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A safe introduction of automated driving systems on urban roads requires a thorough understanding of the trafc conficts and
accidents. Tis understanding is paramount to constructively safeguard these systems, i.e., to design a system that exhibits an
adequate performance even in critical situations. In this work, we present an approach to gather knowledge by analyzing the
German In-Depth Accident Study (GIDAS) database, which is representative of all German trafc accidents, along with the
infuencing factors that are hypothesized to be associated with increased criticality in relation to automated driving. In order to
gain an insight into the risk associated with these factors in real-world accidents, we determine their presence in the database’s
accident cases within a selected operational domain, enabled by translation from a natural language description to the database
scheme employed by GIDAS. Tis initial catalog as well as the subsequent statistical considerations is motivated by analyzing the
criticality for automated driving systems in urban areas. Based on this catalog, our work delineates a method for quantifcation of
risk associated with such infuencing factors in a given operational domain based on real-world accident data. Tis quantifcation
can subsequently be used in decompositional, scenario-based risk assessment before system design and for the embedding safety
argumentation. Tis paper, therefore, provides a blueprint of how the matured feld of trafc accident research studies and its
results, in particular accident databases, can be leveraged for risk assessment of the operational domain of automated driving
systems.

1. Introduction

Demonstrating the safety of vehicles operated by an auto-
mated driving system (ADS), i.e., driving automation at SAE
Level 3 or higher [1], is a challenging endeavor. For these
levels of driving automation, ADS-equipped vehicles are
safety-critical complex systems operating in and interacting
with the open context provided by the operational domain
(OD) [2], for which distance-based statistical approaches to
safety can no longer be considered adequate [3, 4]. Mainly,
this is due to an uncountably infnite amount of potentially
safety-critical situations and scenarios [5], each of which is

slightly diferent and has a very low probability of occur-
rence. Scenario-based approaches to verifcation and vali-
dation of ADSs aim at eliciting a manageable set of scenario
classes from which suitable representatives are derived in
order to evaluate the ADS with fnite efort [6]. However, the
tasks of obtaining such a set of scenario classes, demon-
strating its completeness, and assessing the risks within these
classes, both for the ADS and for human trafc as reference
values, are generally understood as key obstacles for the
homologation of ADSs. Te importance of these challenges
led to the defnition of the ISO 21448 [7], which is concerned
with the Safety of the Intended Functionality (SOTIF). For
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this, it prescribes the usage of methods to reduce both the
number of known and unknown hazardous scenarios.

Te ISO 21448 suggests the systematic identifcation of
triggering conditions so as to reduce the set of unknown
hazardous scenarios. Among the other methods [8–10], on
a more abstract level, Neurohr et al. [11] proposed a criti-
cality analysis as an approach. It decomposes the OD
according to infuencing factors that are associated with
increased criticality, that is, the so-called criticality phe-
nomena (CP). In order to elicit a manageable set of CP, the
criticality analysis validates whether each factor is actually
associated with criticality. Such a validated list can then be
passed to subsequent steps in the safety case, such as risk
assessment, causal analysis, or testing. For the CP that can be
identifed within GIDAS [12], these statistical results can be
used to estimate the associated accident risk and as a starting
point for subsequent causal analysis [13]. Moreover, this
validated list shall be ordered by relevance so as to guide the
eforts downstream into the most critical scenario classes. Of
course, a well-founded validation of CP necessitates the
consideration of a wide variety of trafc data.

In this regard, trafc accident databases present a valu-
able source of data to analyze. We would like to know which
turn maneuvers occur more frequently in trafc accidents,

for example, turning left or right, at a T-junction or at an
intersection. Based on this, we can investigate further and
analyze which factors are associated with these turn ma-
neuvers, for example, an “occluded bicyclist” for right turns.
From this, we may derive a scenario class called “occluded
bicyclist at right turn” based on the evidence from accident
data. A safety case for the homologation of an ADS can
beneft from using risk assessment within the OD as a ref-
erence value for the relative acceptance criteria such as
a positive risk balance [14].

In particular, given an operational domain OD and
a criticality phenomenon CP, we are interested in a for-
malization of a reference value for relative acceptance cri-
teria. Besides this, such a value can also be used as a starting
point in system design, for example, to exclude phenomena
from the operational design domain (ODD) [1] or to guide
resource allocation for design, implementation, and testing
eforts. To achieve this formalization, in accordance with the
ISO 26262 [15] and 21448 [7], we factorize the risk of an
accident with passenger car involvement and damage to
persons into a product of exposure, controllability, and
severity followed by an application of Bayes’ theorem to the
frst two factors to obtain the following equation:

Risk(CP,Accident, Severity|OD)

� P(CP|OD)􏽼√√√√􏽻􏽺√√√√􏽽
Exposure

P(Accident|CP,OD)􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽
Controllability

P(Severity|Accident,CP,OD)
􏽼√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√􏽽

Severity

� P(CP|Accident,OD)P(Accident|OD)P(Severity|Accident,CP,OD),

(1)

which can be assessed more easily compared to the standard
risk decomposition in the second line of equation (1), as
follows:

(i) P(CP|Accident,OD) can be estimated by analyzing
the CP in GIDAS

(ii) P(Accident|OD) is obtainable from the national
accident statistics

(iii) P(Severity|Accident,CP,OD) can be fetched from
severity entries in GIDAS
In contrast, for the standard risk decomposition
into exposure, controllability, and severity, two
problems arise:

(i) Estimating the quantity P(CP|OD), which re-
quires large-scale, representative, naturalistic
driving data from a nonbiased measurement
source to estimate frequencies of CP

(ii) Estimating the quantity of
P(Accident|CP,OD), which moreover requires
this naturalistic data to include a representative
sample of accidents

Hence, the proposed decomposition of equation (1)
enables the risk estimation for CP in practice by solely re-
lying on accident databases and accident statistics from the
OD. In this publication, based on this decomposition, we
instantiate a risk assessment for a catalog of CP in urban
areas using real-world accident data from the German In-
Depth Accident Study (GIDAS) database. As a preparatory
step, the CP-catalog is translated into the query language of
the GIDAS database scheme. Based on the results of fltering
the database according to the translated CP, we are able to
estimate the quantities of equation (1), which can be used
two-fold: (a) for decompositional risk assessment of CP-
associated scenario classes in a safety case and (b) for or-
dering CP according to their relevance within a criticality
analysis.

As ADS-equipped vehicles (AVs) were not yet repre-
sented in the GIDAS database in the year of analysis (2020),
the results can be used within a criticality analysis for AVs
only with caution. Terefore, we focus on the CP that are
relevant for AVs on a vehicle-level, as determined by an
expert judgment and leave the CP that are specifc to the
machine-perception of ADSs for analyses based on more
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suitable data sources. However, the performed analysis
provides a blueprint for future analyses of accident databases
for AVs. For this, requirements on the collection of accident
data involving AVs can be derived from our analysis. Te
main contributions of this work are as follows:

(i) A method for risk assessment of scenario classes
spanned by CP based on accident databases and
(OD-level) accident statistics

(ii) Identifcation of CP within a representative accident
database

(iii) A blueprint for translating a linguistic specifcation
of CP to a format that enables their recognition
in data

(iv) A large dataset relating accident cases to the pres-
ence of CP as a direct result of translating the CP-
catalog into the GIDAS database query language

(v) Estimation of quantities required for the proposed
assessment of CP-associated accident risk

(vi) Accident risk assessment for combinations of CP

Te introduction of Section 1 is followed by the pre-
liminaries in Section 2, which contains brief descriptions of
the criticality analysis of the GIDAS database and a dis-
cussion of related work, respectively. Section 3 presents the
preparatory steps for the analysis, that is, obtaining a catalog
of CP, selecting the relevant subset of GIDAS accidents, and
translation of the CP to the database scheme. In Section 4, we
evaluate the corresponding database queries to obtain a large
binary dataset linking CP to GIDAS accident cases. Based on
this relation matrix, we delineate how to estimate the risk-
related quantities of equation (1) for a single CP and for
combinations of CP. After a discussion of the results in
Section 5, we conclude the work at hand and provide an
outlook to future work in Section 6.

2. Preliminaries

Te previously sketched risk decomposition serves as our
main motivation, but it obviously relies on a given catalog of
CP. For this work, such a catalog is given by conducting
a criticality analysis, a method developed in the project
“verifcation and validation methods” (VVM) (https://www.
vvm-projekt.de/en). In this section, so as to provide the
adequate context, we briefy introduce the concept of the
criticality analysis and the GIDAS database, and consider
relevant related works.

2.1. Criticality Analysis for the Verifcation and Validation of
Automated Driving Systems. Te VVM project aims at de-
veloping methods and processes for the verifcation and
validation of AVs at SAE Levels 4 and 5 [1]. In this regard,
previous works by the authors proposed a methodical
criticality analysis to structure the open context in which
AVs are supposed to operate by eliciting a fnite and
manageable set of artifacts [11]. Neurohr et al. defne crit-
icality of a trafc situation as the combined risk of the

involved actors when the trafc situation is continued ([11],
Defnition 1). Note that this actor-agnostic defnition of
criticality can be extended from situations to scenarios in
multiple ways by aggregating the criticality of a time se-
quence, for example, by choosing the maximum or some
quantile (see Section 5.2 in [16]).

A fundamental concept of the criticality analysis is the
observable infuencing factors in the trafc world that are
associated with increased criticality, called the criticality
phenomena (CP) (Defnition 2 in [11]). In terms of the
terminology used for hazard analysis and risk assessment,
CP represents abstract classes of danger (Remark 2 in [11])
and can thus be used as a template in subsequent hazard
analyses. Moreover, as motivated in the introduction, their
associated risk may serve as a reference value for accepting
or rejecting the assessed system-dependent risk for ho-
mologation. As a concept, CP does encompass more than
just direct causes of accidents, cf. ([17], pp. 13–15) as, by
defnition, only a statistical association with criticality is
required. Terefore, these infuencing factors may directly
increase criticality, appear at the beginning of a causal chain
of events, or even represent a spurious criticality association.

A quite prominent set of examples of CP is given by the
abstract spatial phenomenon of “occlusion” of an object by
another for a given subject and its numerous concretizations
such as “occluded vehicle” or “occluded trafc sign.” Also, let
us already mention the two phenomena “nonego-trafc
participant (TP) violating right of way” and “intersecting
planned trajectories of TPs” which, together with “Occlu-
sion,” will serve as a running example for a set of CP
throughout this work.

As shown in Figure 1, the associative part of the method
branch consists of the steps “identifcation and formalization
of criticality phenomenon” and “estimation of criticality
association,” followed by a potential “abstraction, re-
fnement, or discardment” step, depending on the estab-
lished associative criticality. Te frst step requires input
from the knowledge basis. It can be structured as follows
(Section V.A.1 in [11]):

(1) Acquire and structure knowledge
(2) Search the available knowledge basis for observations

associated with criticality, including knowledge from
laws, guidelines, and experiences

(3) Describe each CP using an ontological basis, in-
cluding abstractions and concretizations, an onto-
logical classifcation, and relations to other
phenomena

Te second step, “estimation of criticality association,”
generates evidence for the associational validity of a CP from (4).
If evidence is not sufcient, one can readjust the level of ab-
straction or discard the phenomenon. For each identifed and
relevant CP, the causal part of the method branch starts an
extensive causal inquiry into the established criticality associa-
tion [13]. Terefore, before spending resources on causal
analysis, the relevance estimation shall be backed by strong
empirical pieces of evidence.We highlight that the results of this
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work can be used for such an estimation, specifcally by ranking
CP based on the results of equation (1).

Establishing confdence in the criticality association of
a considered phenomenon prerequisites criticality to be
measurable. To this end, criticality metrics can be employed,
with the goal to evaluate the criticality of a situation or
scenario numerically (Section V.A.6 in [11]). Since the
1970s, such confict indicators were developed to allow not
only to observe accidents but also to observe other serious
conficts leading to near misses [18] (Section 2 in [16]).
Reversely, observing an actual accident can also be seen as an
exceptional trafc confict, namely, the most serious one.
Accidents are, therefore, a subset of all critical situations
identifed by criticality metrics.

Te accident metric (https://criticality-metrics.readthedocs.
io/en/latest/index-scale/AM.html) is a qualitative, binary-valued

scenario-level criticality metric that evaluates to 1, if an accident
did happen in a scenario, and 0 otherwise. Accident databases
can thus be interpreted as collections of scenarios for which the
corresponding accident metric equals to 1. Hence, the statistical
analysis of an accident database regarding the presence of a CP
yields empirical evidence for the relevance of the said phe-
nomenon, that is, when the criticality is measured using a var-
iation of the accident metric. While the accident metric has
a perfect specifcity for identifying scenarios as critical, its
sensitivity is low, as all critical nonaccident scenarios are ex-
cluded by defnition. In order to draw reliable statistical state-
ments from analyses of accident databases alone, large and
qualitative datasets are thus required. Fortunately, as explained
in Section 2.2, the GIDAS database provides us a set of high-
quality accident data that is considered to be representative for
the total German accident statistics.
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2.1.1. Limitations. In the VVM project, the criticality
analysis is conducted for a generic class of AVs at SAE Levels
4 and 5 in an urban environment [11]. As suggested by
Damm and Galbas [19], the process step “identifcation and
formalization of criticality phenomenon” has been divided
into two parts, namely, identifcation of CP that

(i) Are relevant to human trafc, for example, not
dependent on the perception of the environment
through a sensor setup

(ii) Become relevant for AVs that rely on sensor tech-
nology for perception

As the GIDAS database did not (yet) contain accidents
involving AVs at the time of analysis, it has been restricted to
CP identifed in part (i). It does, however, provide a blue-
print for future analyses for part (ii).

Another limitation concerns the legal dimension of
trafc accidents. Te criticality analysis is not concerned
with questions of guilt or liability, so we do not require such
information within the analyzed accident cases.

2.2. Te GIDAS Database. GIDAS (https://www.gidas.org/
start-en.html) is the largest in-depth accident study in
Germany with its adjacent database being among the world’s
leading trafc accident databases. Since 1999 the GIDAS
project has collected on-site accident cases in the areas of
Hanover and Dresden. Due to a well-defned statistical
sampling plan, cf. Section 2.2.2, representative statements
about the German national accident statistics are possible.
GIDAS collects data from all types and kinds of trafc ac-
cidents with personal injury. For each accident case, or
simply case, GIDAS collects on an average about 3 500 pieces
of information that are coded in the database, including data
on the involved vehicles and persons, occurred injuries,
surrounding infrastructure, and environmental conditions.
Moreover, every accident is reconstructed by experienced
reconstruction engineers so as to obtain knowledge about
speeds, steering or braking maneuvers, and collision pa-
rameters. As the project is funded by the German Federal
Highway Research Institute (BASt) and the German Re-
search Association of Automotive Technology (FAT), access
to the data is restricted to GIDAS consortium members.
While Figure 2 gives an overview of the total content of the
GIDAS database, for the analysis presented in the following
sections, a subset of the whole content has been selected.

2.2.1. Te GIDAS Codebook. In order to provide the
members and partners of GIDAS with an adequate overview
of all the information present in the database, there exists
a corresponding codebook containing various pieces of
information for each variable that is coded for in GIDAS. For
every variable used by GIDAS, the codebook contains an
entry containing, among others, the name and a description
of the variable and a range of possible labels. As of June 30,
2020, more than 2 400 individual variables are encoded in

GIDAS and documented in the codebook. An example is
shown in the following dashed box for the variable
“ORTSL,” which provides information about the location of
the accident:

Variable: ORTSL (accident site, ORTSLAGE in
German)
Record: UMWELT (environment)
Label: accident site
Valid date period: since 1999-07-01
Mandatory variable: yes
Description: the accident site relates to the ofcial
record of the location of the accident, in particular
whether the accident is located inside or outside of
a built-up area. If the accident scene is on the boundary
line, the location of the collision point should be in-
dicated. Tis information must always correspond with
police records.
Defned labels:

3: urban
4: rural without highway
5: highway

Tis example highlights that, due to the intensive
memory requirements of textual entries, many specifc
characteristics of cases are stored as numerical codes in the
database. Terefore, an interpretation of the cases is only
possible in conjunction with this codebook (or with ex-
tensive experience working with the GIDAS database).

Moreover, let us mention a special set of variables in-
spired from the catalog of accident causes from DESTATIS
([17], p. 50) which has been used frequently in this work.
Tere are many variables in GIDAS relating to accident
causes such as “HURSU,” which not only encodes the hy-
pothesized main cause for the whole accident but also lists
several (partial) causes for each involved trafc participant,
named “URSWIS1,” . . ., “URSWIS4.” Te variables
“HURSU” and “URSWIS” have, among others, been applied
to identify CP using SQL queries. For most of the CP,
however, a combination of multiple GIDAS variables was
required in order to identify them in the database, cf.
Appendix A.

2.2.2. Weighting and Representativeness. In order to account
for the bias within the database and to ensure the repre-
sentative results, the GIDAS database is weighted towards the
German national accident statistics DESTATIS of 2019 [17].
Bias within the data is due to multiple reasons, including
investigation teams not being informed about all accidents
within the investigation area, information about injuries not
always being immediately available, or noneliminable dif-
ferences in the investigation areas (cf. Section 2.2.3). By
weighting the data, GIDAS results can be used for statements
over the total German accident statistics.Te weighting of the
GIDAS data is based on the following three variables:
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(i) Accident site (“ORTSL”), i.e., urban, rural, or
highway

(ii) Accident severity (“PVERL”) according to
DESTATIS ([17], p. 40), i.e., accidents with slightly
injured persons, seriously injured persons, or fatally
injured persons

(iii) Type of accident (“UTYP”), which distinguishes
seven diferent categories according to DESTATIS
([17], p. 36)

After the application of the weighting procedure, the
database and the results are representative for these vari-
ables. In addition, other aspects are indirectly corrected by
the weighting procedure, for example, the distributions of
road users or time of the day. Depending on these variables,
for each accident case i, the weighting factor wi and the
extrapolation factor ei are calculated as

wi �
#Acc. inGermany withUTYPi, PVERLi,ORTSLi · #Acc.inGIDAS
#Acc. inGermany · #Acc.in GIDASwithUTYPi, PVERLi,ORTSLi

,

ei �
#Acc.inGermany withUTYPi, PVERLi,ORTSLi

#Acc.inGIDASwithUTYPi, PVERLi,ORTSLi

.

(2)

Since the weighting factors wi range from 0.279 to 2.084,
the weighted sum of accidents (or persons, injuries etc.) may
amount to nonintegers. Terefore, the frequencies that rely
on these factors are rounded to the closest integer, for ex-
ample, in Figure 2, the introduced rounding errors being
negligible.

2.2.3. Measurement Bias. As with any dataset, we have to be
cautious about the possible biases introduced by the mea-
surement principle. As the data rely on the reports of the
onsite team and police created after the accident, it is only
possible to approximate the exact happenings of the accident
scenario.Tis may introduce biases by (a) limiting which CP

69 136 vehicles

44 224 pas-
senger cars

5 822 trucks,
busses, trams

13 276 bicycles

5 620 powered
two-wheelers

194 other vehicles

including

94 712 persons

64 553 car
occupants

5 455 truck, bus,
tram occupants

13 395 bicyclists

6 046 mo-
torcyclists

5 231 pedestrians

including

50 291 in-
jured persons

36 863 slightly
injured persons

12 591 seriously
injured persons

837 fatally in-
jured persons

139 331 sin-
gle injuries

including

totaling

69 136 trajectory
reconstructions

155 462 reconstru-
cion sequences

58 907 vehicle-to-
vehicle collisions

17 915 vehicle-to-
object collisions

including

38 571 documented and reconstructed accidents

Figure 2: An overview of the contents of the GIDAS database efective from June 30, 2020.
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can be identifed in GIDAS and (b) underestimating the
measured frequencies of those CP that can be identifed. As
an example of the frst case, CP such as emotional states or
lines of the gaze of trafc participants may be nonidentifable
within the GIDAS, and this can be partially mitigated by
questioning the trafc participants. However, they may
(consciously or unconsciously) incorrectly reconstruct the
course of events. For the second case, the presence of de-
fective vehicle parts (for example, headlights) may be
underestimated if some collisions alter the physical state of
these parts signifcantly (for example, headlights are
destroyed in frontal collisions). However, by relying on
experienced onsite teams, such biases can be limited, es-
pecially when compared to other data sources. For example,
data from camera-equipped drones may be completely bi-
ased against adverse weather conditions, which is not the
case for GIDAS.

2.3. Related Work. As the work at hand lies between the
areas of classical trafc accident research studies and the
engineering of ADSs, the related work is analyzed on both
the aspects: (a) accident databases and their use for accident
research studies and prevention as well as (b) incident
databases of ADSs and their exploitation in a corresponding
safety case.

2.3.1. Human Road Trafc. At this point, let us mention the
vast amount of naturalistic driving study (NDS) databases,
such as the SHRP2 [20] and UDRIVE [21]. Tose, albeit
delivering fruitful insights into the nature of human road
trafc, are only slightly related to the scope of this work
which focuses on the extreme trafc situations in the form of
trafc accidents with damage to persons. Note that, those
can also be extracted from sufciently-sized NDS databases
by means of identifying collisions or near-collisions [22].

(1) Accident Databases. Many countries collect and aggregate
accident census data such as age and type of involved
participants. For example, while Japan maintains a huge and
all-inclusive accident database (ITARDA) (https://www.
itarda.or.jp/English), in the United States of America the
National Highway Trafc Safety Administration (NHTSA)
operates a variety of accident data collection systems
(https://www.nhtsa.gov/data/crash-data-systems). In par-
ticular, let us mention the Fatality Analysis Reporting
Systems (FARS) (https://www.nhtsa.gov/research-data/
fatality-analysis-reporting-system-fars), which collect data
on fatal trafc accidents, and the National Automotive
Sampling System (NASS) (https://www.nhtsa.gov/crash-
data-systems/national-automotive-sampling-system), from
which representative samples of accident data can be
sourced. Te International Trafc Safety Data and Analysis
Group (IRTAD) aggregates such data internationally
[23, 24].

Ziegler et al. present an overview on the various national
data sources, such as the police accident investigations, in-
depth studies, and detailed case recordings for scientifc
applications, so as to assess their quality [25]. Within

Germany, GIDAS [12], examined in this work, falls into the
second category, i.e., it contains detailed data from a rep-
resentative sample of accidents collected by onsite in-
vestigation teams. To the best of the authors’ knowledge,
there are no other published studies which systematically
identify safety-critical infuencing factors for automated
driving within GIDAS.

Te previous work of Esenturk et al. [26, 27] analyzed the
UK accident data collection STATS19 (https://www.data.
gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/
road-safety-data) with the goal of generating valuable test
scenarios for ADSs. In particular, the authors relate a list of
17 variables, each with a very limited set of values, to the
severity of accident data [26]. Tey learn a logistic regression
model on this data that is able to predict the accident severity
on a binary scale, i.e., slight or severe, quite reliably and
argue, that this model can be used for systematic test case
generation.Te work at hand is similar in that we also aim at
leveraging accident data for ADSs safety. However, the scope
of our work is vastly more encompassing concerning the
methodical background for elicitation of safety-relevant
factors given by the criticality analysis. In particular, after
establishing associational relevance, the criticality analysis
suggests causal inference techniques to avoid deriving sce-
narios with spurious criticality correlations [13]. Moreover,
the broader view also concerns the amount of variables, the
source of data, and the variety of performed statistical an-
alyses. Instead of solely targeting the derivation of test
scenarios, we leverage the accident data for the estimation of
quantities of interest generally relevant within the verif-
cation and validation processes.

(2) Analysis for Accident Research Studies and Prevention.
Te close examination of accident cases can lead to
a deepened understanding of their infuencing factors [28],
which in turn provides guidance to the road trafc safety
measures [29]. In particular, accident databases have been
leveraged for this purpose, without a specifc focus on ADSs,
for example, for accidents involving vulnerable road
users [30].

2.3.2. Automated Driving Systems

(1) Incident Databases. Testing automated vehicles on public
roads can be accompanied by the responsible companies
disclosing details on potential incidents, such as disen-
gagements (the safety driver having to take over control) or
collisions (with static objects or trafc participants). Tese
incidents can be analyzed to infer statements on causes, what
led to the incident?, and outcome, what was the observable
efect of the incident?

Te state of California requires the reporting of such
disengagements, which therefore have been subjected to
various analyses. One of the frst studies, a descriptive
analysis of the disengagements between 2014 and 2015, was
performed by Vinayak et al. [31]. For the twelve analyzed
collisions, they found that in eleven cases, the other trafc
participants were at fault. Regarding the reasons behind
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disengagements, system failures made up 56%. Factors from
the environment of the vehicle, such as weather and other
trafc participants, accumulated to 17%. Another descriptive
analysis of the reports from 2014 to 2017 found, similar,
system failures to be mainly responsible for disengagements
(52%). Again, factors from the vehicle’s environment were
contributing to 11% of the cases, containing issues such as
poor lane markings (43%), construction zones (21%), and
heavy pedestrian trafc (19%) [32]. Further comparisons of
the recent work have been aggregated by Sinha et al. [33].
Based on these data, statistical analyses have been executed
in order to estimate the relevance of factors behind disen-
gagements, including decision tree learning [34] and re-
gression models [35].

Tese approaches difer from the work at hand in that
they operate only on small sample sizes, i.e., they are not
representative for all critical situations within the OD. Tis
concerns, for example, certain weather conditions such as
snow and ice in the winter months. Adding to this issue, the
subjects are not “skilled” driving functions but rather early
implementations of being actively under development. Tis
implies that many issues of functional safety (in the sense of
ISO 26262 [15]) are likely to be present. For example, software
faults, underspecifcation of requirements, or hardware faults
are likely to cause misbehavior that leads to disengagements
in situations in which a skilled driver would have performed
fawlessly. Te work at hand is concerned with factors
infuencing the safety of the intended functionality (“trig-
gering conditions” in the sense of ISO 21448 [7]), and is
therefore focused on the situations in which even a skilled
driver will be challenged. Albeit analyzed within the incident
studies, that these only make up for a smaller part, i.e., 11% to
48%, depending on the defnition [31, 32, 34]) of the total
disengagements, leading to the aforementioned issues in the
sample size. Furthermore, disengagement reports are highly
dependent on the manufacturers’ willingness to disclose all
relevant information as well as to analyze the incidents to
a sufcient depth. As shown by Favarò et al., as of 2017, this
has often led to quality issues when extracting information
from those reports [32], for example, weather information
was missing in roughly three-quarters of the cases. Moreover,
basing an analysis of the safety-relevant factors within the OD
on disengagement reports from a diverse set of companies still
leaves open comparability issues including unaligned se-
mantics of the factors, for example, what exactly constitutes
a “bicyclist.” For such factors, we suggest that by analyzing
large-scale accident data with a unifed semantical basis and
an in-depth reconstruction performed by professionals can
fll the aforementioned gaps of representativeness, compa-
rability, and completeness.

(2) Usage in Safety Cases. Te performance of driving au-
tomation can be compared to human performance in order
to assess the performance of the technology that is to be
introduced. For advanced driver assistant systems, this has,
for example, been performedby means of NDS data [36].
Such a comparison has to be made against a representative
database of human performance, for example, GIDAS or
SHRP2. For more complex ADSs, a frst comparative

analysis has been conducted by Goodall [37], where ADS
rear-crash accidents according to the aforementioned in-
cident reports were compared to human performance as
measured in SHRP2. As risk assessment of such coarse
scenario classes can lead to the so-called approval trap [3], so
our work extends this comparative idea towards generic
scenario classes. Tus, we lay the foundation for a fne-
grained scenario-based comparison of the risk induced by
human drivers with the risk induced by ADSs.

3. Preparation of Analysis

In this section, we describe the preparatory steps required
for conducting an analysis of the GIDAS database. In
particular, these are the following:

(1) Create a catalog of CP in relation to ADSs within
a selected OD, cf. Section 3.1, as a part of the crit-
icality analysis

(2) Select a subset of the database that corresponds to the
class of systems and the OD for which risk assess-
ment is to be performed, cf. Section 3.2

(3) In order to search the GIDAS database for accident
cases with CP present, translate them into the query
language of the database (SQL), cf. Section 3.3

3.1. Evolution of the Catalog of Criticality Phenomena.
Initially, the CP-catalog was created to organize the results of
the process step “identifcation and formalization of criti-
cality phenomenon” of a criticality analysis, as briefy in-
troduced in Section 2.1.

For the initial version of the catalog, the authors searched
several sources of information for phenomena hypothesized
to be associated with the increased criticality in urban trafc,
namely,

(i) A comprehensive analysis of the ofcial German
driving license catalog of questions by Verkehrsblatt
Fragenkatalog (https://www.verkehrsblatt.de/docs/
fragenkatalog)

(ii) Consideration of various results from the PEGASUS
project, such as the ontological framework by
Bagschik et al. [38] and its implementation

(iii) Te work conducted on automation risks by Kramer
et al. [39] and the corresponding technical
report [40]

(iv) A nonpublic list of risk factors identifed within the
PEGASUS project (https://www.pegasusprojekt.de/
en)

(v) Te accident causes from DESTATIS ([17], p. 50),
and fnally

(vi) Consolidation via expert knowledge provided by the
authors and the VVM consortium.

Te process of translating CP, as described in Section 3.3,
and intense discussion among peers led to an iterative re-
fnement of the catalog. Te latest version of the catalog
before the analysis contained the following:
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(i) 166 CP formulated in natural language on varying
levels of abstraction, uniquely identifed by an ID
∈ 1, . . . , 166{ }

(ii) A German translation and a textual description of
each phenomenon as well as an ontological classi-
fcation based on the urban 6-layer model [42]

(iii) Existing relations between phenomena such as
abstractions, concretizations, synergies with other
phenomena, and synergies with specifc contexts

(iv) A collection of tags associated with the phenomena
(v) A preliminary estimate of the criticality that is as-

sociated with each phenomenon on a 3-point scale
(high, medium, and low)

3.2. Selection of the Master Dataset. Te frst step towards
analyzing the GIDAS database regarding the CP-catalog is
the selection of a subset of interest from all available GIDAS
cases, in the following referred to as the master dataset. It
was selected in such a way that it is representative of the OD
under consideration within the VVM project, i.e., urban
scenarios with passenger car involvement. Te version of the
GIDAS database which has been utilized (efective from June
30, 2020) contains 41 381 real-world accidents of which
38 571 are completely documented and reconstructed. To
account for the aforementioned OD, several flter criteria
have been applied to the GIDAS database, restricting the
master dataset to cases that

(i) Happened between the years 2007 and 2020 (many
interesting variables were not available in GIDAS
before 2007.)

(ii) Were located in urban areas
(iii) Involved at least one passenger car
(iv) For which a reconstruction of the accident is

available

Applying these flter criteria to all GIDAS cases yields
a total of n � 15 417 relevant accident cases. If we denote by
wi the weight factor for accident case i, as explained in
Section 2.2.2, then the weighted number of accident cases
used for the analysis is given by 􏼄􏽐

n
i�1wi􏼇 � 12 997. Note

that, when projected to the total German trafc accident
statistics in 2019, the GIDAS master dataset represents
􏼄􏽐

n
i�1ei􏼇 � 160 385 accident cases with ei denoting the ex-

trapolation factor for each case.

3.3. Translating Criticality Phenomena to the GIDAS

3.3.1. Database Scheme. Each CP represents an abstract class
of danger that could potentially interfere with an AV’s
driving task. For the identifcation of instances of such
abstract classes of danger within GIDAS, it is necessary to
translate this description into characteristic codes out of the
GIDAS codebook, cf. Section 2.2.1. Terefore, it is required
to analyze every single CP in terms of its semantics as well as
its potential identifability within the GIDAS. While a gen-
eral process for such a translation has been examined

extensively by Westhofen et al. [43], its partially instantiated
steps are sketched in Figure 3.

Intuitively, we start by expressing a phenomenon using
natural language, such as “occluded pedestrian.” Tis ex-
pression is based on the implicit world model of the creator,
for example, by using a set of assumptions on what the
defnition of a pedestrian and an occlusion encompasses.

It is conceptually advantageous to then convert this
implicit world model to an explicit and formal ontology and
use this ontology to represent the resulting phenomena. For
the scope of this work, that is, limited and scientifc, a unifed
ontology was directly negotiated over all involved parties
during the translation process. However, a formal repre-
sentation of this unifed ontology was not made explicit.
Note that, not explicating this step does not invalidate the
scientifc results, but when applied in an industrial large-
scale setting, a rigorous formal ontology will be mandatory
to both mitigate complexity issues and for aligning
multistakeholder views.

Te natural language defnitions of the CP are then
directly mapped onto the database scheme and its query
language, if possible. In some cases, CP is not translatable to
the GIDAS codebook; for example, if the variable under
consideration is not recorded in the postaccident analysis,
then this concerns the activation of indicator signals of the
involved TPs. Often, such variables can be estimated or
derived from the ofcial accident report. Due to those ap-
proximations of the intended semantics of the CP, it be-
comes necessary to register such modeling assumptions in
a formal ontology mapping.

At this point, it should be mentioned that GIDAS is
a trafc accident database and thus represents an exceptional
part of the road trafc. Under these conditions, not all CP are
identifable, mainly because the described circumstances are
temporary, subjective, cannot be determined in retrospect,
or are too general or negligible regarding the course of the
accident. Tere exist some CP which can only be identifed
through an individual case analysis. However, if no suitable
keywords could be determined, the translation was dis-
pensed due to the immense efort required. As to analyze
GIDAS in terms of a specifc CP, an individual user analysis
and detailed expert knowledge on the GIDAS codebook is
required.

By assigning the associated GIDAS parameters to the
description of the CP, queries can be executed on the da-
tabase to retrieve binary results on their presence in accident
cases. Exemplary database queries realized as SQL code for
the three running examples CP “intersecting planned tra-
jectories of TPs” (#17), “nonego-TP violating right of way”
(#31) and “occlusion” (#131) can be found in Appendix A.

We now illustrate this process by means of the CP
“nonego-TP violating right of way” (#31), as shown in Ta-
ble 1. Its natural language description directly contains the
following two pieces of information: frst, the phenomenon
concerns a nonego-TP, so there are no restrictions for the
ego; second, a nonego-TP violates the right of way. From the
point of view of the trafc accident database, this means that
this trafc participant bears, at least partially, the guilt of
causing the accident. Whether the ego is to blame here as
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well is not relevant for the identifcation of this CP. From the
several parameters in GIDAS relating to the cause(s) of the
accident, for this CP, we used the parameter “URSWIS”
which encodes for actor-specifc accident causes, as men-
tioned in Section 2.2.1. For each TP involved in the accident,
up to four causal factors are recorded. So, for the phe-
nomenon at hand (#31), the URSWIS-code of the nonego-
TP is relevant. Examples of causal factors encoded by
URSWIS include the nonadherence to several right-of-way
regulations such as “left yields to right,” trafc signs and
lights, manual trafc control via police ofcers, or the
misbehavior of pedestrians, for example, not paying at-
tention to the trafc or suddenly emerging from occlusions.
Accordingly, this CP also includes priority violations, spe-
cifcally the realization of “nonego-TP violating right of way”
(#31) as SQL query can be found in Section A.2.

4. Results of Analysis

Tis section describes the analysis of the GIDAS database
and its results, based on the CP-catalog, the selected master
dataset, and the translation of the CP to the database scheme.
In particular, we delineate how the quantities required for
the risk decomposition of equation (1) are estimated for
P(CP|Accident,OD) and P(Severity|Accident,CP,OD),
and we use our analysis of the GIDAS database and for
P(Accident|OD) we rely on the German national trafc
statistics. Furthermore, we generalize this risk estimation
from a single CP to conjunctions of CP. Te resulting data
are included as supplementary material [41].

4.1. Results of Translating Criticality Phenomena. In the
initial version of the CP-catalog, as described in Section 3.1,
all CP were formulated in the natural language. For their
identifcation within the GIDAS database, the authors an-
alyzed each of the 166 CP regarding their semantics and

translated them, if possible, into SQL queries using suitable
variables and parameter ranges from the GIDAS codebook
as described in Section 3.3.

In total, we were able to translate 116 out of the 166 CP
( ≈ 70%) in the CP-catalog into SQL queries, which, in turn,
implies that 50 out of the 166 CP ( ≈ 30%) could not be
identifed within the GIDAS. Tis means that, for the
remaining CP, either (i) other data sources need to be
consulted, (ii) manual analysis of the GIDAS case report
needs to be conducted, or (iii) that some of the CP needs to
be discarded. From the point of view of the criticality
analysis, it is clear that other sources besides the GIDAS
database are needed and that some of the infuencing factors
hypothesized to be associated with criticality will have to be
discarded. Let us remark that it (ii) was not an option for the
authors, as this would require immense personal eforts.

As to give some examples, we distinguish the three
classes of nonidentifable CP as follows:

(1) Missing Data. Te frst class consists of CP that could
not be analyzed due to a lack of appropriate in-
formation in GIDAS. Examples include “missing
indicator signal,” “small distance to lane marking,”
“object near ego” (think of a can, ball, or branch),
and “right-of-way dead-lock.” this is by far the
largest class of nonidentifable CP.

(2) Infeasible Translation. For the second class, a manual
analysis of the individual accident cases would have
been necessary, as the authors could not fnd an
adequate translation into the query language. Let us
mention the examples “construction site remains”
and “overriding right of way” for which none of the
available parameters in GIDAS enable reliable au-
tomated identifcation of accident cases. Although
manual analysis of single cases by an expert could, in
principle, identify such CP, but this was omitted due
to efort constraints.

Phenomenon
in natural
language

Formal
representation

Representation
in DB query

language
Results

1 2 3 4

Model

Phenomenon

Implicit
world model Formal ontology DB scheme DB

if representable in DB scheme

Figure 3: Te general workfow of identifying a machine-comprehensible representation of a criticality phenomenon using database (DB)
queries. Te work at hand skips step two and translates criticality phenomena directly to the query language of the GIDAS database.
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(3) Irrelevant for Human Trafc. Te third (and small-
est) class is comprised of CP which are not yet
relevant to trafc accidents involving human-
operated passenger cars but could become relevant
for ADSs, for example “dead spot” or “balloon near
ego.”

Note, however, that these classes are not disjoint as the
classes (2) and (3) can be considered subclasses of (1).

4.2.Te Case-Phenomenon RelationMatrix. Te application
of the SQL queries to the GIDAS database generates, for each
of the 116 identifable CP, a list of accident cases where the
respective phenomenon was present. For evaluation, we
created a case-phenomenon relation matrix of size 15 417 ×

116 where each row represents a GIDAS accident case from
the master dataset. Each accident case i is identifed via an
(anonymized) case number and comes with a weighting
factor wi, an extrapolation factor ei which projects to the
overall German accident statistics, cf. Section 2.2.2 and an
associated severity si on a three-point ordinal scale. Te
columns correspond to the 116 CP for which SQL queries
could be realized. Terefore, an entry ai,j of the 15 417 × 116
case-phenomenon relation matrix is defned as

ai,j �
1, if CPj was present in accident case i,

0, otherwise,
􏼨 (3)

where i � 1, . . . , 15 417, j � 1, . . . , 116, and CPj denote the
CP identifed with ID #j. A small excerpt from the case-
phenomenon relation matrix can be seen in the lower right
part of Table 2.

From this matrix, together with the factors wi and ei, the
absolute, relative, and projected frequencies can easily be
computed for all of the 116 identifable CP as

abs freq CPj􏼐 􏼑 � 􏽘
n

i�1
wiai,j,

rel freq CPj􏼐 􏼑 �
1

􏽐
n
i�1wi

􏽘

n

i�1
wiai,j �

abs freq
􏽐

n
i�1wi

,

proj freq CPj􏼐 􏼑 � 􏽘
n

i�1
eiai,j,

(4)

where n � 15 417, cf. Section 2.2.2. An evaluation of the
quantities of equation (4) for the CP from the running
example is given by Table 3. Besides these simple frequentist
quantities, the case-phenomenon relation matrix enables,
among other statistical analyses, estimating the risk asso-
ciated with CP according to equation (1), as will be dem-
onstrated in Section 4.3.

4.2.1. Nonexistent and Rare CP in the Master Dataset.
Note that, fve CP from the CP-catalog did not occur at all in
the master dataset, i.e., abs freq(CP) � 0. As, in this work,
the source of the data consists of urban trafc accidents with
passenger car involvement and damage to persons, and CP
being rare or nonexistent in this dataset shall not yet lead to
their discardment neither in a criticality analysis nor in
a safety case. However, we may need to consult other
datasets before we can reject the hypothesis that the phe-
nomenon is associated with criticality.

Let us consider some examples. While “violation of zip
merging” may be a CP in general, it is not an associated risk
with personal injury accidents in urban areas. Tis may be
due to the usually low-speed level during inner-city merging
that prevents such accidents. Another example is “manual
trafc control” which rarely occurs nowadays in Germany.
Tus, the probability of identifying such an accident in
GIDAS is very small. However, this phenomenon might
become more relevant for ADSs due to the communication
barrier. Similarly, the weather-related phenomenon “hail”
only occurs with an absolute frequency of two in the master
dataset. Hail is a rare phenomenon in general and often of
short duration but of high intensity. Terefore, human
drivers tend to quickly adapt their driving behavior to this
critical environmental condition, thereby mitigating the risk
of a personal injury accident.

4.3. Bayesian Approach for the Assessment of Risk Associated
with Criticality Phenomena. Picking up the Bayesian ap-
proach for assessing the accident risk associated with CP
from Section 1 and, in particular, equation (5), we now
elaborate on how the involved quantities can be estimated
empirically for the 116 CP that were identifable within the
GIDAS. We recall that we factorized the risk of an accident
with passenger car involvement and damage to persons
associated with a CP within an OD as

Risk(CP,Accident, Severity|OD)

� P(CP|OD)􏽼√√√√􏽻􏽺√√√√􏽽
Exposure

P(Accident|CP,OD)􏽼√√√√√√√√􏽻􏽺√√√√√√√√􏽽
Controllability

P(Severity|Accident,CP,OD)􏽼√√√√√√√√√√√􏽻􏽺√√√√√√√√√√√􏽽
Severity

� P(CP|Accident, |OD)P(Accident|OD)P(Severity|Accident,CP,OD),

(5)
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where in the following calculations, the OD is assumed to be
urban areas in Germany, as discussed in Section 3.2, in
accordance with the VVM project’s criticality analysis.

4.3.1. Estimation of Risk-Related Quantities

(1) Estimation of the First Factor. For a phenomenon CPj, the
frst quantity can be estimated directly from the case-
phenomenon relation matrix (ai,j) of Section 4.2 and the
weights wi from Section 2.2 as

P CPj

􏼌􏼌􏼌􏼌􏼌Accident,OD􏼒 􏼓 ≈ rel freq CPj􏼐 􏼑 �
1

􏽐
n
i�1wi

􏽘

n

i�1
wiai,j,

(6)

with n � 15 417. Note that the validity of this estimate rests
on the representativeness of GIDAS for all German trafc
accidents and, in particular, on the characteristics of the
master dataset, as introduced in Section 3.2.

(2) Estimation of the Second Factor. Te second quantity,
P(Accident|OD), is a factor that is independent of CP and
can hence be estimated from the national German trafc
statistics for the OD. In particular, werely on

(i) DESTATIS to retrieve r
(2019)
1 � 127 856 as the

number of accidents with damage to persons and
passenger car involvement in urban areas in
2019 [17]

(ii) Te German Federal Institute BASt for the total
amount of kilometers driven by passenger cars in
urban areas of Germany in the year 2014 [44], which
amounts to r

(2014)
2 � 154 580 000 000 km

Under the assumption that the yearly amount of total
kilometers has not changed signifcantly between 2014 and
2019, we estimate the probability of an accident with pas-
senger car involvement and damage to persons in urban
areas in Germany in 2019 as

P(Accident|OD) ≈
r

(2019)
1

r
(2014)
2

≈
r

(2019)
1

r
(2019)
2

�
127 856 accidents
154 580 000 000 km

� 8.27 · 10− 7accidents
km

� 827
accidents
109 km

≕CAccident,OD.

(7)

(3) Estimation of the Tird Factor. Within GIDAS, the se-
verity of a personal injury p is encoded on a three-point
ordinal scale according to the ofcial defnition as

(i) p � 3, if the person succumbs to the inficted injury
within 30 days (“fatal injury”)

(ii) p � 2, if the person is admitted, at least for 24 hours,
to a hospital for stationary treatment (“serious
injury”)

(iii) p � 1, for all other injuries (“slight injury”)

Te severity si ∈ 1, 2, 3{ } of a given accident case i is then
defned as the maximum over the individual personal in-
juries that occurred in the accident. Based on this, for each
CPj that was identifable and occurred at least once in the
dataset, we estimate the probability of reaching a given
minimal severity level s as

P Severity ≥ s Accident,CPj,OD
􏼌􏼌􏼌􏼌􏼌􏼒 􏼓 ≈

􏽐
n
i�11si≥ swiai,j

abs freq CPj􏼐 􏼑

acc. of severity ≥ s

accidents
, (8)

where the indicator function 1si≥ s is defned by

1si≥ s �
1, if si≥ s,

0, if si≥ s.
􏼨 (9)

Due to the fact that GIDAS does not contain accidents
without personal injury, we have that
P(Severity ≥ 1|Accident,CP,OD) � 1 for all CP, so the in-
teresting cases for estimating that probability are s ∈ 2, 3{ }.

Table 3: Frequentist quantities for the CP from the running example.

ID Criticality phenomenon Absolute frequency Relative frequency (%) Projected frequency
#17 Intersecting planned trajectories of TPs 7 156 55.1 88 305
#31 Nonego-TP violating right of way 2 644 20.3 32 628
#131 Occlusion 2 978 22.9 36 746
Absolute and relative frequencies describe their occurrence in the master dataset, cf. Section 3.2, while the projection provides an estimate for the total
German trafc accident statistics in 2019. While absolute and projected frequency is rounded to integers, relative frequency is rounded to three digits.
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(4) Estimation of CP-Associated Accident Risk. Plugging the
estimates of equations (6)–(8) into the Bayesian risk

decomposition of equation (5), we approximate the risk
associated with CPj as

Risk CPj,Accident, Severity ≥ s|OD􏼐 􏼑

≈ CAccident,OD · rel freq CPj􏼐 􏼑 ·
􏽐

n
i�11si≥ swiai,j

abs freq CPj􏼐 􏼑

acc. of severity ≥ s
accidents

� 827 ·
1

􏽐
n
i�1wi

􏽘

n

i�1
1si ≥ swiai,j

acc. of severity ≥ s
109 km

,

(10)

where n � 15 417. Tese estimates can now be used in
a safety case, for example, as reference values for relative
acceptance criteria, or within a criticality analysis for esti-
mating the criticality association of phenomena, cf.
Section 4.3.2.

(5) Evaluation for the Running Example. Using equation
(10), we can now estimate the risk for the CP of the running
example by utilizing the constant CAccident,OD, the case-
phenomenon relation matrix of Section 4.2, and the
three-point ordinal accident severity provided by GIDAS.
Table 4 shows the calculated probability of severity and the
associated risk of an accident with at least serious injuries,
respectively, fatal injuries for CP17, CP31, and CP131. Te
calculation of these values for the entire CP-catalog is
provided as supplementary material, including the case of
s � 1, which is left out here for brevity [41].

4.3.2. Relevance Estimation according to Associated Risk.
Having obtained an estimate for the accident risk associated
with CP, we are now able to instantiate the process step
“estimation of criticality association,” cf. Figure 1, by
ranking the CP according to the quantity
Risk(CP,Accident, Severity ≥ s|OD) of equation (5). More
precisely, in the criticality analysis we are interested in all
critical situations, which translates to s � 1. Terefore, with
equation (10), we use

Risk CPj,Accident, Severity ≥ 1|OD􏼐 􏼑 ≈ CAccident,OD · relfreq CPj( 􏼁
,

(11)

for estimating the criticality association of CP. Figure 4
shows, as a bar chart, the top twenty CP ranked according to
equation (11). Note that, the factor CAccident,OD does not
depend on CPj, so this is essentially a ranking according to
P(CPj|Accident,OD), the frst factor of equation (10), which
is approximated using the occurrence of the CP in themaster
dateset, i.e., rel freq(CPj).

Among the top twenty CP, several relate to the dynamics
of the involved TPs, such as “strong braking maneuver of
TP,” “intersecting planned trajectories of TPs,” “speed,”
“reduced friction on road,” “high relative speed,” and
“overtaking.” Tese dynamical factors concerning bad
planning, unadapted speeds, and harsh braking maneuvers

are signifcantly associated with accident risk, likely due to
their temporal proximity to collisions. Let us mention that
the high-risk phenomenon “strong brakingmaneuver of TP”
is translated to the database scheme by referring to a de-
celeration rate of at least 4.7ms− 2, which approximates the
limit force that an average driver is still able to handle safely
[45]. Other high-risk CP do refer to the infrastructure, for
example, “intersection,” “presence of VRUs/URUs with road
access,” “degraded road quality,” “bad road surface,” or to
the environment, for example, “road weather.” Moreover,
the top twenty also include the CP “occlusion” and “dark
clothing of VRU” which work on the level of perception due
to blockage of electromagnetic waves by an opaque object
and lack of refection thereof, respectively. We note that
these CP can also be relevant for ADS that rely on machine-
perception based on cameras, lidar, and radar sensors, al-
though for these technologies “occlusion” or “dark clothing
of VRU” might arise on a diferent range of the electro-
magnetic spectrum. Finally, “nonego-TP violating right of
way” refers to the misbehavior of trafc participants, so the
relevance for ADSs is given as well.

Even though the data at hand are highly biased towards
situations of maximal criticality, i.e., accidents with damage
to persons, the ranking of CP according to
Risk(CP,Accident, Severity ≥ 1|OD) provides us with evi-
dence for the process step “estimation of criticality associ-
ation” in the method branch of the criticality analysis, cf.
Figure 1. For example, the accident risk associated with the
CP in Figure 4 makes them potential candidates for sub-
sequent causal analysis and provides well-founded in-
formation about typical scenario classes in urban accidents
with passenger car involvement.

4.4.RiskAssessment forCombinationsofCP. In Section 1 and
equation (5), in particular, we have only considered the
accident risk associated with a single CP. However, as can be
seen from Figure 5, which displays the distribution of CP
numbers in the master dataset, accident cases usually feature
several CP. In fact, in approximately 55% of all cases in the
master dataset between four and seven CP were present.

Let us remark that the distribution of Figure 5 can easily
be shifted by adding trivial abstractions or concretizations of
highly prevalent CP. In order tomitigate the efect of double-
counting CP due to existing abstraction/concretization
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Figure 4: Top twenty criticality phenomena ordered according to the quantity Risk(CP,Accident, Severity ≥ 1|OD), estimated using
equation (11), with unit accidents with passenger car involvement and damage to persons per billion kilometers.

Table 4: Te estimated probability of severity and the associated risk for the three criticality phenomena from the running example.

ID Criticality phenomenon
Severity (equation (8)) Risk (equation (10))

With s � 2 With s � 3 With s � 2 With s � 3
#17 Intersecting planned trajectories of TPs 15.43% 0.30% 70.3 1.4
#31 Nonego-TP violating right of way 17.94% 0.52% 30.2 0.9
#131 Occlusion 17.20% 0.21% 32.6 0.4
Te values are calculated using equations (8) and (10), respectively, for s � 2, i.e., serious injuries, and s � 3, i.e., fatal injuries.Te units of severity and risk, cf.
(8) and (10), respectively, are omitted for brevity. Here, the probability of severity is rounded to four digits and risk is rounded to one digit.
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relations, we have excluded the following abstractions for the
distribution of Figure 5: “small distance,” “small distance to
TP,” “speed,” “occlusion,” “glare,” “subject on road,” “pe-
destrian on road,” “overtaking,” and “road weather.”

In any case, the CP-number distribution cannot be used
to draw defnite conclusions, but should be seen as a mo-
tivation to investigate the risk associated with combinations
of CP more rigorously. Furthermore, combinatorial aspects
of CP are important to various verifcation and validation
activities, for example, when deriving realistic test scenarios
for ADS behavior [38, 46]. So, in order to prevent the ex-
ponential blow-up of considering all combinations of CP in
a safety case, we are interested in (a) the risk associated with
combinations of CP and (b) how to fnd potentially relevant
combinations of CP.

First, we generalize the risk assessment from Section 4.3
to address (a) and then, in Section 4.4.2, we evaluate

associations among CP to generate hypotheses about in-
teresting CP-combinations, addressing (b).

4.4.1. Generalized Risk Estimation for CP-Combinations.
In the following, with a slight abuse of notation, let
CP1, . . . ,CPl,CPl+1, . . . ,CPk 1≤ l≤ k denote diferent CP
and set CP+: � CP1 ∧ . . . ∧CPl and, likewise,
CP− : � (CPl+1∨ . . .∨CPk). Based on the case-phenomenon
relation matrix from Section 4.2 and the weights from
Section 2.2.2, we can directly calculate the absolute fre-
quency of accident cases in the master dataset for which the
CP-conjunctionCP+ ∧CP− occurred. Hence, we generalize
the absolute and relative frequencies from equation (4) to
multiple CP as

abs freq CP+∧CP−
( 􏼁 � 􏽘

n

i�1
wi 􏽙

l

j�1
ai,j 􏽙

k

j�l+1
1 − ai,j􏼐 􏼑,

rel freq CP+∧CP−
( 􏼁 �

abs freq CP+∧CP−
( 􏼁

􏽐
n
i�1wi

,

proj freq CP+∧CP−
( 􏼁 � 􏽘

n

i�1
ei 􏽙

l

j�1
ai,j 􏽙

k

j�l+1
1 − ai,j􏼐 􏼑.

(12)

Figure 6 shows the more general absolute frequencies
for diferent combinations of the three CP “intersecting
planned trajectories of TPs,” “nonego TP violating right of

way,” and “occlusion” as a proportional Venn diagram. As
the overlap is quite substantial, their conjunctions, such as
CP17 ∧CP31, might be an interesting CP-combination for
risk assessment.
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Figure 5: Plot of the distribution of accident cases in the master dataset, cf. Section 3.2, along the number of criticality phenomena occurring
per accident case.Tis statistic has been adjusted to exclude common abstraction-concretization relations in order to avoid double-counting
of CP.
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With the probability of severity being generalized to CP-
combinations as

P Severity ≥ s Accident,CP+∧CP−
,OD

􏼌􏼌􏼌􏼌􏼐 􏼑

≈
􏽐

n
i�11si ≥ swi􏽑

l
j�1ai,j􏽑

k
j�l+1 1 − ai,j􏼐 􏼑

absfreq CP+∧CP−( )

acc. of severity ≥ s

accidents
.

(13)

Here, we obtain almost analogously to equation (10), the
following estimate for the accident risk associated with such
conjunctions of CP:

Risk CP+∧CP−
,Accident, Severity ≥ s|OD( 􏼁

� P CP+∧CP−
|Accident,OD( 􏼁P(Accident|OD)

≈ CAccident,OD · rel freq CP+∧CP−
( 􏼁

􏽐
n
i�11si ≥ swi􏽑

l
j�1ai,j􏽑

k
j�l+1 1 − ai,j􏼐 􏼑

abs freq CP
+∧CP

−
( 􏼁

acc. of severity ≥ s
accidents

� 827 ·
1

􏽐
n
i�1wi

􏽘

n

i�1
1si ≥ swi 􏽙

l

j�1
ai,j 􏽙

k

j�l+1
1 − ai,j􏼐 􏼑

acc. of severity ≥ s
109 km

.

(14)

Figure 5, which is also contained in the supplementary
material [41], shows the estimated probability of severity and

risk for four diferent combinations of the CP from the
running example. A comparison with the respective values
for single CP, cf. Table 4, indicates that while conjunctions of

Occlusion (#131) abs_freq (CP17 ∧ CP131 ∧¬ CP31) = 1302
abs_freq (CP131 ∧

¬ (CP17 ∨ CP31)) = 518

abs_freq (CP31 ∧¬ (CP17 ∨ CP131))
= 201

abs_freq (CP17 ∧ CP31 ∧¬ CP131) = 1285 abs_freq (CP17 ∧¬ (CP31 ∨ CP131))
= 3487

abs_freq (CP31 ∧ CP131
∧¬ CP17) = 76

abs_freq (CP17 ∧ CP31
∧ CP131) = 1082

Non-Ego TP
violating

Right of Way
(#31)

Intersecting
planned

Trajectories
of TPs (#17)

Figure 6: Proportional Venn diagram showing the absolute frequencies in the master dataset for diferent combinations of the three
running example criticality phenomena.
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CP are associated with more serious injuries, they occur
disproportionally less frequently such that the associated
accident risk is signifcantly reduced compared to the risk
associated with individual CP.

4.4.2. Associations among Criticality Phenomena. In order
to avoid the combinatorial blow-up of assessing the risk of all
k-wise combinations of CP, we are interested in associations
among them. Taking a certain level of association as a pre-
requisite for interesting CP-combinations, can lead to
a signifcant reduction of efort for the safety engineer.
Besides, by Reichenbach’s common cause principle, sto-
chastically dependent random variables are likely to have
a common cause, so knowledge about associations among
CP will be helpful when modeling and analyzing their causal
relations [13].

We recall that in this work CP corresponds to binary-
valued random variables restricted to the accident with
passenger car involvement and damage to persons in urban
areas in Germany. As a measure of association, we relied on
the Φ-coefcient [47] to calculate the pairwise correlation
between the two CP. By referencing the entries of Table 6, the
Φ-coefcient is given by the formula

Φ CP1,CP2( 􏼁

�
h11h22 − h12h21�����������������������������������

h11 + h12( 􏼁 h21 + h22( 􏼁 h11 + h21( 􏼁 h12 + h22( 􏼁

􏽱

∈ [−1, 1].

(15)

Te values of the Φ-coefcient range from −1 to +1,
whereΦ � 0 means that there is no correlation in the data, at
Φ � −1 the CP are mutually exclusive, and atΦ � +1 there is
a perfect correlation, i.e., the CP are always present in
combination. Note that, for Φ> − 1, however, the CP might
still be mutually exclusive when h22 � 0, but not when
h11 > 0.

For each of the 116
2􏼠 􏼡 � 6 670 pairwise combinations

of diferent CP, the entries of Table 6, therefore Φ, can be
computed directly from the case-phenomenon relation
matrix (ai,j) from Section 4.2. Note that, CP with zero
absolute frequency were excluded from this subanalysis. A
table containing the Φ-coefcient for the remaining 6 105

parwise CP-combinations, ranked according to its absolute
value, is contained in the supplementary material [41].

Table 7 contains the Φ-coefcient for all pairwise
combinations of CP17,CP31, and CP131 as well as for the
respective entries of h11, h12, h21, h22 for each combination.
Between them, we observe signifcant correlations of
0.35, 0.27, and 0.25, respectively. While there is a signifcant
positive correlation among these CP, they clearly do not
exhibit any abstraction/concretization relation. Besides in-
dicating that the respective conjunctions are appropriate
candidates for risk assessment, as previously conducted in
Section 4.4, a downstream causal analysis of either phe-
nomenon is likely to reveal some common confounding
variable being present, for example, the CP “intersection.”

Generally, values of Φ close to +1 indicate an abstrac-
tion/concretization relationship between the two CP’s.
Numerically, this is due to either h12 or h21 from Table 6
being close to zero. Also, such correlations can be distorted
through bias introduced from the dataset or from the da-
tabase scheme. We consider the example of “pedestrian on
road” and “subject on road,” while “subjects” include wild
animals and pet animals, in the master dataset, subjects are
overwhelmingly pedestrians. As we have restricted the
master dataset to urban accidents, there were only 23 cases
where a “subject on road” is referred to as a nonhuman,
resulting in φ (“subject on road” and “pedestrian on road”)
� 0.99.

As an example for bias introduced by the database
scheme, we consider the CP-pair “small distance” and “small
distance to TP” where the latter is a concretization of the
former, already indicating Φ being close to +1. In this case,
as distances to nonTP-objects are not identifable within the
GIDAS, biased was introduced through the impossibility of
an exact translation of the natural language specifcation to
SQL queries and therefore, through the database scheme, i.e.,
the phenomenon “small distance” was underapproximated
in the translation as the scheme did not encompass the
relevant felds for an exact identifcation. Hence, their

Table 5: Te estimated probability of severity and the associated risk for combinations of the three CP from the running example.

Criticality
phenomena combination

Severity (equation (13)) Risk (equation (14))
With s � 2 With s � 3 With s � 2 With s � 3

CP17∧CP31 18.74% 0.51% 28.2 0.8
CP31∧CP131 20.89% 0.48% 15.4 0.4
CP17∧CP131 18.17% 0.23% 27.6 0.3
CP17∧CP31∧CP131 21.42% 0.44% 14.7 0.3
Te values are calculated using equations (13) and (14), respectively, for s � 2, i.e., serious injuries, and s � 3, i.e., fatal injuries.Te units of severity and risk, cf.
(13) and (14), respectively, are omitted for brevity. Here, the probability of severity is rounded to four digits and risk is rounded to one digit.

Table 6: Generic contingency table for the defnition of the
Φ-coefcient.

CP CP1

Presence? 0 1

CP2
0 h11 h12
1 h21 h22
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translated SQL queries are identical and we have Φ (“small
distance” and “small distance to TP”) � +1.

On the negative side ofΦ-values we register CP that tend
to exclude each other, which can again be due to reasons of
semantics or due to the source of data that Φ was evaluated
on. In the case of the master dataset, the lowest Φ � −0.41
was realized between the “small distance” and “intersecting
planned trajectories of TPs.” Usually in GIDAS, “small
distance” indicates rear-end collisions while “intersecting
planned trajectories of TPs” hints at crossing or turning
accidents. Te reason why Φ is not closer to −1 is the high
number of accidents where neither of these two CP occur,
namely, h11 � 4 184. Another example of CP with negativeΦ
is given by Φ (“curvature of road” and “intersection”)
� −0.3. While these CP exclude each other semantically,Φ is
not closer to −1 because of many accidents with none of
these CP, namely, h11 � 4 940 cases on straight roads that
were neither curves nor intersections.

4.5. Analysis of Edge Cases. Besides the most frequent CP-
number combinations, as provided by Figure 5, the tails of the
CP-number distribution are valuable. From these tails, for
example, accident cases with 0 CP (94 cases) or ≥ 14 CP (41
cases), it is possible to extract indications on the quality of the
CP-catalog such as its completeness or the abstraction levels.

Te cases with very few or even without any CP are
interesting in manifold ways. On the one hand, an individual
inspection of these cases might uncover gaps in the CP-
catalog and can be used to fnd CP candidates from a detailed
accident case analysis. Tis process iteratively facilitates
completeness of the CP-catalog. On the other hand, the CP
might be available in the CP-catalog, but currently not
identifable within the GIDAS, or at least not automatically.
Let us mention that during the analysis the phenomenon
“occluded trafc light” from the initial CP-catalog has been
added to the GIDAS codebook, and examples of which may
only be identifed in the GIDAS through natural language
analysis of individual case descriptions which include CP’s
such as “push-to-front motorcyclist” and “construction site
remains.” Performing such analyses of case descriptions,
however, is out of the scope of this work. Moreover, acci-
dents with only one participant, for example, caused by
a heart attack or some other health issue of the driver, show
up in the 0 CP-class, as the CP-catalog has been elicited with
respect to ADSs at SAE Levels 4 and 5.

On the other end of the CP-number distribution, we
have accident cases of high complexity featuring up to 17 CP.
Again, these extreme accident cases are worth further
consideration. First, we consider the example provided by
Figure 7, sketching an accident case from the master dataset
where a left-turning passenger car collided with a child not

observing the red light on a pedestrian crossing at an in-
tersection. Tis accident features 16 CP, several of which
relate to the infrastructure, namely, “intersection,” “pedes-
trian crossing,” and “intersecting tram rails” as well as to its
degradation, as “degraded road quality” and “degraded lane
markings” were also present. Regarding environmental
conditions, this case exhibits a “limited global light source”
due to nighttime as well as “rain,” and therefore “reduced
friction on road.” Moreover, we have “intersecting planned
trajectories of TPs,” “presence of VRUs with road access,”
“pedestrian crossing road directly,” “nonego-TP running
a red trafc light” and, therefore also “nonego-TP violating
right of way.” Additionally, the clothing of the child had low
visibility, and due to the age, the child counts as an un-
predictable road user (URU). Finally, the driver of the car
tried to avoid the collision by emergency braking. Hence, the
“Presence of URUs with Road Access,” “Dark Clothing of
VRU,” and “Strong Braking Maneuver of TP” apply as well.

Note that, although all these factors were present, the
actual reasons for the accident may involve only a subset of
them. For example, while “intersecting tram rails” or “de-
graded lane markings” may have been irrelevant to the
emergence of the accident, other factors such as “reduced
friction on road” may not have caused the accident, but may
have worsened its severity. As to distinguish these possi-
bilities, a causal analysis of the CP is necessary.

Accident cases with this large number of CP provide
interesting scenarios for the criticality analysis and scenario-
based verifcation and validation in general. From the
perspective of the criticality analysis, such examples can be
used to guide data collection eforts in the real-world or in
a simulation, to validate criticality metrics, and for the
evaluation of safety principles. On the side of scenario-based
verifcation and validation, such complex accident scenarios
can be used to defne requirements on the ADS’s behavior
and as high-yielding test cases covering multiple CP as
shown by Scanlon et al. [48].

Finally, let us remark that our approach to risk esti-
mation for conjunctions of CP, as presented in Section 4.4,
fails for cases featuring such a high number of CP. For
example, the accident of Figure 7 is the only case in the
master dataset featuring this exact combination of CP.While
the relative frequency is close to zero, and the empirical
estimation of the accident severity using one sample is
completely invalid.

5. Discussion

Tis section discusses the preparation and the results of the
presented analysis, as described in Sections 3 and 4, re-
garding the safety aspects of the automated driving, their

Table 7:TeΦ-coefcient for the three pairwise combinations of CP from the running example together with the entries from the respective
contingency tables.

CP1 CP2 Φ 0-0 0-1 1-0 1-1

Intersecting planned trajectories of TPs (#17) Nonego-TP violating right of way (#31) 0.35 5 564 277 4 789 2 367
Intersecting planned trajectories of TPs (#17) Occlusion (#131) 0.27 5 249 593 4 771 2 384
Nonego-TP violating right of way (#31) Occlusion (#131) 0.25 8 534 1 819 1 486 1 158
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impact on the criticality analysis, and on the GIDAS
database.

5.1. Lessons Learned

5.1.1. Te Necessity of Formalizing Criticality Phenomena.
While an initial description in natural language is un-
avoidable when identifying CP, the work at hand has clearly
exposed the need for a formal representation thereof. As
described in detail in Section 3.3, we skipped the step of
formalizing the CP-catalog and instead translated the CP
directly to a representation in the GIDAS database query
language. Since the CP had no underlying formal description
and were defned in (sometimes vague) natural language,
this action required immense coordination between the
expert knowledge of the criticality analysts who provided the
CP-catalog and the GIDAS database experts.

As elaborated on in Section 5.2.1, safety cases may rely on
system-dependent quantities (for example, probabilities
conditioned on the ODD). Such quantities have to be es-
timated using the system-dependent data from simulations,
proving grounds, or feets so as to make them comparable to
the quantity of equation (5), and the semantics of the CP
within the system-dependent data has to be unambigously
mappable to those used for the OD data.

In this regard, it seems highly impractical to perform
a manual translation of the CP once for every data scheme in
order to ensure the consistency between the relevant esti-
mates. Terefore, the need for a formalization of CP that is
independent of the specifc source of data is given and is
examined by Westhofen et al. [43].

5.1.2. Extensions of the GIDAS Database Scheme. Te work
at hand made it clear to the authors that a catalog of CP, as

collision area

moving direction TP #2
(pedestrian, child)

tram rails

moving direction TP #1
(passenger car)

Figure 7: An accident scenario featuring 16 CP. Such highly complex accident scenarios can be used as test scenarios for the AV
performance.
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elicited by a criticality analysis, almost directly functions as
a source of requirements for data collection eforts regarding
safety aspects within the transportation system, in general,
and for ADS, in particular.

Since, at the time of analysis, the GIDAS database did not
contain accident cases with ADS-operated vehicles, we
conducted the analysis with a strong focus on CP that are
also relevant to human trafc, cf. Section 2.1. Although the
GIDAS codebook, as described in Section 2.2.1, codes for
a vast number of variables, translating the CP-catalog to the
database scheme furthered its completeness by uncovering
white spots. For example, we identifed the impossibility to
observe the phenomenon “occluded trafc light” within
GIDAS, which has led to the addition of a respective variable
in the codebook.

In particular, when the collection of CP is extended to
include phenomena specifcally related to the machine-
perception technology of ADS via sensors, then this ex-
tended CP-catalog can be used to drive the extension of the
GIDAS database scheme towards preparedness for accident
cases involving ADS-operated vehicles.

On an even more general level, a comprehensive CP-
catalog is relevant, by defnition of the term criticality
phenomenon, for all data related to the safety of ADSs.
Terefore, a sufciently complete and unambiguously for-
malized CP-catalog can become a driver for requirements on
data collection for ADS safety. Recently developed nor-
mative initiatives, such as the UN regulation UNECE R157
[49], already hint at such data collection requirements. For
example, the UNECE R157 requires that “each vehicle
equipped with ALKS (the system) shall be ftted with a data
storage system,” which is, among others, required to record
various variables in case the system is “involved in a detected
collision”.

5.2. Utilization & Interpretation of Results. After these re-
marks on valuable insights regarding the practical execution,
we discuss how the analysis results, presented in Section 4,
can be leveraged for the safety of ADSs, in general, and for
a criticality analysis, in particular.

5.2.1. Leverage of Results for ADS Safety Cases. In this work,
we demonstrated how quantities of the form
P(CPj|Accident,OD) and P(CP+ ∧CP− |Accident,OD), cf.
Sections 4.3 and 4.4, can be estimated from accident data in
order to assess the risk associated with CP. Here, condi-
tioning on the OD refects the assumption that our analysis
is performed system-independently, before its design.
During the design phase of an ADS, the ODD is specifed,
which are the “operating conditions under which a given
ADS or feature thereof is specifcally designed to function
[1].” In SOTIF-related scenario-based analyses, this ODD is
typically broken down into scenario clusters with special
relevance to safety, for example, scenarios with occluded
pedestrians at urban intersections. In turn, this allows es-
timating the risk for single clusters instead of analyzing the
entire ODD at once for which it is known that brute-force

approaches will fail due to the size of data required to
observe enough extremely rare events [4].

To obtain such a system-dependent risk estimate, a valid
strategy is to condition the quantities of equation (5) on the
ODD instead of the OD. However, the system’s behavior can
drastically infuence the exposure to CP within the ODD,
therefore system-dependent data are required. Both esti-
mates can then be used for acceptance criteria, for example,
comparing the current level of risk in the OD and the
system-induced risk in the ODD for estimating a positive
risk balance of the analyzed system [14, 50]. However, as
stated in Section 5.1.1, this requires a consistent semantics of
CP between both system-dependent and system-
independent datasets.

5.2.2. Leverage of Results within a Criticality Analysis.
Te criticality analysis, as conducted within VVM project,
profted from the work at hand in many ways. Most im-
portantly we showed the feasibility of the process steps
“identifcation and formalization of criticality phenomenon”
and “estimation of criticality association,” cf. Figure 1,
through the elicitation of a CP-catalog, and for its translation
into the GIDAS database scheme and subsequent risk as-
sessment, we produced initial pieces of evidence for the
relevance of a subset of this CP-catalog. In particular, Section
4.3.2 explains how estimating the risk of equation (10) can be
used for relevance estimation of CP, leading to the priori-
tization of CP for causal analysis, for example, “occlusion”
[11] or “reduced friction on road” [13].

Furthermore, analyzing the edge cases featuring either
few or many CP contributes signifcant value to a criticality
analysis. Subjecting accident cases featuring few (or no) CP
to detailed individual case analysis facilitates either com-
pleteness of the CP-catalog by uncovering potential gaps or
completeness of the GIDAS codebook by adding CP when
examining these cases. On the other end of the distribution,
we have accident cases with many (for example, 14 or more)
CP that lend themselves as examples for studying the
emergence of criticality in a concrete example, that is, by
studying them in computer simulations [51].

After identifying the most relevant CP in accident sce-
narios within a criticality analysis, one has to select a set of
representative instances for those abstract scenarios. Re-
constructions of accidents represent a possibility to obtain
valid instances of maximal criticality for the respective
scenario classes. Tese instances can then be used for safety
assurance in manifold ways. For example, they can be

(i) Leveraged to derive realistic but system-
independent test scenarios for the analyzed CP as
to verify the performance of diferent systems
under test

(ii) Used as an input to an expert-based case analysis to
ensure the validity of causal models within the
criticality analysis, or

(iii) Replayed to simulation tools and subjected to
a sensitivity analysis of its parameters
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Hence, the performed analysis of the GIDAS database,
albeit being a specifc source of data, provides a blueprint for
how trafc data in general can be used within a criticality
analysis.

6. Conclusion

In this work, we decomposed the accident risk associated
with CP into exposure, controllability, and severity such
that, by using Bayes’ theorem, the respective quantities
could be estimated using accident data. For this, we an-
alyzed a representative dataset of trafc accidents in urban
areas of Germany, provided by the GIDAS database, re-
garding the presence of a catalog of CP. Of the 166 CP
elicited by the criticality analysis with respect to ADS at
the SAE Level 4 and 5 in urban areas, 116 could be
identifed within the GIDAS database and were translated
to their respective SQL queries. Based on the resulting
15 417 × 116 case-phenomenon relation matrix, we
managed to estimate the risk of an accident with passenger
car involvement and damage to the persons in the urban
areas of Germany associated with a single CP as well as
combinations thereof. On the one hand, the resulting
estimates can be used as reference values in a safety case
that relies on demonstrating a positive risk balance within
the scenario classes. On the other hand, this risk assess-
ment allows for estimating the criticality association of CP
within a criticality analysis before subjecting them to
causal analysis.

Concerning future work, the most obvious extension is
to perform similar analyses based on the CP-catalog for
a more diverse set of trafc data where a subset of CP is
identifable. Moreover, it will be interesting to do so with
a more complete CP-catalog, especially when extended to
contain CP specifc to machine-perception technology.
Such eforts will necessarily be complemented by a for-
malization of CP that is less dependent on the data scheme,
as already presented by Westhofen et al. [43].

Appendix

A. Examples of GIDAS Database Queries

In this section, we present three examples of SQL queries
that were used in the presented analysis to assess the GIDAS
database regarding the presence of CP.

A.1. Database Query: Intersecting Planned Trajectories of TPs.

A.2. Database Query: Nonego-TP Violating Right of Way.

A.3. Database Query: Occlusion.

Data Availability

While access to the GIDAS database and the associated GIDAS
codebook is limited to paying members, the authors made
available all other ingredients of the conducted analysis as
supplementarymaterial [41].Tis repository contains a version
of the CP-catalog, as described in Section 3.1, the case-
phenomenon relation matrix from Section 4.2 together with
the weighting factors, the extrapolation factors, the associated
accident severity, and the respective calculations for all fre-
quentist and risk-related quantities. Moreover, we included
lists of the identifable CP ordered according to the associated
accident risk on three diferent levels of severity, as well as
a table containing the correlation coefcients for all pairs of CP,
sorted by absolute value. Based on these data, all the results
described in Section 4 can be reproduced and validated.
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Supplementary Materials

Te provided supplementary material consists of four fles
[41]. Te frst fle called “criticality-phenomena-catalog”
contains the catalog of criticality phenomena (CP-catalog),
as described in Section 3.1, on which the presented analysis is
based. Te second fle “criticality-phenomena-risk-calcula-
tion” contains a datasheet which consists of anonymized
case numbers pointing to the entries in the GIDAS database
in the 1st column, the weighting factors wi in the 2

nd column,
the extrapolation factors ei in the 3rd column, and the as-
sociated accident severity si in the 4th column followed by
the 15 417 × 116 case-phenomenon relation matrix (ai,j), as
defned in Section 4.2. Below these data, the second fle
contains the calculation of the frequentist quantities of
Section 4.2 and the risk-related quantities of Sections 4.3 and
4.4. Te third fle “criticality-phenomena-sorted-by-risk”
contains three ordered lists, each containing the IDs of the
116 identifable CP ordered according to the risk estimation
of (7) for s ∈ 1, 2, 3{ }, respectively. For s � 1, the ordering
corresponds to the results of Section 4.3.2 and, in particular,
Figure 4. Te fourth fle “criticality-phenomena-phi-co-
efcient” contains a table ranking all pairs of CP according to
the absolute value of the Φ-coefcient, as shown in Sec-
tion 4.4.2. (Supplementary Materials)
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[30] D. Otte, M. Jänsch, and C. Haasper, “Injury protection and
accident causation parameters for vulnerable road users based
on German In-Depth Accident Study GIDAS,” Accident
Analysis & Prevention, vol. 44, no. 1, pp. 149–153, 2012.

[31] V. Vinayak, C. Sai, and N. J. Divya, “Autonomous vehicles:
disengagements, accidents and reaction times,” PLoS One,
vol. 11, no. 12, Article ID 168054, 2016.

[32] F. Favarò, S. Eurich, and N. Nader, “Autonomous vehicles’
disengagements: trends, triggers, and regulatory limitations,”
Accident Analysis & Prevention, vol. 110, pp. 136–148, 2018.

[33] A. Sinha, V. Vu, S. Chand, K. Wijayaratna, and V. Dixit, “A
crash injury model involving autonomous vehicle: in-
vestigating of crash and disengagement reports,” Sustain-
ability, vol. 13, no. 14, pp. 7938–1050, 2021.

[34] S. Wang and Z. Li, “Exploring causes and efects of automated
vehicle disengagement using statistical modeling and classi-
fcation tree based on feld test data,” Accident Analysis and
Prevention, vol. 129, pp. 44–54, 2019.

[35] M. Alexandra, R. Boggs, and J. Khattak, “Exploring the who,
what, when, where, and why of automated vehicle disen-
gagements,” Accident Analysis and Prevention, vol. 136, Ar-
ticle ID 105406, 2019.

[36] B. Mohamed, P. Andreas, Z. Adrian, and E. Lutz, “Eurofot:
feld operational test and impact assessment of advanced
driver assistance systems: fnal results,” Proceedings of the
FISITA 2012 World Automotive Congress, pp. 537–547,
Springer, Berlin, Germany, 2013.

[37] N. J. Goodall, “Comparison of automated vehicle struck-
from-behind crash rates with national rates using naturalistic
data,” Accident Analysis and Prevention, vol. 154, Article ID
106056, 2021.

[38] G. Bagschik, T. Menzel, and M. Maurer, “Ontology based
scene creation for the development of automated vehicles,” in
Proceedings of the 2018 IEEE Intelligent Vehicles Symposium,
vol. 4, pp. 1813–1820, Changshu, China, June 2018.

[39] B. Kramer, C. Neurohr, M. Büker, E. Böde, M. Fränzle, and
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