• Orientation values from αt

k|α̃
t
k for two possibilities: when vessel navigates from west

to east, its heading is taken as αt
k, and in the opposite case, the heading is taken as

α̃t
k = αt

k + π.
• 2`t

1,k × 2`t
2,k represent the length and width, respectively.

6. Discussion

In this section, we present some discussion of our work regarding two aspects. At
first, we focus on the current framework and then on the framework’s potential for further
development.
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6.1. Performance of Current Framework

Given the availability of the Automatic Identification System (AIS) information dur-
ing the recorded time, we illustrate the validity of our tracker’s results. In Figure 7, the
dimensions of four types of vessels are shown against their references: a passenger ship,
cargo, tug, and tanker, respectively. We focus on the performance of tracking with varying
sensor combinations, in which case we show results from two sensors (Sensors 1 and 2) as
well as results from all sensors.

Figure 7. Estimates of four types of vessels from different sensor combinations (solid blue and green
lines) against their AIS-based reference values (dotted red lines), with their standard deviations.

Most of the vessels’ estimations in Figure 7 were within 5 m of their references when
we considered the combination of the best two sensors. The results show that estimates in
principle depend on the coverage, measurement quality, and sensor synchrony, which are
the factors discussed next. At the time of track initialization, the size estimates are smaller
as they are only partially visible within the observation region before converging closer to
their true values when fully visible. The same is applicable as a vessel moves away from
the observation region. This behavior was captured by the passenger ship as it navigated
through the region. For the other vessels, the plots’ axes were limited for the period until,
and as long as, the vessels were fully visible.

While vessel dimensions are based on their hulls, radar reflections also arise due to
the vessel’s superstructure and the onboard objects. Hence, in our case, the width was most
likely to deviate from the reference, given the positioning of the ground stations. As the
three-sensors combination included noisier measurements from Sensor 3, we found their
fused estimates to be less accurate in general despite accounting for Sensor 3’s uncertainty.
To better demonstrate this, we consider the example provided in Figure 8, where the
extents of the cargo vessel are shown at the same observation steps under different sensor
combinations. An interpretation of the printed values from the leftmost figure would be
that the vessel is a size of approximately 86 m by 16 m and was being tracked over its
trajectory as it headed 88◦ (deduced based on cumulative previous steps) from the north
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across the region. In addition to the aforementioned width deviation, the length estimates
are closer to the reference for the two-sensors combination. In contrast, the length estimates
were affected by the reflections of Sensor 3, and had a tendency to therefore be larger than
the true value.

Figure 8. Estimates of the cargo with different sensor combinations. The three-sensors combination
shows length estimates affected by noisy reflections (Sensor 1: orange, Sensor 2: teal, Sensor 3: purple).

Regarding the last factor, there are cases of occasional sensor asynchrony which may
lead to overestimation of both extent and kinematic properties when persistent. Some
examples are depicted in Figure 9 over four consecutive frames. The individual row shows
the effect of having asynchronous measurements at a point of time and how the filter
continues. For most cases, the estimates remain close to their true values, even if there is
interference from a combination of the three factors.

Figure 9. Examples of sensor asynchrony shown in consecutive frames. Each row corresponds to
some target(s), the estimated extent(s), and the likely value for estimated orientation is underlined
among the extent parameters. Together with sensor asynchrony, water trails and clutter can be
observed particularly in rows (a–c) (Sensor 1: orange, Sensor 2: teal, Sensor 3: purple). In row (d), we
see a two vessels, of which one is making a turn and notice the sensor asynchrony in Frame i+2.

Finally, we look at the fused estimates over the entire observation region for an
MTSAM application as a whole on the basis of snapshots taken at two random observation
steps in Figures 10 and 11. In Figure 10, there was a single vessel underway. Its estimated
size was 65 m by 16 for an AIS-based reference size of 56 m by 12 owing to the trails and
reflections. However, due to the persistent reflections from Sensor 3, a ghost vessel (false
positive) was generated towards the east. Similar to all false positives in our case, the latter
track lingered for some steps before being terminated.
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Figure 10. Estimates of vessel T0 amid noisy measurements, including reflections due to water trails.
T14 in the east is a false positive resulting from noisy radar reflections of Sensor 3 (Sensor 1: orange,
Sensor 2: teal, Sensor 3: purple).

Figure 11. Estimates from one vessel and a ghost vessel in the east (result of radar reflections) (Sensor
1: orange, Sensor 2: teal, Sensor 3: purple).

From the results in Figure 11, which shows five vessels and a ghost vessel, an essential
point can be noted. The clustering algorithm was more sensitive to radar reflections (see
vessel T103) than to water trails (see vessel T110), as detections resulting from the latter
are relatively sparser, thus not meeting requirements for being a cluster (under our chosen



Remote Sens. 2023, 15, 2503 16 of 18

parameters). When we look closer at the two vessels T61 and T105 in the lower sides of the
main waterway in the figure, there was limited coverage for Sensor 3 as most measurements
belonged to either Sensor 1 or to Sensor 2. On the other hand, despite being the noisiest
among the three sensors, Sensor 3 was the only one which covered the southern part of the
observation region completely, while the other two sensors had limited coverage there. This
is the core reason why our algorithm could still initiate tracks based on the noisy reflections
from Sensor 3, and it therefore remains a challenge to eliminate ghost vessels born from it.

Nonetheless, our system was able to so far successfully track the extended states of
multiple dynamic vessels continuously. The computation time of one observation step
was recorded as 1.98 s, with the streaming being processed on a 2.60 GHz Intel Quad
Core processor system, employing PyCharm 2019 with Python version 3.6. Measurement
loading accounted for 35% of the entire processing time, and clustering accounted for 34%,
with the remaining accounting for our tracker.

6.2. Advancing the Framework

Our planned direction for developing the framework’s abilities would focus on ac-
curacy and computational time optimization. Instead of homogeneous radar platforms,
irrespective of whether the sensors are static (as they were in this work) or dynamic, the
framework shall cater for heterogeneous platforms that include sensors such as the AIS, or
Light Detection and Ranging (lidar). The current framework can easily accommodate AIS,
which would require similar steps for coordinate conversion and fusing the measurements
for estimating the kinematic positions. On the other hand, lidar measurements are restricted
to close-range targets and often have limited perspective. Yet, they could aid the extent
estimation, although specific strategies would be required within the framework to account
for them. Despite the scope, challenges such as sensor synchronization shall remain, and
adequate trade-offs would have to be considered depending on the situation at hand and
requirements as well. The contrast can be stated as follows: radar–lidar fusion can provide
more accurate estimations to assist vessels turning around or berthing in harbors, while
AIS–radar fusion would be more suitable to obtain reliable and robust traffic situation.

7. Conclusions

The two main contributions of this work are a framework for processing ASTERIX-
based detections from radar streams and the application and evaluation of an elliptical
METT algorithm, the PAKF-JPDA, to estimate the kinematic and extent parameters of an
unknown, dynamic number of vessels in a multisensor harbor setting. The framework
defines the functional steps involved from measurement loading to target tracking, thus
enabling vessel traffic monitoring and aiding situation assessment, for instance, during
vessel turns in sensitive regions within harbors. Methods for coordinate conversion and
clustering were applied on measurements from three high-resolution radar sensors before
our tracker estimated the position, velocity, size, and orientation of potential vessels from
the resulting fused measurements.

We demonstrated the framework based on radar video streaming. Snapshots of the
results with different sensor combinations were presented, and for further analysis, four
types of vessels, namely, passenger ship, cargo, tug, and tanker, were compared against their
AIS-based references to highlight the accuracy as well as possible sensitivity of the sensors.
The elliptical extent estimates were directly projected into the stream for visualization, and
our approach was able to track multiple vessels in the presence of clutter, water trails, and
radar reflections, despite some false positives lingering for some continuous steps before
being terminated.

For the outlook, we plan to investigate the heterogeneous expansion of our framework
by fusing measurements from both static and dynamic radars with other sensors such as
the AIS-broadcast information and potentially lidars for closer ranges. Furthermore, we
also plan on improving the system’s vessel detection capability both in terms of accuracy
and computational requirements.
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