
▪ The automatic algorithm allows us to provide large sets

of input and target variables using multiple spacecraft

pairs at L1 and near-Earth

▪ The algorithm facilitates easy access to data and the

data sets can be used by anyone

▪ We select the database (both training and test dataset)

with approximately similar number of observed fast and

slow solar wind cases

➢ Clock Angle: To trace SW propagation, we perform the

analysis on IMF clock angle:

𝜃 = tan−1
𝐵𝑦

𝐵𝑧

We segment ACE in 20 minutes window and find the MMS

data that best match the ACE data by sliding along 2 hours

of data incrementing 1 minute at a time
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➢ Having precise knowledge of the near-Earth solar wind

(SW) and the embedded interplanetary magnetic field

(IMF) is of critical importance to space weather operation

due to the usage of SW and IMF in almost all

magnetospheric and ionospheric models

➢ The most widely used data source, OMNI, propagates

SW properties from Lagrangian point L1 to the Earth’s

bow shock by estimating the propagation time of the SW.

However, the uncertainty of this time can reach ~30 min

➢ The overarching goal of the project is to deliver machine

learning models to specify and forecast near-Earth SW

conditions based on spacecraft measurements around L1

by marrying the long history of multi-point SW

measurements with the gradient boosting and random

forest prediction models in the form of ensemble of

decision trees

➢ Specifically, we train the model to specify and/or predict

the propagation time from L1 monitors to a given location

upstream or at the bow shock
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Data and Instruments

▪ To obtain the SW and IMF parameters around L1: ACE

- Advanced Composition Explorer (H0 - ACE Magnetic

Field 16-Second Level 2 Data)

▪ For upstream of the Earth’s bow shock: MMS (Level2

Flux Gate Magnetometer Combine Fast/Slow Survey DC

Magnetic Field for MMS 1)

Criterion I: near-Earth monitors (GEOTAIL, CLUSTER,

ARTIMES, and MMS) are located at X>15 RE and |Y|< 15

RE

Criterion II: have an ion temperature <1 keV [Mailyan et al.,

2008; Case and Wild, 2012]

Criterion III: assume a constraint on highly fluctuating

magnetic filed to avoid foreshock conditions
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ML Models and Predictions

▪We apply two ML models to predict SW propagation delay: i) Random Forest Regression (RF) and ii) Gradient Boosting (GB)

▪GB and RF algorithms are applied together: a) To enable direct comparison between the RF and GB models and b) To

quantify if the use of an ensemble-based ML model make a significant improvement to the overall performance

▪The machine learning SW propagation delay can be described as

Δ𝑡𝑀𝐿 = 𝑓𝒟(𝑥)
Here 𝑓𝒟 describes the ML algorithm trained on the data set 𝒟 and x contains the feature

vectors

▪ We follow Baumann and McCloskey [2021]’s method, where we use Bayesian optimization based on the Gaussian process

▪The ML model predicted delay agrees well with the statistically estimated delay with an uncertainty of ±5 minutes

▪To optimize the hyperparameter and to assess the ML model performance, we employ a ten-fold cross validation approach

▪Feature importance of the ML model and Correlations between feature vectors and the target SW delay are investigated

▪Validation: ML model predicted delays are compared with the results of physical models: 1) Flat Delay and 2) OMNI shifted

delay using Phase Front Normal

▪The statistical approach conducts cross-correlation

analysis to estimate SW propagation times and provides

large sets of input and target variables

▪We use multiple spacecraft pairs at L1 and near-Earth

locations to train, validate, and test machine learning

models

▪The ML algorithm using these data sets helps to specify

and predict (1) the propagation time from L1 monitors to

a given location upstream or at the bow shock and (2) to

forecast near-Earth SW conditions

▪The obtained propagation times are then compared to

OMNI. Factors that limit the OMNI accuracy are also

examined

Background and Motivation Overview and Conclusion

➢To correlate IMF clock angle at L1 and near-Earth and

obtaining propagation times, the algorithm computes

1) Cross-correlation (CC) coefficient

2) Plateau-shaped Magnitude Index (PMI)

3) Dimensionless Measures of Average Error (NDME)

➢ Our analysis uses, Weighted CC = CC*PMI

when max(CC) > 0.5 and NDME > 0.4
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Database to Prepare Input and Target Variables

for the ML Model
Methodology


