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Abstract
We study the local structural changes along the jamming transitions in asymmetric bidisperse granular packings. The local 
structure of the packing is assessed by the contact orientational order, Q̃

�
 , that quantifies the contribution of each contact 

configuration (Large–Large, Small–Small, Large–Small, Small–Large) in the jammed structure. The partial values of Q̃
�
 are 

calculated with respect to known ordered lattices that are fixed by the size ratio, � , of the particles. We find that the packing 
undergoes a structural transition at �J , manifested by a sudden jump in the partial Q̃

�
 . Each contact configuration contrib-

utes to the jammed structure in a different way, changing with � and concentration of small particles, X
S
 . The results show 

not only that the packing undergoes a structural change upon jamming, but also that bidisperse packings exhibit local HCP 
and FCC structures also found in monodisperse packings. This suggests that the jammed structure of bidisperse systems is 
inherently endowed with local structural order. These results are relevant in understanding how the arrangement of particles 
determines the strength of bidisperse granular packings.

Keywords Jamming transition · Structure · Amorphous · Extreme size ratio · Bidisperse packings

1 Introduction

The jamming transition in granular packings has been 
studied for years, with much attention paid to monodis-
perse packings since this is the simplest case [1–3]. Such 
a transition is defined when a set of non-contacting spheres 
come into contact collectively to form a rigid structure. For 
a monodisperse packing, the jamming transition occurs at 
a jamming density around �J ≈ 0.64 in 3D. Considering 
a second particle size in the packing with a size ratio of 
� = rS∕rL = 0.71 and the same number of large and small 
particles (50:50 mixture), �J increases slightly compared to 
the monodisperse case [2, 4, 5]. On the other hand, varying 
the concentration of small particles, XS , and size ratio, � , 
studies have shown a richer jamming diagram for bidisperse 
packings than the monodisperse and even the 50:50 mixture 

with � = 0.71 [6–15]. In this case, �J shows a maximum 
value at a given XS that increases as � decreases. Similar 
results have also been obtained in dense suspension where 
the viscosity was found to be minimal at a specific value of 
XS while the jamming density was found to be maximal for 
the same XS [16–20]. Such a minimal value of the viscosity 
also decreases whereas the maximal value of the jamming 
density increases when � decreases.

Recently, it was shown that there are critical � and XS 
values below which the jamming structure of a bidisperse 
system consists only of large particles, while most small 
particles remain without contacts [6, 12, 14, 15]. This 
suggests that the jammed structure can be regarded as a 
monodisperse rather than a bidisperse packing, although 
the packing itself can still be modified by the presence 
of small particles at higher compression. This finding 
has led to reconsider the jamming transition diagram for 
bidisperse packings to provide a more general overview. 
In a recent paper, it is shown that at low � and low XS , 
small particles can be jammed by compressing beyond 
the �J formed by large particles [14]. Such �J is extracted 
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at a packing fraction where the fraction of large parti-
cles, nL , contributing to the jammed structure exhibits a 
jump, defined by a sharp but finite value similar to that 
observed in the mean contact number, see Ref. [14]. A 
separate jump in the fraction of small particles, nS , occurs 
at 𝜙 > 𝜙J , which was interpreted as the jammed transition 
of the small particles. This result led to the idea that a 
bidisperse packing in compression has two jamming tran-
sitions at low � and low XS . The first jamming transition 
is driven by the jamming of predominantly large parti-
cles and the second transition small particles are jammed 
together with large ones. This second transition was shown 
for � ≤ 0.22 to be an additional line extending towards 
higher packing densities as XS is reduced, generalizing the 
jamming diagram of bidisperse packings.

The evolution of the jammed structure in a range of 
packing fractions has been well studied in monodisperse 
hard-sphere packings [21–24], showing that upon com-
pression there is a structural transition from disordered to 
an ordered local structure. All works report the develop-
ment of local Hexagonal Close-Packed (HCP) and Face-
Centred Cubic (FCC) lattices as the system becomes 
denser. The evolution of the jammed structure in bidis-
perse packings has not been explored in detail. It is not 
clear how each configuration type; Large–Large (LL), 
Small–Small (SS), Large–Small (LS), and Small–Large 
(SL), contribute to the development of the jammed struc-
ture when � and XS are varied. The way each particle size 
is packed in the system is important to understand the 
transition to jamming and also how such structures can 
lead to different structural properties. In this work, we 
investigate the structural evolution of jammed bidisperse 
packings along the first and second jamming transition 
lines recently reported. We will discuss that the structure 
factor is not a good indicator of the jamming transition, 
as it predicts a similar structure immediately before and at 
�J . We will introduce the local contact orientational order 
(LCOR), analogous to the local bond orientational order 
(LBOR), as a variable sensitive to jamming that quantifies 
the local structures of bidisperse packings.

This paper is organized as follows. In Sect. 2, we briefly 
discuss the numerical simulation. We define the concentra-
tion of small particles, XS , and discuss how the number of 
particles in each bidisperse mixture changes with XS . We 
also explain the simulation protocol used to determine the 
jammed structures. Section 3 presents the first and second 
transitions for bidisperse packings. Here we present the 
method to obtain �J . In Sect. 4, the structure factor is 
obtained to analyze the packing structure along the first 
and second transition lines. In Sect. 5, we introduce the 
local contact orientational order, Q̃

�
 , to quantify the local 

structure of the packings. Here, we investigate how Q̃
�
 

changes with � and XS for different � values. We also show 

results of Q̃
�
 for each configuration type to investigate their 

contribution to the jammed packing. Finally, we conclude 
with a summary and further discussion.

2  Numerical simulation

We perform 3D molecular dynamic simulations using Mer-
curyDPM [25, 26] to study the role of small particles in the 
jammed structure of soft-sphere packings without gravity 
[27–29]. The absence of gravity is essential for our obser-
vations. It allows small particles to have no contacts with 
the large particles and thus can undergo a collective tran-
sition upon high compression. In contrast, in the presence 
of gravity, small particles have already contacts with the 
jammed structure of large particles. These contacts make it 
difficult to study the contribution of small particles on the 
jammed structure upon compression, and as a consequence, 
any additional transition associated with small particles, 
given either by jamming density or LCOR, cannot be found. 
Newton’s equation for each particle is solved numerically 
to predict its motion in time. N = 6000 particles are used to 
create a bidisperse packing, where a number of large, NL , 
and small, NS , particles with dimensionless radius rL and rS 
are considered. We choose the large particle radius as length 
scale, x�

u
= r�

L
= 1.5 , therefore, the dimensionless radius of 

large particles is rL = r�
L
∕x�

u
= 1 , while for small particles, 

rS = r�
S
∕x�

u
= r�

S
∕r�

L
 , respectively. The prime symbol rep-

resents the variable with units while the variable without 
prime is dimensionless. These definitions above define the 
size ratio as � = r�

S
∕r�

L
= rS ∈ [0.15, 1] . This means that any 

change in � is due to a change in the small particle size. The 
mass scale is chosen as m�

u
= ��

p
r�3
L

 , where ��
p
= 2000 is the 

density of large and small particles and its dimensionless 
value is �p = 1 since ��

u
= ��

p
 . Therefore, the dimension-

less mass of the large and small particles is mL =
4

3
� and 

mS =
4

3
�r3

S
= mL�

3 . The chosen time scale is t�
u
= (m�

u
∕��

n
)1∕2 

with ��
n
= 105 the normal stiffness. We choose here �n = 1 , 

since ��
u
= ��

n
 . Thus t�

u
= (��

p
∕��

n
)1∕2r

�3∕2

L
≈ 0.26 . The viscous 

damping used is � �
n
= 1000 and its dimensionless value is 

�n = � �
n
∕(��

u
��
n
r�3
L
))1∕2 ≈ 0.038.

The linear spring-dashpot model is used to model the 
contact between particles [11, 27–29]. For bidisperse pack-
ings, the effective mass, mij , the contact time, tijc  , and the 
coefficient of restitution, eij , depend on � , as can be seen in 
Fig.   1.  Since eij  depends on mij  and t

ij
c  via 

eij = exp
(
−�nt

ij
c∕2mij

)
 , the partial coefficients of restitution 

fo r  � = 0.15 a r e  e LL = 0.95 ,  e SS = 0.48  ,  a n d 
e LS = e SL = 0.60 , see the dashed line in Fig. 1. However, 
as � → 1 , e SS , e LS → e LL . This result indicates that the 
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collisions of the SS and LS-SL configuration types are more 
elastic at high � . A background dissipation force is imposed 
on each particle velocity, with constant dissipation �b = �n , 
to damp out the kinetic energy of the particles, especially at 
high �.

A bidisperse packing formed by a given set of NL and 
NS is characterized by the size ratio � and the volume con-
centration of the small particles, XS = NS�

3∕(NL + NS�
3) . 

Figure 2 shows the variation of NL and NS as a function of 
XS for three typical values of � . For a fixed value of � the 
number of small particles increases while the number of 
large particles decreases with XS . The intersection point, 

representing a packing with NL = NS = N∕2 , shifts to 
lower XS values as � decreases. This point corresponds to 
the 50:50 particle mixture studied previously in bidisperse 
systems using � = 0.71 [2, 4]. Far below the intersection 
point ( XS → 0 ), the packing is formed by small particles in 

a sea of large particles. As XS increases and approaches the 
intersection point, the numbers of small and large particles 
become of the same order of magnitude. Well above the 
intersection point ( XS → 1 ) few large particles are embed-
ded in a sea of small ones. This can be seen in Fig. 3 for 
typical bidisperse packing structures.

The initial configuration of any bidisperse packing is 
such that spherical particles of radius rL and rS are placed 
uniformly at random in a 3D box without gravity, allow-
ing overlap between them, with an initial packing fraction 
of �ini = 0.3 and large uniform random velocities. Large 
overlaps lead to an initial peak in kinetic energy, but this is 
quickly damped by the background medium and collisions. 
Low density systems with high kinetic energy contribute to 
the rapid randomization of particles. The granular gas is then 
isotropically compressed to approach an initial direction-
independent configuration with the target packing fraction 
𝜙0 < 𝜙J that depends on � and XS . Then a relaxation pro-
cess of the system starts. Once such a process is complete, 
isotropic compression (loading) begins, which ceases when 
� = �max . Then the isotropic decompression (unloading) 
process continues 10 times slower than the loading process 
until �0 is reached again. In this way, the jamming density, 
�J , along the decompression process is obtained. Other 
methods of strain control could be used [2, 30, 31], but they 
would not have any other effects since the deformation is 
performed quasi-statically. After the simulation protocol is 
completed, the jamming density and the jammed structures 
of each bidisperse packing in the decompression branch 
are examined, since these values are less sensitive to the 

Fig. 1  Variation of the dimensionless effective mass, mij , the dimen-
sionless contact time, tijc  , and the partial coefficient of restitution, 
eij , as a function of the size ratio � . The dimensionless mass for 
each contact type is given by m LL = 2�∕3 , m SS = m LL �

3 , and 
m LS = m SL = 2m LL �

3∕(1 + �3) , respectively. The dimensionless 
contact time is determined by tijc = t

�ij
c ∕t

�
u
= �∕(�n∕mij − (�n∕mij)

2)1∕2 . 
The dashed line represents the lowest value of � = 0.15 used in 
this work. Note that eij stops at � ≈ 0.06 since imaginary values are 
obtained for eSS and eLS below it

Fig. 2  Number of large, NL , and small, NS , particles as a func-
tion of XS for three typical � . The total number of particles is fixed 
at N = 6000 . The intersection points represent the 50:50 mixtures at 
XS(� = 0.73) ≈ 0.28 , XS(� = 0.41) ≈ 0.06 , and XS(� = 0.15) = 0.01
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deformation rates [32]. A detailed discussion of the contact 
model and simulation procedure is given in Refs. [14, 15].

3  Jamming transition lines

In this section, we discuss how the jamming transition is 
achieved for each bidisperse packing. We start by quantify-
ing the fraction of large, nL = Nc

L
∕N  , and small particles, 

nS = Nc
S
∕N  , that contribute to the jammed structure as a 

function of � at different � and XS . Nc
L,S

 is the number of large 
and small particles in contact, while N = NL + NS is the total 
number of particles in the system. Figure 4 (right panel) 
shows a jump for � = 0.73 , which represents a simultaneous 
contribution of both particle sizes to the jammed structure. 
Interestingly, �J is independent of XS showing similar values 

to that of a monodisperse packing, �mono
J

≈ 0.64 . This find-
ing is in line with the observation that a bidisperse packing 
with � = 0.73 can be used to break up a global crystallization 
obtained in monodisperse packings but otherwise behaves 
similar to it [2, 4, 5]. Although, as we will see in Sect. 5, we 
still find a certain fraction of local ordered structures. In con-
trast, a significant decoupling between nL and nS is obtained 

Fig. 3  Packing structures for two extremes � at different XS . Cyan and 
white colors represent large and small particles, respectively. Each 
packing is shown at �max . Note that higher � are obtained for struc-
tures with � = 0.15 , they are shown enlarged for better illustration. 
This is the reason why large particles look bigger

Fig. 4  Fraction of large, nL , and small, nS , particles in contact as a 
function of the packing fraction for different combinations of � and XS

Fig. 5  Derivative of nL and nS as a function of the packing fraction 
for � = 0.15 and � = 0.73 at different XS . The maximum value of each 
derivative is considered as the jamming density of each particle size. 
The inset is a zoom-in of the maximum derivative of nS
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at lower XS for � = 0.15 , see Fig. 4a, c. Such decoupling 
indicates that a large number of small particles are jammed 
at higher densities, which corresponds to similar behavior 
of large particles at low densities.

To find the exact value of the jamming density at which 
nL and nS jump as a function of � and XS , we calculate the 
derivative �nL∕�� and �nS∕�� . We used the five-point finite 
difference method with an accuracy of ∼ O(Δ�4) to approxi-
mate the first derivative over the data shown in Fig. 4. This 
method yields a value of �J for both fractions of large and 
small particles. Figure 5 displays the derivative of nL and 
nS as a function of � , showing a characteristic peak (maxi-
mum derivative) at a value consistent with �J . Note that for 
� = 0.15 and XS = 0.1 the peak for large particles is found 
at a much lower � , while a small peak is obtained at higher 
density for small particles, see Fig. 5a. The small peak in 
nS is due to its smoother behavior compared to nL . Nev-
ertheless, a critical density can be extracted representing 
the largest amount of small particles jammed, see the inset 
in Fig. 5a. This proves that the system undergoes a tran-
sition from a structure with predominantly large particles 
to one with the participation of both particle sizes. On the 
other hand, at higher � , it becomes clear that both particle 
sizes contribute simultaneously to the jammed structure, see 
Fig. 5b, d. Thus, using this method, one can extract the val-
ues of �J for the entire combination of � and XS.

Figure 6 shows the �J values extracted by the method 
explained above as a function of XS for some � values. For 
� = 0.15 , we find that the two lines meet at X∗

S
≈ 0.21 with 

�J ≈ 0.80 . The superscript ∗ indicates the concentration of 
small particles where the second jamming transition line 

emerges, see solid circles in Fig. 6. Such a point matches 
with the kink of the jamming lines, shifting to high XS 

as � increases, as also reported in Ref. [6]. For XS < X∗
S
 , 

an increasing line of densities is observed for small � as 
XS → 0 . Such a line is an extension of the transition where 
both large and small particles are jammed, having a particle 
mean overlap less than 1% of the large particle radius, see 
Ref. [15]. The values of �J are compared with a model intro-
duced by Furnas almost a century ago [33] to predict the 
highest density of aggregates used in the production of mor-
tar and concrete. This model states that �J can decouple at an 
extreme particle size ratio ( � → 0 ) into two limits that have a 
common point at X∗

S
 . The lower limit considers an approxi-

mation where large particles dominate the jammed struc-
ture, while small particles are not considered because their 
number is not sufficient to play a role ( 0 ≤ XS < X∗

S
 ). Thus, 

the jamming density is given by �J(XS) = �mono
J

∕(1 − XS) . 
The upper limit, both large and small particles participate 
in the jammed structure ( 0 ≤ XS ≤ 1 ). In this case, the 
number of small particles is large enough to drive some 
large particles into the jammed state. Therefore, �J is writ-
ten by �J(XS) = �mono

J
∕(�mono

J
+ (1 − �mono

J
)XS) . The Fur-

nas model describes the trend of the data by following 
the values for low XS corresponding to the first jamming 
state. It shows a maximum density of �J(X

∗
S
) ≈ 0.87 at 

X∗
S
= (1 − �mono

J
)∕(2 − �mono

J
) ≈ 0.26 , which is in reason-

able agreement with the value obtained here for X∗
S
≈ 0.21 

at � = 0.15 . The model also shows an additional transition 
line emerging where the two limits meet and end at a density 
of one. Such an additional line has not been considered in 
previous works when using the Furnas model, see Refs. [6, 
7, 9, 10]. The additional line resulting from our simulation 
data qualitatively follows the Furnas prediction and ends at 
X◦

S
= 0.1 for the lowest � , see Fig. 6. The superscript ◦ marks 

the end-point of the extension line. The transition line ends 
at X◦

S
 since there is no jump in nS for XS < X◦

S
 , but rather 

this quantity increases continuously in this region and does 
not exhibit any features of a jump transition. This allows us 
to argue that the additional transition line terminates in an 
endpoint at a finite X◦

S
 that depends on � , see Ref. [14].

The jamming transition lines observed in Fig. 6 rep-
resent a more complete jamming diagram for bidisperse 
packings. Indeed, the second transition starts at a size ratio 
around � = 0.22 and becomes longer for smaller � . This par-
ticular value of � coincides with the minimum size ratio, 
�min ≈ 0.225 , at which a small particle can fit into the gap 
left by large particles forming a tetrahedral structure, see 
Ref. [11]. For 𝛿 > 𝛿min , a small particle cannot fit into the 
gap left by the large particles in contact, destroying the tet-
rahedral structure and creating different local structures. For 
𝛿 < 𝛿min , the small particle is too small to fit into the gap 
of the tetrahedral becoming a rattler in a system. Instead, a 

Fig. 6  Jamming density, �J , as a function of the concentration of 
small particles, XS , for different values of the size ratio, � . The 
extreme XS values (0 and 1) correspond to monodisperse systems, 
which have a value of �mono

J
≈ 0.64 , indicated by the dashed horizon-

tal line. The solid lines represent the Furnas model [33], see the text 
for its explanation and ideas. Open (solid) symbols represent the first 
(second) transition lines
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number of small particles are now needed to fill the gap in 
order to come in contact with large particles. In this case, 
other local structures are developed. This will be discussed 
in Sect. 5.

So far, we have shown the dependence of �J on � and XS . 
�J is enhanced for 𝛿 < 0.73 , especially at very low � and low 
XS , showing a second transition. The differences in jamming 
densities between the extreme size ratios are remarkable. For 
example, one would have expected a substantial variation 
of �J for � = 0.73 , since this is far from the monodisperse 
case of only large, � = 0 , and only small particles, � = 1 . 
Instead, �J appears to be constant for � = 0.73 and hardly 
varies above �mono

J
 independent of XS . This means that pack-

ings with 𝛿 > 0.73 would have �J values close to �mono
J

 and 
probably similar properties as a monodisperse packing. 
Examining the jammed structure of the packings as a func-
tion of � and XS may provide better insight into the values 
of �J for � = 0.73 . In addition, it is important to understand 
how the jammed structure evolves as the system approaches 
jamming and how it changes along the first and second jam-
ming transitions. The following sections are devoted to the 
study of the structure of jammed bidisperse packings along 
the jamming transition lines.

4  Structure factor analysis

To understand how the structure of a bidisperse packing 
changes with XS and � , we calculate the total and partial 
structure factors, S(q), at �J . This allows exploring the struc-
tural contribution that each configuration type has in the 
jammed packing. A general definition of the partial S(q) is

where �, � ∈ {L, S} and the sum runs over all � and � 
particles. Therefore, the total S(q) can be decomposed in 
terms of configuration types: S LL (q) , S SS (q) , S LS (q) , and 
S SL (q) as shown in Ref.  [34]. By symmetry, we obtain 
that S LS (q) = S SL (q) . Thus, we show the structure fac-
tor of only one term and call it Smix(q) . The term “mix" 
is only used in this section to highlight the equivalence 
of S(q) for SL and LS. As we will explain in Sect. 5, SL 
and LS contact configurations are differently treated when 
calculating LCOR, thus the term “mix" is no longer used. 
Therefore, the total structure factor is then written as 
S(q) = S LL (q) + S SS (q) + 2Smix(q).

(1)

Sνβ(q) = 1
N

Nν
∑

i=1

Nβ
∑

j=1
cos(q ⋅ riν)cos(q ⋅ rjβ)

+ 1
N

Nν
∑

i=1

Nβ
∑

j=1
sin(q ⋅ riν)sin(q ⋅ rjβ)

Figure 7 shows the total and partial structure factors at 
jamming for � = 0.73 at different XS . We obtain that LL 
dominates over SS and mix configurations for the lowest 
XS , see Fig. 7b–d. As XS increases, SS begins to dominate 
the structure over the other configuration types. This is evi-
dent as the number of small particles increases with XS . The 
exchange of the configuration type in the dominance of the 
packing structure marks a structural change above a certain 
XS . We think that this occurs at XS(� = 0.73) ∼ 0.28 since it 
corresponds to the 50:50 particle mixture of the packing, see 
Fig. 2. On the other hand, Smix(q) appears to be independent 
of XS , suggesting that it has no effect on the overall structure 
factor. The meaning of the negative value in Smix(q) indicates 
anticorrelated density fluctuations between small and large 
particles at long distances ( q → 0 ), i.e., high density fluctua-
tions of small particles correspond to low density fluctuation 
of large ones. For positive values, the density fluctuations 
of large and small particles need to be mostly in sync and 
so are correlated.

The total S(q) shows a gradual change due to the struc-
tural transition that the LL and SS configurations undergo, 
causing the system to explore different local structures as 
XS varies. Despite S LL (q) and S SS (q) show a significant 
change with XS , the whole S(q) shows similar structure fac-
tors, i.e., similar jammed structures are obtained where their 
peaks become wider and shifted for high q as XS → 1 . We 
think that the similar structures might be responsible for the 
similar jamming densities observed in Fig. 6 for � = 0.73 . 
This indicates that the packing structure influences the jam-
ming density, as it was recently shown in Ref. [35], where 
the random close packing in monodisperse packings can be 
theoretically calculated by considering only specific local 
disorder arrangements of particles.

Fig. 7  S(q) vs qr′
L
 at �J for � = 0.73 at different XS . S(q) of a Total, 

b Large–Large, c Small–Small, and d Mixed particle configurations
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For � = 0.15 , the structure factor is different from 
� = 0.73 . At the first transition, the total S(q) is given by 
SLL(q) since the jammed structure consists only of large 
particles (data not shown). On the other hand, at the second 
transition, both large and small particles are jammed. The 
total S(q) is dominated by SS over LL and mix configura-
tions types, see the magnitude of the y-axis of Fig. 8b–d. 
This dominance rises as XS increases, leading to a packing 
structure formed mostly of small particles with some con-
tribution from mix configurations, see Fig. 8d. The peaks 

shown by SSS(q) at long wavelengths ( q ≲ 3.3 ), see Fig. 8c, 
can be due to (i) the formation of ordered regions between 
small particles, which is possible because there are many 
more small particles than large ones and (ii) high density 
fluctuations of small particles compared to large ones. Few 
large particles are surrounded by many small ones at large 
scales. This is also observed in Fig. 8d, where a huge dis-
parity between large and small particle number at a large 
distance gives rise to negative values in SLS(q) , leading to 
anticorrelated density fluctuations.

Figure 9 shows the variation of total and partial S(q) 
before, at the first and at the second jamming transition for 
� = 0.15 at XS = 0.1 . The S(q) shown at the first and second 
transitions differ as a consequence of further compression, 
which causes small particles to jam with the jammed struc-
ture of large particles and to form high crystallized regions 
of small particles, see the peaks in Fig. 9a, c and particle 
configurations in Fig. 3. However, it is difficult to interpret 
such a difference as an indication of a jammed transition. 
On the other hand, the S(q) immediately before and at the 
first jamming transition are identical to each other, which 
could be interpreted as the same packing structure. Note that 
the difference in the packing fraction between the structure 
before and the structure at the first jamming transition is 
Δ� ≈ 10−3 . This small value does not make much differ-
ence between the total and partial S(q) when going from a 
loose to the first jamming state. The reason for this is that all 
particles in the system are used to calculate the structure fac-
tor, regardless of whether the particles are in contact or not. 
This makes it difficult to distinguish whether the structure 
is present before, at the first, or even at the second jamming 
transition. In the next section, we will introduce and exam-
ine a sensitive variable that can distinguish the structural 
features of a jamming transition.

5  Local contact orientational order Q̃
�

In the previous section, we showed that S(q) before jam-
ming is identical to S(q) at the first transition, suggesting 
that there is no difference in structure between them. As 
� → �J , a loose granular packing with a non-contacting 
structure approaches the jamming state. At � = �J , the pack-
ing undergoes a structural transition defined as a jammed 
structure, which is not accounted for by the structure fac-
tor. To understand the evolution of a jammed structure, and 
even more to distinguish the structures along the first and 
second transitions given in Fig. 6, a variable sensitive to 
each structural feature at jamming is needed. This section 
is dedicated to the introduction of a variable that is not only 
able to predict structural changes in the packing, but also to 
quantify the contribution of specific local structures formed 
by each configuration type in the jammed structure.

Fig. 8  S(q) vs qr′
L
 for � = 0.15 at different XS along the transition line 

where both species are jammed. S(q) of a Total, b Large–Large, c 
Small–Small and d Mixed particle configurations

Fig. 9  Comparison of S(q) before ( � = 0.7143 ), at the first 
( �J = 0.7160 ) and second jamming transition ( �J = 0.8712 ) for 
� = 0.15 at XS = 0.1 . S(q) of a Total, b Large–Large, c Small–Small, 
and d Mixed particle configurations
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5.1  Definition of Q̃
�

A variable that has been used to study the structure and 
measure crystallinity in supercooled liquids and metal-
lic glasses is the bond orientational order (BOR), Q

�
 , see 

Ref. [36]. It is determined by summing the spherical har-
monics of degree � of all bonds in the system. Here, a bond 
is defined by the connection of each particle center i with 
the center of its nearest neighbors j. A local measure of this 
variable, Q

�,local , was proposed in Refs. [36, 37] as a more 
accurate measure for identifying local structures. It deter-
mines the BOR on each particle and then is averaged over 
all particles. However, Q

�,local depends on the method used 
for nearest neighbor detection. For instance, the radial dis-
tribution function with a cutoff rmax is used [36, 38, 39], 
however, it leads to different Q

�,local values when rmax is var-
ied. Delauney triangulation method [37, 40], morphometric 
neighbourhood [41] and an extension of the morphometric 
neighborhood applied to noisy structures [42] has also been 
applied for identifying nearest neighbors. Due to neighbor-
hood ambiguity, Q

�,local is not uniquely defined. Here, we 
introduce an alternative definition of the bond orientational 
order. Instead of using a special detection method to find the 
nearest neighbors, we use the contacts between particles to 
define the local contact orientational order (LCOR), Q̃

�
 . In 

this way, the neighbors of a particle i are already defined by 
their contacts. The definition of Q̃

�
 states that before jam-

ming when no jammed structure has yet formed, zero values 
of Q̃

�
 must be obtained. However, there is a possibility that 

an isolated accumulation of contact particles will yield a 
nonzero but low value of Q̃

�
 . Therefore, LCOR abandons 

the definition of a recent work [43], in which the local bond 
orientational order at jamming is zero for highly amorphous 
packings. In our work, amorphous packings are character-
ized by the onset of the jamming structure where Q̃

�
 is not 

necessarily zero but has a finite low value. While high val-
ues of Q̃

�
 represent an ordered packing. For dense pack-

ings where 𝜙 ≫ 𝜙J , we expect BOR to be equal to LCOR, 
Q

�,local = Q̃
�
 , since the detection method used in BOR can 

already identify those j particles in contact with i particle as 
nearest neighbors.

The local contact orientational order is then calculated by

where Y
�m(�j,�j) is the spherical harmonics of degree � and 

of order m, �j and �j are the polar and azimuthal angles 
formed by i particle center between their j contacts with 
respect to the z and x axes, respectively. Ni

c
 is the number of 

contacts of i particle and N is the total number of particles.

(2)Q̃
�
=

1

N

N∑

i=1

(
4𝜋

2� + 1

�∑

m=−�

||||

1

Ni
c

Ni
c∑

j=1

Y
�m(𝜃j,𝜑j)

||||

2
)1∕2

,

5.2  Frequency distribution of Q̃
6

To get a first insight into the structures of the jammed bidis-
perse granular packings, we determine Q̃6 for each particle i 
in the system. In this way, we can distinguish the LCOR of 
large particles from that of small particles. The reason for 
calculating Q̃6 is because it can be used to quantify possible 
six-fold local crystal structures that form between particles 
of the same size. For example, it has been shown that the 
packing structure of particles of one size tends to form local 
HCP and FCC structures upon compression, becoming more 
frequent for denser packings [21–24]. In particular, the dis-
tribution of the bond orientational order shows characteristic 
peaks at Q̃HCP

6
= QHCP

6,local
= 0.48 and Q̃FCC

6
= QFCC

6,local
= 0.57 , 

consistent with the dominance of local HCP and FCC struc-
tures [22–24]. Here, we assume that LCOR must exactly 
match with BOR for HCP and FCC structures. With this 

Fig. 10  Frequency distribution, P(Q̃6) , of large and small particles at 
�J for � = 0.73 at a XS = 0.1 and b XS = 0.4 . The dashed and dotted 
lines represent Q̃HCP

6
= 0.48 and Q̃FCC

6
= 0.57 , respectively. c–f Con-

figurations of large and small particles at �J . Each dot represents the 
center of a particle and the color indicates the magnitude of Q̃6 . The 
lowest value of Q̃6 (dark color) represents a disordered lattice, while 
the highest value (light color) is an ordered one. The dots are barely 
transparent to reveal the structure behind them
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background, we can study how large and small particles are 
packed according to a six-fold lattice as a function of � and 
XS.

The values of Q̃6 for large and small particles are used to 
construct independent frequency distributions, P(Q̃6) . Such 
distribution is shown in Fig. 10a, b at �J for � = 0.73 at two 
relevant XS values. P(Q̃6) expresses the population of large 
and small particles with Q̃6 within the jammed structure. 
In general, the distributions follow a Gaussian-like behav-
ior, with their mean value depending on the particle size. 
For XS = 0.4 the structure is dominated by small particles, 
while for XS = 0.1 the large particles predominate. In both 

cases, P(Q̃6)
 exhibits a fraction of local HCP and FCC struc-

tures formed by both large and small particles that change 
with XS , see the dashed and dotted lines in Fig. 10a, b. For 
� = 0.15 a similar explanation can be given, but in this case, 
small particles always dominate the jammed structure over 
large ones, see Fig. 11a,b. At XS = 0.1 , the system undergoes 
several jamming transitions during compression. The first 
jamming transition is caused by large particles at �J ≈ 0.71 , 
where P(Q̃6) is indicated in the inset of Fig. 11a. This shows 
that the packing is not fully ordered despite the formation of 
some local HCP and FCC structures. Instead, it shows a wide 
range of local structures. At the second transition, �J ≈ 0.87 , 
the small particles dominate the jammed structure since 
they disrupt the jammed structure of large ones resulting 
in less contacts of LL, giving rise to 0.2 ≤ Q̃6 ≤ 0.3 . As XS 
increases, large particles are less present in the system, lead-
ing to a monodisperse packing of small particles. Figure 11b 
shows this scenario, where the mean of the distribution coin-
cides with Q̃HCP

6
 , indicating that most small particles form 

hexagonal local structures. We also find that the population 
of local HCP and FCC structures increases with XS , sug-
gesting that the local order of the packing increases with the 
concentration of small particles.

For a deeper understanding of the local structure, the 
configuration of large and small particles at jamming are 
separately depicted using dots with specific colors. Each dot 
is placed at each particle center while its color represents 
the value of Q̃6 of the particle. Dark colors represent the 
local disordered surrounding of the particles, while light 
colors correspond to the local ordered ones. Although this 
representation does not allow to see a particular structural 
lattice, it allows to distinguish the local arrangement around 
each i particle, and also how Q̃6 is distributed in the jammed 
structure. Figure 10c–f shows the distribution of Q̃6 in the 
jammed packing for � = 0.73 . Looking at Fig. 10c, f, where 
large and small particles dominate the structure at differ-
ent XS , one cannot see much difference between the dis-
tributions of Q̃6 . This indicates that similar structures are 
obtained independently of XS , thus leading to similar �J , 
see Fig. 6. For � = 0.15 , the distribution of Q̃6 shows a dif-
ferent scenario with XS . At XS = 0.4 , the distribution of Q̃6 
is dominated by small particles, see Fig. 11f, while large 
ones do not contribute between 0.2 ≤ Q̃6 ≤ 0.8 , see Fig. 11d. 
This happens due to the low number of large particles in the 
system, NL ≈ 32 . Thus, they tend to share only contacts with 
small particles. This leads to Q̃6 < 0.2 for large particles. For 
XS = 0.1 and second transition, small particles still dominate 
the distribution of Q̃6 over large ones, see Fig. 11c, e. In this 
case, the distribution of Q̃6 shows a structure where small 
particles form clusters of the same Q̃6 value (specifically 
between Q̃HCP

6
= 0.48 and Q̃FCC

6
= 0.57 ). This indicates that 

small particles accumulate in HCP and FCC structures.

Fig. 11  Frequency distribution, P(Q̃6) , of large and small particles at 
�J for � = 0.15 at a XS = 0.1 at the second transition and b XS = 0.4 . 
The dashed and dotted lines represent Q̃HCP

6
= 0.48 and Q̃FCC

6
= 0.57 , 

respectively. The inset in a represents P(Q̃6) at the first jamming tran-
sition. c–f Configurations of large and small particles at �J . Each dot 
represents the center of a particle and the color indicates the magni-
tude of Q̃6 . The lowest value of Q̃6 (dark color) represents a disor-
dered lattice, while the highest value (light color) is an ordered one. 
The dots are barely transparent to reveal the structure behind them
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The results presented above show that bidisperse pack-
ings not only form HCP and FCC crystal-like structures of 
the same particle size, but also other local structures are 
relevant in the packing. In addition to Large–Large and 
Small–Small particle contacts lead to specific local struc-
tures, contacts between large and small particles also tend 
to form completely different ones. Such local structures are 
already accounted for in the distribution of P(Q̃6) , but are 
difficult to distinguish from the six-fold lattice. To explore 
the different local structures, in the next section we will 
investigate how the individual structures of the contact con-
figuration contribute to the jammed structure of the bidis-
perse packings.

5.3  Partial Q̃
�

 of local structures

Q̃
�
 is determined for each contact configuration: LL, SS, 

SL, and LS. For LL and SS, we determined Q̃6 because 
they can form local hexagonal structures when are packed, 
see Fig. 12a. Mixed contacts are treated differently. Large 
particles can be packed with small particles in differ-
ent ways, depending on the size ratio, see Ref. [11]. For 
� = 0.73 , one can demonstrate that the most efficient lattice 
is a cubic lattice, where a small (large) particle with radius 
rS = (

√
3 − 1)rL is in the center of a cube of large (small) 

particles, see Fig. 12b. Thus, we calculate Q̃8 for SL and 
LS, respectively. For � = 0.15 , a small particle with radius 
rS = [(

√
3 − 1)∕2

√
3]rL fits into a triangular lattice of large 

particles, while a large particle fits into a hexagonal lattice 
of small ones, Fig. 12c. Therefore, we use Q̃3 for SL and Q̃6 
for LS. In this way, we get a better approximation of how 
each contact configuration assembles and contributes as the 
system approaches jamming, and also along the first and 
second jamming transitions.

Other Q̃
�
 values can also be calculated on LL and SS 

contact configurations. For example, Q̃4 and Q̃8 can be 
determined to account for square and cubic local struc-
tures. However, we restrict ourselves to Q̃6 since LL and SS 
tend to form six-fold lattices, HCP and FCC, which are the 
densest lattices. For the mixed contact configurations, Q̃

�
 is 

determined by � since it leads to the densest lattice formed 
between large and small particles, see Fig. 12.

Figure 13 shows the values of partial Q̃ LL
6

 , Q̃ SS
6

 , Q̃ LS
8

 and 
Q̃SL

8
 as a function of � for � = 0.73 at different XS . We find 

that all partial Q̃
�
 have similar density, namely �J ≈ 0.65 , 

independent of XS . This agrees with the results shown in 
Fig. 4, where the fraction of large, nL , and small particles, 
nS , show a jump at the same �J . However, a clear difference 
in the structural arrangement of the contact configurations 
is observed when XS changes. For XS = 0.6 , Q̃ SS

6
 dominates 

the jammed structure compared to Q̃ LL
6

 , indicating the for-
mation of a fraction of six-fold structures in the system, see 
Fig. 13d. Q̃ SL

8
 dominates next the jammed structure over 

Q̃ LS
8

 showing that there are higher local formations of cubic 
structures in which small particles are surrounded by large 
ones. When XS decreases, the dominance of SS and SL in the 
jammed structure is completely exchanged by LL and LS, 
see Fig. 13a. This change in structural dominance, indicated 
by Q̃

�
 , is due to the high number of large particles present at 

low XS that tends to form local six-fold and cubic structures, 
see Fig. 12b. One can speculate that there should be a certain 
value of XS at which all partial Q̃

�
 are equal. For � = 0.73 , 

Fig. 12  Illustration of typical structures found in bidisperse packings. 
a Hexagonal structures are generally formed by LL and SS contact 
configurations. b For � = 0.73 , the densest lattice is a cubic struc-
ture formed between LS (dashed line) and SL particle contacts (solid 
line). c For � = 0.15 , triangular and hexagonal lattices are formed 
between SL (solid line) and LS particle contacts (dashed line) to 
achieve the most efficient lattice

Fig. 13  Partial Q̃
�
 vs � for � = 0.73 at different XS . Q̃6 is calcu-

lated for LL and SS contacts as they can form six-fold HCP and 
FCC structures. While Q̃8 is used for LS and SL contacts since a 
cubic structure is the densest lattice. The jamming densities at each 
jump correspond to �J(XS = 0.1) = 0.647 , �J(XS = 0.2) = 0.653 , 
�J(XS = 0.4) = 0.655 and �J(XS = 0.6) = 0.653
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this could be at XS = 0.28 , which corresponds to the 50:50 
mixture, see Fig. 2. However, this needs to be investigated 
and clarified in future work.

For � = 0.15 the scenario is different. Q̃ SS
6

 and Q̃ SL
3

 always 

dominate the jammed structure over Q̃ LL
6

 and Q̃ LS
6

 due to the 
low number of large particles. We note that for XS > 0.2 the 
partial Q̃

�
 jumps at the same �J . This suggests that some 

HCP, FCC, and triangular structures are formed during 
jamming, which become more frequent as � increases. For 
XS < 0.2 , there is a structural decoupling in the packing 
depending on the contact configurations, becoming more 
evident for XS = 0.1 . A first jump is observed at �J ≈ 0.71 
which indicates the first jamming transition of the system. 
An amorphous structure with low formation of six-fold 
structures is obtained with Q̃ LL

6
≈ 0.015 , see the inset in 

Fig. 14a. Upon further compression, small particles begin 
to contribute to the jammed structure. This is indicated 
by the smooth increase in Q̃ SS

6
 , Q̃ LS

6
 , and Q̃ SL

3
 . Then, the 

structure is dominated by SS and SL contact configurations 
at � ≈ 0.77 . At the second transition, �J ≈ 0.87 , where a 
large number of small particles suddenly jam, we find that 
Q̃ SS

6
≈ 0.28 , which is far from the typical values found in 

the local HCP and FCC packing structures. One can assume 

that the structure is disordered but endowed with a local 
order due to the existence of a fraction of HCP and FCC 
structures, see Fig. 11a.

Figures 13 and 14 display an unusual behavior of Q̃
�
 for 

𝜙 ≫ 𝜙J : Q̃�
 decreases or increases with � depending on the 

contact type. We think that this behavior is a consequence 
of over-compression of the system that generally leads 
to different particle penetrations and distortion of the 
packing structure. For a full discussion of the contact type 
penetration as a function of � , see Ref. [15].

6  Summary and conclusion

We have studied the structural transition along the first 
and second jamming transition lines in bidisperse granular 
packings. The local contact orientational order (LCOR), 
Q̃

�
 , was introduced to quantify the local structures of the 

packings by considering particle contacts as nearest neigh-
bors. This means that any sudden change in contacts will 
be reflected on Q̃

�
 . The global structure of each bidis-

perse packing was divided into contact configurations, i.e., 
Large–Large (LL), Small–Small (SS), Large–Small (LS), 
and Small–Large (SL), to quantify the role of each con-
tact configuration in the jammed packing. For the LL and 
SS contact configurations, Q̃6 was calculated with respect 
to the six-fold lattice, while LS and SL were treated dif-
ferently because the local structures depend on � . For 
� = 0.73 , Q̃8 was determined for LS and SL because a 
cubic lattice is the most efficient one. For � = 0.15 , Q̃3 and 
Q̃6 were calculated for SL and LS since they tend to form 
triangular and hexagonal lattices, respectively.

We found that for � = 0.73 all partial Q̃
�
 show a sudden 

jump at the same �J , but have different contributions as XS 
changes. For example, at XS = 0.1 , the jammed structure is 
dominated by a fraction of six-fold and cubic lattices of LL 
and LS, respectively. In contrast, for XS = 0.6 , this scenario 
is dominated by the same local structures, but for SS and SL 
contact configurations. For � = 0.15 , a different behavior is 
observed. For XS = 0.1 , the contribution of each contact con-
figuration to the jammed structure decouples as � → �J . At 
�J ≈ 0.71 , Q̃ LL

6
 shows a jump to a very low value, while the 

rest of the partial Q̃
�
 are zero. This represents the formation 

of an amorphous jammed structure and thus the first jam-
ming transition of the system. Upon further compression, 
we observe a structural change experienced by small parti-
cles, marking the second jamming transition. The jammed 
structure at the second transition is dominated by a frac-
tion of six-fold and triangular lattices of SS and SL contact 
configurations. For XS > 0.2 , all Q̃

�
 simultaneously jump to 

the same �J , with the jammed structure dominated mainly 
by SS and SL. The results have shown that the evolution of 
both first and second jamming transitions is accompanied 

Fig. 14  Partial Q̃
�
 vs � for � = 0.15 at different XS . Q̃6 is cal-

culated for LL and SS contacts as they can form six-fold HCP 
and FCC structures. While Q̃6 and Q̃3 are used for LS and 
SL contacts, respectively. Each jamming density occurs at 
�L
J
(XS = 0.1) = 0.717 and �S

J (XS = 0.1) = 0.871 . �L
J (XS = 0.2) = 0.804 

and  �S
J (XS = 0.2) = 0.820 . �J(XS = 0.4) = 0.769 and 

�J(XS = 0.6) = 0.726 . The superscripts L and S in �J represent the 
jamming of large and small particles at different densities. The inset 
shows the rising point of each contact type contribution at low �
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by a structural change in the system, where some HCP/FCC 
structures of large and small particles are formed.

The analysis of the structure factor has shown that the 
packing structures for � = 0.73 are similar showing with 
approximately the same �J as XS changes. Although, 
each configuration type contributes differently to the total 
S(q). Therefore, the jammed structures can be expected 
to be structurally similar for � = 0.73 , regardless of the 
concentration of the small particles. Such an equivalence 
of packing structures needs to be confirmed and explained 
in future research.

We have also shown that the S(q) immediately before 
jamming is identical to the S(q) at jamming. This means 
that S(q) cannot distinguish whether the system is jammed 
or not. Choosing a variable that responds to each transition 
is important for understanding how jammed structures arise 
and which contact configuration contributes the most. The 
introduction of the contact orientational order aims to shed 
light on the local structures of the packings. Looking at the 
partial Q̃

�
 , one can determine how the contact configura-

tions are packed when � → �J . This result could be crucial 
to understand how the strength of the bidisperse packing 
evolves. For example, it is of great importance to know how 
the bulk modulus and other macroscopic properties of the 
packings depend on the packing structure. The structural fea-
tures presented here are consistent with the jamming density 
and bulk modulus reported in Ref. [15] along the first and 
second jamming transition, which can suggest a possible 
connection between them. In particular, the similar values of 
the jamming density and bulk modulus observed for � = 0.73 
may be due to the formation of equivalent jammed structures 
independent of XS . For � = 0.15 , the structures seem to cor-
relate with the jamming density and bulk modulus, suggest-
ing that the structure has an effect on them. Future work in 
this direction is ongoing.
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