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Abstract: This study demonstrates a circum-Arctic monitoring framework for quantifying annual
change of permafrost-affected coasts at a spatial resolution of 10 m. Frequent cloud coverage and
challenging lighting conditions, including polar night, limit the usability of optical data in Arctic
regions. For this reason, Synthetic Aperture RADAR (SAR) data in the form of annual median and
standard deviation (sd) Sentinel-1 (S1) backscatter images covering the months June–September for
the years 2017–2021 were computed. Annual composites for the year 2020 were hereby utilized as
input for the generation of a high-quality coastline product via a Deep Learning (DL) workflow,
covering 161,600 km of the Arctic coastline. The previously computed annual S1 composites for the
years 2017 and 2021 were employed as input data for the Change Vector Analysis (CVA)-based coastal
change investigation. The generated DL coastline product served hereby as a reference. Maximum
erosion rates of up to 67 m per year could be observed based on 400 m coastline segments. Overall
highest average annual erosion can be reported for the United States (Alaska) with 0.75 m per year,
followed by Russia with 0.62 m per year. Out of all seas covered in this study, the Beaufort Sea
featured the overall strongest average annual coastal erosion of 1.12 m. Several quality layers are
provided for both the DL coastline product and the CVA-based coastal change analysis to assess
the applicability and accuracy of the output products. The predicted coastal change rates show
good agreement with findings published in previous literature. The proposed methods and data
may act as a valuable tool for future analysis of permafrost loss and carbon emissions in Arctic
coastal environments.

Keywords: permafrost; coastal erosion; circum-Arctic; deep learning; change vector analysis; Google
Earth Engine; synthetic aperture RADAR

1. Introduction

Roughly one-quarter of the terrestrial area in the Northern Hemisphere and about
two-thirds of exposed land north of 60° latitude are underlain by permafrost [1,2]. More-
over, stored carbon stocks within the frozen ground material are estimated to be twice as
high compared to the amount of carbon that is currently present in the atmosphere [3,4].
However, increasing ground temperatures are reported for most regions underlain by
permafrost [4–6]. As a consequence, future predictions on the distribution of frozen ground
suggest a drastic reduction in the permafrost extent [7,8]. A thawing of permafrost leads
hereby to the release of the stored organic materials via greenhouse gases, which may cause
trillions of dollars in global economic damage without mitigation action [3,9].

A widespread phenomenon that is associated with the deteriorating state of frozen
ground is the erosion of permafrost coastlines [10–12]. Several studies highlighted the
accelerated erosion of Arctic coastlines in recent years [13,14]. It was further reported
that average erosion rates more than doubled for unlithified coasts of Canada, Alaska,
and Siberia since the beginning of the century [15]. Several drivers and their interplay
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are responsible for the continuous retreat of Arctic coastlines. The thawing of frozen
ground itself causes a destabilization of the coastline that results in increased erosion
vulnerability [13,14]. In addition, environmental factors, such as the increase in storm
frequency [16], rising sea and air temperatures [17–19], the decrease in sea ice extent [20–23],
and the increased duration of the open-water period [24,25] all amplify erosion processes
on permafrost coasts [13,14,26]. Moreover, a continuous sea level rise is predicted to
strongly affect the cliff retreat until the end of the century [27,28]. Drastic changes in
Arctic coastal environments can be observed as a consequence of increasing erosion rates of
permafrost coasts. Fish and wildlife habitats are changed [29–31] and human settlements
and infrastructure are at risk of damage [27,32–34]. In addition, previously stored carbon
stocks are released into the oceans [29,34–38]. The release of stored carbon stocks from
coastal erosion is hereby expected to rise by up to 75% until the end of the century [39].
Figure 1 illustrates an example site affected by coastal erosion within the permafrost domain
along the coastline of the Tuktoyaktuk Peninsula in Canada.

Figure 1. Coastal erosion along a permafrost coastline of the Tuktoyaktuk Peninsula in Canada. Photo
taken in July 2012 by Tobias Ullmann.

This highlights the need for large-scale and high-resolution quantification of Arctic
coastal change in order to fully assess the impacts of eroding permafrost coastlines not only
on the environment, but also on human infrastructure and society. Satellite remote sensing
is hereby a powerful tool for fast, inexpensive, and spatially explicit analysis over large
spatial scales [40]. It is particularly valuable for analyzing remote and difficult-to-access
regions. However, challenging environmental conditions in the form of low sun angles,
frequent cloud cover, and low light intensities (including polar night) limit the usability
of optical data in Arctic environments [41,42]. Synthetic Aperture RADAR (SAR) data
on the other hand is largely independent of the aforementioned environmental condi-
tions and serves therefore as a very attractive data source for studying these regions [43].
Bartsch et al. [44] investigated in a recent study the applicability of different SAR wave-
lengths in the context of detecting coastal erosion. Although the general application was
rated to be feasible, issues with viewing geometries, inconsistencies in data acquisition,
and ambiguous scattering behavior proved to be considerable challenges [44]. Another
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recent study by Philipp et al. [40] demonstrated a significant reduction in noise within the
backscatter signal by working on annual composites instead of single observations.

First efforts in circum-Arctic erosion quantification were made by Lantuit et al. [14],
who provided a geomorphological classification for 1315 segments covering over 100,000 km
of Arctic coastline in the form of the Arctic Coastal Dynamics Database (ACD) database.
Next to the coastal change rates, the database also provides information about parameters,
such as shore material, volumetric ground ice content, soil organic carbon content, and
several others [14]. A recent study by Rolph et al. [45] presented the first physics-based
model to simulate coastal retreat rates at the circum-Arctic scale, called “ArcticBeach v1.0”.
Simulated coastal erosion was thereby in the same order of magnitude as the observed
erosion rates based on two test sites [45].

This study aims to build a comprehensive monitoring framework for current and
future coastal erosion on a circum-Arctic scale and high resolution based on satellite
remote sensing data. It therefore aims to close existing gaps by providing an inexpensive,
robust, reproducible, and ongoing observation approach with high spatial resolution (10 m)
on an annual basis. It hereby further represents the logical continuation of the recently
published work by Philipp et al. [40] through the application of the same methods on a
circum-Arctic scale. Thus, the goals of this study are (1) to generate a high quality and
circum-Arctic coastline product using a Deep Learning (DL) workflow in combination with
annual Sentinel-1 (S1) backscatter composites, and (2) to quantify pan-Arctic erosion and
build-up rates with high spatial resolution via a Change Vector Analysis (CVA) approach.
In addition to manually digitized reference data, the OpenStreetMap (OSM) coastline
was used for training the DL networks. Although quality fluctuations across different
regions are frequently reported for OSM [40,46], the vast amount of additional training
data outweighs the variations in data quality for neural networks, which are reported to be
comparatively error resistant [47,48].

2. Materials and Methods

The study was generally divided into three parts. First, the study area was selected
and S1 Ground Range Detected (GRD) backscatter images in Interferometric Wide (IW)
swath mode were pre-processed. Annual median and standard deviation (sd) backscatter
composites were generated for the years 2017–2021. Annual composites represent the
months June–September. The second step was dedicated to the generation of a DL-based
high quality and circum-Arctic scale coastline product which acted as a basis for all further
analysis. Nine different U-Net architectures have been combined to generate a DL-based
coastline product covering a total of 161,600 km of the Arctic coastline. Lastly, coastal
change was quantified in proximity to the DL reference coastline via a CVA approach in
combination with the annual S1 backscatter composites. In addition to the DL coastline
and the CVA-based coastal change quantification, several quality layers were provided to
assess the applicability of the proposed data and methods across different regions, and for
quality control of the final output products. In addition, the impact of tidal changes on the
analysis was investigated. Changes in local tides may have a significant influence on the
exact location of the transition zone between land and sea, especially for flat sandy coasts.
Each processing step and product are described in detail in the following sections.

A variety of data from different sources were used throughout this study. Mainly,
S1 GRD images in IW swath mode [49] were applied for the analysis. Imagery from
Sentinel-2 (S2) [50] and Google Earth [51] acted as a means for additional quality control.
In case of Google Earth, high-resolution imagery from Maxar Technologies and Centre
national d’études spatiales (CNES)/Airbus were available. Furthermore, the Climate
Change Initiative (CCI) permafrost fraction dataset by Obu et al. [52] as well as the Arctic
coastline product derived from OSM [53] served to define the study area. Moreover, Mean
Tidal Level (MTL) information by the National Oceanic and Atmospheric Administration
(NOAA) [54] from four buoy stations were incorporated to study the impact of tidal changes
on the proposed methods and data. Further quality control was achieved through the
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Global Land Ice Measurements from Space (GLIMS) glacier database [55] and information
about daily sea ice concentration via the ARTIST Sea Ice (ASI) dataset [56]. Lastly, the coastal
erosion rates based on the proposed data and methods in this study were compared to
coastal change information provided in the ACD by Lantuit et al. [14]. Details on the
applied data, such as the data type, spatial and temporal resolution, as well as temporal
coverage within this study are listed in Table 1.

Table 1. List of data utilized within the framework of this study. The column “Temporal Coverage &
Resolution” provides information about the temporal window of used data in this study, as well as
the frequency of available data within this time span in parentheses.

Name Data
Type

Spatial
Resolution

Temporal Coverage &
Resolution Reference

Sentinel-1 Ground Range Detected (GRD) Interferometric Wide (IW) swath Raster 10 m 2017–2021 (up to 6 days) [49]
Sentinel-2 Raster 10 m 2017–2021 (up to 5 days) [50]
Google Earth Raster varies 2017–2021 (varies) [51]
Climate Change Initiative (CCI) Permafrost Fraction Raster 927 m 2017 [52]
OpenStreetMap (OSM) Vector - 2022 [53]
Buoy Mean Tidal Level (MTL) Data Table - 2020 (6 min) [54]
Global Land Ice Measurements from Space (GLIMS) glacier database Vector - 2022 [55]
ARTIST Sea Ice (ASI) Arctic Sea Ice Concentration Raster 3125 m 2017–2021 (daily) [56]
Arctic Coastal Dynamics Database (ACD) Database Vector - 2012 [14]
International Hydrographic Organization (IHO) Sea Areas Vector - 2018 [57]

2.1. Study Area

The first major part of this study was dedicated to the selection of the study area. It is
limited to Arctic coastal areas in proximity to permafrost occurrences and with available S1
GRD imagery in IW swath mode. The Arctic coastline product from OSM was used as the
basis as it proved to have the highest overall accuracy compared to other publicly available
coastline products across 10 test regions in the Arctic [40].

As a first step, the CCI permafrost fraction for the year 2017 by Obu et al. [52] was
used to define the extent of permafrost. The data were converted into a binary map where
pixel values are either 0 (no permafrost) or 1 (≥1% permafrost occurrence). In order to also
include smaller islands in proximity to the coastline that are not covered by the dataset,
a buffer of 20 km was computed around the binary map.

The next step was to assess the spatio-temporal availability of S1 satellite imagery.
For this purpose, the number of all S1 GRD imagery in IW swath mode for the months
June–September and until the end of the year 2021 from 30 degrees latitude upwards was
computed on a pixel basis (Figure 2a). Data access and filtering were conducted in Google
Earth Engine (GEE). We further differentiated between imagery with an ascending or
descending orbit. Based on the data frequency per orbit, a categorical map was defined
that shows which orbit features the highest amount of S1 scenes per pixel (Figure 2c). This
map served as a basis for any further processing of S1 data to make sure the most frequent
orbit was used when filtering the data. If both orbits feature the same amount of images, S1
data were filtered to the ascending orbit. Moreover, the year of first available data per pixel
is portrayed in Figure 2b. A binary for areas with one or more images present was created.

As a last step, the OSM Arctic coastline product was clipped to the binary maps of
permafrost occurrence and S1 data availability to reveal the investigated coastline (Figure 3).
A buffer of 10 km was applied on the clipped coastline in order to account for any potential
inaccuracies of the OSM product.
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Figure 2. (a) Number of available Sentinel-1 (S1) Ground Range Detected (GRD) scenes in Interfero-
metric Wide (IW) swath mode since launch and until the end of 2021 for the months June–September;
(b) Year of first available S1 GRD scene in IW swath mode for the months June–September; (c) Orbit
with the highest number of available S1 GRD scenes in IW swath mode since launch and until the end
of 2021 for the months June–September. A shaded relief by Natural Earth [58] was utilized as a back-
ground map. Source of Administrative boundaries: The Global Administrative Unit Layers (GAUL)
dataset, implemented by Food and Agriculture Organization of the United Nations (FAO) within the
CountrySTAT and Agricultural Market Information System (AMIS) projects.
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Figure 3. The study area divided into training and validation areas from the manually digitized sites
(green points), as well as training and validation areas based on OpenStreetMap (OSM) (red and
orange lines). The permafrost fraction across the Northern Hemisphere for the year 2017 based on
data by Obu et al. [52] in combination with a shaded relief by Natural Earth [58] was utilized as a
background map. All data is visualized in a polar Lambert azimuthal equal area projection.

2.2. Framework for Deep Learning-Based Arctic Coastline Extraction

The application of DL Convolutional Neural Networks (CNNs) has become increas-
ingly popular in recent years and several studies testify to its capabilities, especially in
the context of land vs. water segmentation [59–62]. One major objective of this study is
to take advantage of the DL segmentation capabilities in order to generate a high-quality
and circum-Arctic coastline product. The feasibility of combining S1 SAR data with a U-
Net-based segmentation algorithm was already demonstrated by Philipp et al. [40]. In this
study, the same concept is applied on a circum-Arctic scale with additional training via
OSM as reference data. A detailed overview of how a CNN-based U-Net structure works
is given by the previous publication by Philipp et al. [40] and in the original paper by
Ronneberger et al. [63].

2.2.1. Preparation of Sentinel-1 Pseudo-RGB Images

SAR data were derived from S1 features continuous observation capabilities due to its
nature of being largely independent of sun illumination and weather conditions [43,64].
For that reason, S1 Level-1 GRD backscatter imagery in IW swath mode was employed
for this study. The satellite data is available as backscatter coefficient sigma nought (σ0)
in the unit decibel (dB) with a spatial resolution of 10 m and was accessed via the cloud
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computing platform GEE [65]. Imagery for the year 2020 and for the months beginning
of June until the end of September was selected. Scenes between June and September
were chosen to reduce the influence of sea ice contamination. The data were filtered to
the most frequent orbit for a given region based on the previous data availability analysis
(Figure 2c). The amount of speckle in each scene was reduced by applying a 3 × 3 median
Moving Window (MV). Images were temporarily converted from dB to natural for the
removal of speckle. As a next step, median and sd backscatter images for each polarization,
vertical-horizontal (VH) and vertical-vertical (VV), were computed. While the median
backscatter tends to be generally lower over water compared to land, the opposite effect
can be observed for the sd backscatter. Here, the sd backscatter proved to be higher over
water and lower over land [40]. This information was utilized to create Pseudo-Red Green
Blue (RGB) images, with the median backscatter in VH polarization as the red channel,
median backscatter in VV polarization as the green channel, and sd backscatter in VV
polarization as the blue channel. Each scene was further normalized to their 2nd and 98th
percentile. Figure 4 visualizes each of the channels, as well as the combined Pseudo-RGB
for an example region in Shoalwater Bay, Canada. These Pseudo-RGB images served
subsequently as inputs for training the U-Net models. In addition to the Pseudo-RGB
images, the number of available scenes on a pixel basis was extracted as a quality layer for
the final DL coastline product. All data access, filtering, and pre-processing were conducted
in GEE.

Figure 4. Section of the Shoalwater Bay region in Canada visualized by (a) annual median vertical-
horizontal (VH) backscatter; (b) annual median vertical-vertical (VV) backscatter; (c) annual standard
deviation (sd) VV backscatter; and (d) a pseudo Red Green Blue (RGB) composite of (a–c) based on
Sentinel-1 (S1) Ground Range Detected (GRD) scenes from the beginning of June until the end of
September 2020.
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2.2.2. Preparation of Training and Validation Data

Training and validation data were collected on two levels. In the first level, a total
of 1038 km of Arctic coastline and a combined area of 19,275 km2 split into ten different
regions across the Arctic were manually digitized. Details on the digitization process and
the individual regions can be found in Philipp et al. [40]. Each region was associated with
significant erosion rates based on the ACD by Lantuit et al. [14] and was therefore selected
as a study area. The final data in the form of binary images (1 = land; 0 = water) was split
into seven regions for training and three independent regions for validation. Therefore,
spatial auto-correlation between the train and test dataset could be avoided.

The second level was dedicated to generating further training and validation data
based on OSM. In order to cover the variety of different coastal morphologies and to
overcome the limitation of CNNs requiring a vast amount of training data, OSM was
utilized as an additional reference source. OSM is one of the biggest Volunteered Ge-
ographic Information (VGI) projects and currently features over eight million contrib-
utors OpenStreetMap [66]. Data in OSM is derived from multiple different sources and
imported and edited by various editors [46]. The quality of imported data strongly depends
on the source of the created geometries, such as aerial images or Global Positioning Sys-
tem (GPS) traces [46,67]. Multiple companies including Microsoft Bing, Yahoo!, and Aerow-
est provided (temporal) access to their aerial image database for the OSM project [46].
Although the overall quality of the OSM proved to outperform other freely available Arctic
coastline datasets, the accuracy of the data also varies across different regions [40]. Further-
more, although being updated regularly, the dataset may not accurately depict the current
state of highly dynamic regions, e.g., changing Arctic coastlines. Having that said, the vast
amount of additional data is assumed to outweigh the variations in data quality, especially
when working with CNNs. For this purpose, OSM land polygons were downloaded for
all areas within the study region that are not already covered by the manually digitized
study areas. The polygons were subsequently converted to binary rasters where pixel
values are 1 in the case of the terrestrial area and 0 in the case of the water area. The entire
OSM reference dataset was split into 136 tiles, of which 27 tiles were randomly chosen
for validation and the remaining 109 tiles for training. Figure 3 visualizes all training and
validation data derived from manual digitization and from OSM. The previously generated
Pseudo-RGB images in combination with the binary reference rasters from both the manual
and OSM sites were subsequently used as inputs for training the U-Net models.

2.2.3. Deep Learning Coastline Detection

A total of nine different models were trained and their results were combined in order
to perform a high-quality segmentation between sea and land areas (including inland
rivers and lakes). Each of the following models ResNet34 [68], ResNet50 [68], VGG16 [69],
VGG19, [69], Inception v3 [70], Inception-ResNet v2 [71], DenseNet121 [72], ResNeXt50 [73]
and SE-ResNeXt50 [74] were available with pre-trained encoder weights based on the
ImageNet database (≈14 Mio. images).

Additional model training was conducted in two stages. First, reference data from the
manually digitized sites were utilized to train each model. The input data were converted to
tiles the size of 512 by 512 pixels. A total of seven augmentations were applied to the input
data, resulting in 49,096 tiles (32,606 tiles for training; 16,490 tiles for validation). As for the
hyper-parameters, a Root Mean Square Propagation (RMSprop) optimizer with a learning
rate of 0.001, a batch size of 8, a binary cross-entropy loss function, and binary accuracy as
an accuracy metric were used. Each model was trained for 30 epochs. The number of epochs
describes how often the entire dataset is presented to the network for training. The epoch
with the highest binary validation accuracy was hereby treated as the representative
trained model.

Each of the representative models received further training in the second stage by using
reference data from the OSM sites. In the case of the OSM reference data, no augmentation
was applied. The number of 512 by 512 pixels tiles from OSM hereby totaled 307,056
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(237,460 tiles for training; 67,760 tiles for validation). The same hyper-parameter settings
were applied for the training with data from manually digitized sites. Again, the models
were trained for 30 epochs, and the epoch with the highest binary validation accuracy acted
as the representative output per architecture.

The fully trained models were subsequently utilized to create probability maps with
values ranging between 0 and 1 for each 512 by 512 pixels tile across the entire area of
study. A threshold of 0.5 was applied on each probability map to differentiate between
land (including inland rivers and lakes) and sea area. As a result, nine binary maps,
one from each model, were available per tile. In order to receive the most representative
output class, the mode value was computed across all nine binary segmentation maps
on a pixel basis. In addition to the mode, the (dis-)agreement between the models was
assessed as a quality layer for the DL-based final coastline product. The formula for the
normalized model agreement is shown in Equation (1). The value ranges between 0.11,
if only 5 out of 9 models agreed on the output class, and 1, if the output of all models was
the same class. Lastly, objects that are smaller ≈0.2 km2 were removed, and holes that are
smaller ≈3 km2 were closed in the final binary classification map. The border between sea
and land area (including inland rivers and lakes) was vectorized, revealing the DL-based
coastline product. A final screening of the coastline product was conducted and minor
local adjustments were manually applied.

modelagreement =
nmode − nmodels

nclasses

nmodels − nmodels
nclasses

(1)

where:

nmode = Number of occurrences of the mode value;
nmodels = Total number of models;
nclasses = Total number of classes.

2.3. Quantification of Coastal Change

As described in detail by Philipp et al. [40] and as shown in Figure 4, median backscat-
ter and sd backscatter tend to show inverse behavior when comparing land and water
areas. While the median backscatter is generally higher over land and lower over water,
the opposite can be observed for the sd backscatter. This behavior can be exploited to
analyze changes between land and water via a CVA approach. CVA is a commonly applied
tool in change detection analyses and allows not only for the identification of the change
direction, but also the magnitude of change [75]. Furthermore, CVA avoids an accumula-
tion of errors from separate input classifications in contrast to traditional post-classification
change detection approaches [76]. Therefore, CVA in combination with S1 backscatter was
employed to quantify coastal change on a circum-Arctic scale.

2.3.1. Magnitude of Change via Change Vector Analysis

In order to conduct the CVA, annual median and annual sd backscatter for the years
2017 and 2021 were computed. For areas where no images were available for the year
2017, scenes from 2018 were used instead. Similar to the pre-processing of Pseudo-RGB
images, S1 GRD scenes in IW swath mode were filtered to both years and to the months
June–September. Images were further filtered to the most common orbit per area based
on the previously calculated orbit frequency map (Figure 2). Moreover, the speckle effect
was reduced by applying a 3 × 3 median MV. Lastly, median and sd backscatter in VV
polarization was computed for each year and used as inputs for the CVA computation.
If the median backscatter decreased and the sd backscatter increased, it was interpreted
as a change from land to water and thus, erosion. If a change in the opposite direction
could be observed, it was interpreted as build-up. The final magnitude of change maps was
normalized to have values ranging between 0 and 1. Moreover, the number of available
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images per year and per pixel were assessed as an additional quality layer for the final
CVA coastal change product.

2.3.2. Post-Processing of Change Vector Analysis

The previously computed DL coastline product served as a reference area for the
coastal change analysis. A one-sided buffer with a size of 200 m was computed in the
direction of the sea, while a 50 m buffer was added in the direction of land. The magnitude
of change maps was clipped to the buffered coastline area in order to limit the change de-
tection to the coastline. Next was the identification of suitable thresholds for differentiating
between actual change and noise within the magnitude of change maps. For this purpose,
manual delineation of coastal change was conducted for the manual test sites based on the
analyzed S1 scenes in combination with optical data from S2 and high-resolution imagery
from Google Earth. These manually digitized coastal changes served as a reference for
identifying the most suitable threshold values (0.35 for erosion and 0.6 for build-up). Details
on creating the reference data and extracting optimal threshold values can be found in
Philipp et al. [40]. A 3 × 3 mode MV was applied on the thresholded change maps to reduce
the amount of left-over noise to a minimum. Further processing included computing the
distance between each erosion/build-up cluster and the DL reference coastline. Clusters of
coastal change with a minimum distance larger than 100 m to the DL coastline were inter-
preted as noise within the water and therefore removed. Moreover, the effect of changing
glaciers on the analysis was reduced to a minimum by removing areas that intersect with a
500 m buffer around any glacier polygons derived from the GLIMS glacier database [55,77].
Moreover, areas with less than ten available S1 GRD scenes in IW swath mode in either
the year 2017 (or 2018) and/or 2021 were excluded from the analysis. Within the context
of this study, it is assumed that a higher amount of available images generally leads to
more robust change analyses. Therefore, and to avoid measuring noise instead of change,
only areas with more than 10 scenes available for the months of June–September in both
years were included. Furthermore, areas with less than 50% sea-ice-free days in either year
during the observation period June–September were excluded from the analysis. A pixel
was considered contaminated by sea ice if at least 20% ice was present based on daily
sea ice concentration information from the ASI database [56]. Finally, average change
rates in the form of erosion and build-up were computed separately for 400 m segments
along the DL coastline. For each segment, a rectangular polygon the size of 40 × 40 pixels
(400 × 400 m) around a center point on the coastline was generated. Next, the number
of erosion/build-up pixels in this area was extracted. Lastly, the average change (either
build-up or erosion) per segment could be calculated as shown in Equation (2).

changeseg = lengthwindow ∗
nchange

ntotal
(2)

where:

changeseg = Average change (either erosion or build-up) per segment in meters;
lengthwindow = Length of the rectangular observation window in meters;
nchange = Number of pixels that indicate change (either erosion or build-up);
ntotal = Total number of pixels in the observed window.

2.4. Validation and Quality Control

Extensive efforts were made for validating both the DL coastline product and the CVA
coastal change analysis. Next to accuracy statistics based on manually digitized reference
coastlines, quality layers, such as the model agreement, the number of available images,
and the the total number of days with sea-ice contamination during the observation period
are provided on a pixel basis. Further analysis of the impact of tidal changes on identifying
the coastline was performed.



Remote Sens. 2023, 15, 818 11 of 28

2.4.1. Tidal Influence on the Accuracy of the SAR-Based Coastline

The exact delineation of the Arctic coastline may vary throughout the observation
period June–September due to tidal changes. Therefore, it is reasonable to not use single
observations, and instead combine several images across an observation period to receive a
representative output. However, based on the number of available images on the current
tide level at the acquisition times, the quality of this aggregated image may vary. In order to
assess the impact on tidal changes, MTL from four buoy stations on a six-minute basis and
covering the same temporal window as the Pseudo-RGB images (June–September 2020)
provided by the [54] were downloaded. MTL data from the following stations were used:
9468333 Unalakleet, 9468756 Nome, 9491094 Red Dog Dock, and 9497645 Prudhoe Bay.
Figure 5 illustrates the distribution of buoy stations across Alaska.

Figure 5. Locations of the buoy stations 9468333 Unalakleet, 9468756 Nome, 9491094 Red Dog
Dock, and 9497645 Prudhoe Bay provided by the National Oceanic and Atmospheric Administration
(NOAA) [54]. The permafrost fraction across the Northern Hemisphere for the year 2017 based on
data by Obu et al. [52] in combination with a shaded relief by Natural Earth [58] was utilized as a
background map.

The MTL describes the arithmetic mean of mean high water and mean low water [78].
The MTL for each acquisition date and time of available S1 GRD data in IW swath mode
was extracted for each tide station and compared to the overall mean MTL across the entire
observation period. It was ensured that both satellite data and buoy data are present in
the same time zone (Greenwich Mean Time (GMT)). It is assumed, that a close mean MTL
from S1 acquisition dates to the overall mean MTL across the entire observation period
indicates a highly representative annual S1 composite.

2.4.2. Accuracy Assessment of Deep Learning Coastline

Statistics on the binary accuracy and loss values for each model are provided for
the quality assessment of the individual model outputs. In addition, further accuracy
assessment on the final combined binary classification map within a 500 m buffer around
the coastline was conducted. Since high accuracy numbers can be expected for binary
classifications across large regions, a focus was put on the transition zone between land
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and sea area. For this purpose, common metrics, such as overall accuracy, precision, recall,
and the F1-score were derived. We differentiated between training and validation areas,
as well as between manually digitized sites and OSM sites. The deviation between the 1038
km of manually digitized reference coastline and the generated final DL coastline product
served as another means to quantify the quality of the predicted coastline. Moreover,
several quality layers are available, such as the number of available S1 scenes, the level of
agreement between the nine separate models, and the total number of days with more than
20% sea-ice contamination during the observation period via the ASI database [56].

2.4.3. Accuracy Assessment Coastal Change via Change Vector Analysis

As for the CVA analysis, manually digitized coastal changes across the manual test
sites served as a basis for suitable threshold identification. Details on the creation of
reference data for the CVA change maps are provided in Philipp et al. [40]. Moreover,
the number of available S1 images, and the total number of days with sea-ice contamination
based on the ASI database [56] are provided per year and per pixel as additional quality
layers. The number of days with ≥20% sea ice for the time period June–September 2017
across the Arctic is visualized in Figure 6.

Figure 6. Total number of days with at least 20% sea ice between June and September 2017 based
on the ARTIST Sea Ice (ASI) sea ice database [56]. The permafrost fraction across the Northern
Hemisphere for the year 2017 based on data by Obu et al. [52] in combination with a shaded relief by
Natural Earth [58] was utilized as a background map.

Lastly, information about the glacier extent using the GLIMS glacier database [77]
was included for quality control. The magnitude of change maps themselves act as a
further quality layer that can be used to identify custom threshold values based on image
availability, sea ice contamination, and region.

3. Results
3.1. Deep Learning Coastline Detection

Accuracy and loss values after training exclusively with reference data from the
manually digitized sites are already reported for each model in Philipp et al. [40]. The focus
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of this study lies on the final accuracy statistics after further training with additional
reference data generated through OSM. Thus, accuracy numbers for a significantly larger
area are provided. Binary training accuracy for the final models after training on OSM sites
ranged between 0.9838 (ResNet34) and 0.9952 (Inception v3). An average training accuracy
of 0.991 could be observed. Validation statistics were similarly high and ranged between
0.9785 (Inception v3) and 0.9805 (ResNeXt50) with an average validation accuracy of 0.9792.
Loss rates between 0.0121 (Inception v3) and 0.0488 (ResNet34) and an average loss of
0.0253 can be reported for the training sites. The minimum and maximum loss rates for the
validation sites were 0.0696 (ResNet34) and 0.1508 (Inception v3), respectively. An average
loss of 0.1051 was hereby observed for the validation areas. Details about the accuracy and
loss values for each model in combination with the associated number of epochs are listed
in Table A1 (Appendix A).

The final predicted coastline has a total length of roughly 161,600 km. Accuracy
statistics within a 500 m buffer around the DL coastline product were overall slightly lower
compared to the full scenes, but still relatively high across both training and validation
areas sites. Overall accuracy for the manually digitized sites proved to be 0.95 in the case of
training data and 0.97 in the case of validation data. Similarly, high numbers were observed
for precision, recall, and the F1-score for both terrestrial and sea areas and in both cases
training and validation sites. As for the accuracy measures within the OSM sites, overall
accuracy values of 0.95 for training areas and 0.94 for validation areas can be reported.
Again, accuracy measures in the form of precision, recall, and F1-score were revealed to
show good agreement between the predicted binary segmentation maps and the reference
data. Details about each accuracy measure for both training and validation sites and further
separated into manually digitized areas and OSM areas are listed in Table 2.

Table 2. Accuracy statistics within a 500 m buffer around the manually digitized reference coastline
(Manual) and OpenStreetMap (OSM) coastline for the final combined binary classification map after
post-processing. Precision, Recall, and F1-scores are given for both classes, terrestrial area (including
inland lakes and rivers) and sea. Accuracy measures are rounded to the second decimal place.

Manually Digitized Sites

Area Overall Acc. Label Precision Recall F1

Training 0.95 Terrestrial 0.97 0.93 0.95
Sea 0.93 0.97 0.95

Validation 0.97 Terrestrial 0.98 0.96 0.97
Sea 0.96 0.98 0.97

OpenStreetMap (OSM) Sites

Area Overall Acc. Label Precision Recall F1

Training 0.95 Terrestrial 0.92 0.97 0.94
Sea 0.97 0.93 0.95

Validation 0.94 Terrestrial 0.90 0.99 0.94
Sea 0.99 0.91 0.95

The average deviation of the DL coastline product to the reference coastline is ±8.7 m
in the case of the manually digitized sites and ±131.2 m in the case of the OSM sites. Median
deviations of 6.3 m for the manual sites and 29.6 m for the OSM sites were measured. The sd
values for manual sites and OSM sites were 8.5 m and 404.8 m, respectively. The minimum
deviation was 0 m in both cases. In contrast, the maximum deviation across manual sites
was 50 m, whereas the largest distance between the predicted line and the OSM reference
was 8989.3 m. The 2nd and 98th percentile across manually digitized sites were 0.2 m and
36.9 m, respectively. For OSM sites, the 2nd and 98th percentile were 1.1 m and 1402.5 m.

Figure 7 illustrates an S1 annual Pseudo-RGB image, the associated binary classifica-
tion in combination with the DL coastline product, as well as the level of agreement between
individual classifications from each model for a section along Shoalwater Bay in Canada.
The predicted coastline runs closely along the transition between sea and terrestrial area,
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as expected from the generally high accuracy statistics. A high model agreement over the
sea area can be observed. Model agreement varies across the terrestrial area. On the one
hand, land area, small lakes, and small rivers are for the most part correctly attributed to
the terrestrial class across all models. On the other hand, larger lakes and river deltas in
particular cause confusion across different models. This confusion is partly also depicted in
the binary classification as can be seen in the case of the larger river delta. The individual
algorithms hereby disagree on the position of the border between the sea area and the
start of the inland river, which belongs to the terrestrial class. As a result, the DL coastline
product appears noisy in the transition zone of the river delta.

Figure 7. (a) Sentinel-1 (S1) pseudo Red Green Blue (RGB) composite covering the temporal win-
dow June–September 2020; (b) Mode image of the nine binary classifications from different U-Net
architectures. The two classes represent terrestrial areas, including inland rivers and lakes (light-blue
color) and sea areas (dark-blue color); (c) Agreement between the nine different classifications from
different U-Net models. All images cover a section along Shoalwater Bay in Canada.
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Another quality layer in the form of the number of available images per pixel is
visualized in Figure 8. The Figure highlights varying S1 GRD IW swath data availability
across the coastline of Alaska from June–September 2020. Up to 40 images were available
for some regions across Alaska to generate the DL coastline product.

Figure 8. Number of available Sentinel-1 (S1) Ground Range Detected (GRD) scenes in Interferometric
Wide (IW) swath mode over Alaska within June–September 2020 as a quality layer for generating the
Deep Learning (DL) coastline product for the year 2020.

Figure 9 provides an overview of the Arctic coastal area covered by the DL coastline
product. Due to a lack of available S1 GRD data in IW swath mode, the coverage of the
Canadian Arctic Archipelago is strongly limited. Greenland was fully excluded from the
analysis as no data were available over this region for the year 2020. The same applies to
Severny Island, Yuzhny Island, and the Franz Josef Land archipelago in Russia. Figure 9b–e
provide zoomed-in illustrations of the DL coastline product and a comparison to the OSM
coastline. Figure 9b,c highlight the accuracy of the DL coastline product for the region
Drew Point in Alaska.

OSM miss-classified coastlines and partly strong deviations can be observed in the
reference background image, which represents the annual median backscatter in VV polar-
ization from June–September 2020. Figure 9d,e, on the other hand, highlight an area where
OSM outperforms the DL coastline product by including small islands that were removed
during the post-processing in the DL product.

Figure 10 illustrates the changes in MTL across the temporal window June–September
2020 that was used for the generation of S1 Pseudo-RGB images. MTL data on a six-
minute basis is visualized for the stations 9468333 Unalakleet (Figure 10a), 9468756 Nome
(Figure 10b), 9491094 Red Dog Dock (Figure 10c), and 9497645 Prudhoe Bay (Figure 10d).
The average MTL based on S1 acquisition dates for each respective region is highlighted
by the red dashed line, whereas the overall average MTL across the entire buoy dataset
per region is visualized by the grey dashed line. Although the MTL values feature strong
fluctuations of up to 2.4 m across the observed time span and regions, both the average
MTL from S1 acquisition dates and the overall average MTL from the entire buoy dataset
were similar. Deviations of 0.23 m for Unalakleet, 0.09 m for Nome, 0.02 m for Red Dog
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Dock, and 0.04 for Prudhoe Bay were observed. The number of available S1 scenes were
16 for Unalakleet, 20 for Nome, 39 for Red Dog Dock, and 22 for Prudhoe Bay. Therefore,
a lower amount of available S1 data leads to a larger deviation to the average of the full
buoy time-series.

Figure 9. Circum-Arctic overview (a) and zoom-ins (b–e) on the Deep Learning (DL) coastline product
(red line) and the OpenStreetMap (OSM) coastline (turquoise line) for the two different example
regions Drew Point in Alaska (b,c), and an area in the Canadian Arctic Archipelago (d,e). The median
Sentinel-1 (S1) backscatter in vertical-vertical (VV) polarization for the months June–September
in 2020 was used as a background image for (b–e). The permafrost fraction across the Northern
Hemisphere for the year 2017 based on data by Obu et al. [52] in combination with a shaded relief by
Natural Earth [58] was utilized as a background map for (a).



Remote Sens. 2023, 15, 818 17 of 28

Figure 10. Mean Tidal Level (MTL) in m based on 6 min buoy data from June 1st to September
30th 2020 for the stations 9468333 Unalakleet (a), 9468756 Nome (b), 9491094 Red Dog Dock (c),
and 9497645 Prudhoe Bay (d) provided by the National Oceanic and Atmospheric Administration
(NOAA) [54]. The red points represent the MTL at Sentinel-1 (S1) acquisition times for the respective
region. The dashed lines represent the overall MTL from June–September based on the full buoy
dataset (grey line) and the tidal levels at the S1 acquisition times (red line).

3.2. Coastal Erosion and Build-Up Rates

Figure 11 visualizes CVA-based annual erosion both for the entire Arctic and zoom-
ins on selected regions. The overview map (Figure 11a) shows average annual erosion
rates for 20 km segments across the Arctic coastline for areas with more then 10 scenes
available and less than 50% sea ice duration per year. Roughly 44.3% of segments feature
no erosion. Around 35% show erosion rates between 0 and 1 m, and about 12.8% indicate
erosion between 1 and 5 m. The remaining segments are made up of 3.8% with rates of
5–10 m, 2.4% with rates of 10–20 m, 1.3% with rates of 20–50 m, and less than 1% feature
erosion rates of more than 50 m per year. Two zoom-in areas for segments with significant
erosion rates are illustrated in the figure. Figure 11b–c feature a coastal area in Alaska.
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The median backscatter in VV polarization for the months June–September is shown for
2017 (Figure 11b), 2021 (Figure 11c), and again the year 2021 together with the erosion-based
land loss in red color (Figure 11d). The same principle applies to Figure 11e–g, but this time
for a sandy delta in Russia. The algorithm categorizes changes in sandy deposits within
the delta as coastal erosion.

Figure 11. Circum-Arctic overview (a) and zoom-ins (b–g) on Change Vector Analysis (CVA)-
based Arctic coastal erosion rates. The annual average erosion for 20 km segments is shown in (a).
The median backscatter in vertical-vertical (VV) polarization from June–September in 2017 (b,e),
2021 (c,f), and again 2021 with the CVA-based erosion area (d,g) in red is shown for a coastal area
in Alaska (b–d) and a sandy delta in Russia (e–g). The permafrost fraction across the Northern
Hemisphere for the year 2017 based on data by Obu et al. [52] in combination with a shaded relief
by Natural Earth [58] was utilized as a background map for (a).
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Coastal change rates were investigated for different seas (Table 3). Annual statistics
for a total of 16 seas based on the IHO Sea Areas dataset are available. The overall highest
average annual erosion was observed for the Beaufort Sea (1.12 m), followed by the East
Siberian Sea (0.91 m). The strongest average build-up can be reported for the Sea of Okhotsk
(0.09 m), followed by the Laptev Sea (0.07 m). Overall maximum erosion is revealed for the
Barents Sea (67 m) and the Bering Sea (62.5 m). Maximum build-up values were identified
for the Laptev Sea (53.25 m) and the Barents Sea (52.67 m.). The highest 98th percentile
values of erosion were extracted for the Bering Sea (9.75 m) and East Siberian Sea (9.5 m).
The 98th percentile build-up values were mostly 0 m, with the exception of the Arctic Ocean
(0.33 m), the Hudson Strait (0.25 m), and the East Siberian Sea (0.25 m). In terms of sd, the
highest erosion sd values are associated with with the Barents Sea (3.63 m) and the Bering
Sea (3.26 m). On the other hand, the strongest sd build-up values are present in the Laptev
Sea (1.17 m) and the Barents Sea (0.97 m). Statistics in both Tables 3 and 4 are based on
average erosion rates within 400 m segments along the coastline and therefore rounded
to the second decimal place. However, when comparing coastal change on a per-pixel
basis, the maximum accuracy can only be as high as the resolution of the used satellite data,
in this case 10 m.

Table 3. Change Vector Analysis (CVA)-based annual erosion and build-up statistics per sea after the
International Hydrographic Organization (IHO) sea areas and based on 400 m segments. The average,
maximum, and the standard deviation (sd) are given. In addition, the percentage of segments with
coastal change is provided. Build-up statistics are written in parentheses. Statistics are based on all
segments, including segments with no coastal change.

Sea Mean Max SD Perc.

Bering Sea 0.65 m (0.02 m) 62.5 m (19 m) 3.26 m (0.28 m) 14.39% (1.13%)
Chukchi Sea 0.19 m (0.01 m) 26 m (11.25 m) 1.06 m (0.21 m) 10.02% (0.69%)
Beaufort Sea 1.12 m (0.02 m) 46 m (14.75 m) 3.38 m (0.35 m) 47.24% (1.32%)
Labrador Sea 0.05 m (0 m) 13 m (2.25 m) 0.38 m (0.02 m) 3.89% (0.07%)
Hudson Strait 0.5 m (0.05 m) 39 m (17.50 m) 2.33 m (0.64 m) 20.85% (2.07%)
Davis Strait 0.73 m (0 m) 38.75 m (0 m) 3.03 m (0 m) 18.92% (0%)
East Siberian Sea 0.91 m (0.03 m) 33.25 m (10 m) 2.66 m (0.34 m) 39.31% (2.66%)
Hudson Bay 0.22 m (0.02 m) 40 m (18.25 m) 1.43 m (0.37 m) 12.62% (1.22%)
The Northwestern Passages 0.22 m (0 m) 28.25 m (3.50 m) 1.31 m (0.09 m) 8.81% (0.30%)
Arctic Ocean 0.05 m (0.01 m) 3.67 m (1 m) 0.31 m (0.1 m) 3.72% (2.80%)
Barents Sea 0.69 m (0.03 m) 67 m (52.67 m) 3.63 m (0.97 m) 9.81% (0.91%)
Greenland Sea 0.09 m (0.02 m) 39.33 m (12.67 m) 1.08 m (0.37 m) 4.08% (1%)
Sea of Okhotsk 0.56 m (0.09 m) 43.75 m (23.75 m) 2.89 m (0.93 m) 12% (1.66%)
Kara Sea 0.59 m (0.02 m) 51.75 m (5.5 m) 2.77 m (0.22 m) 21.28% (1.92%)
Laptev Sea 0.25 m (0.07 m) 42 m (53.25 m) 1.83 m (1.17 m) 10.51% (1.67%)
Norwegian Sea 0.01 m (0 m) 18 m (5 m) 0.26 m (0.08 m) 0.75% (0.38%)

Statistics on erosion and build-up rates per country are provided in Table 4. Annual
CVA-based coastal change statistics for the five countries United States, Canada, Svalbard
and Jan Mayen, Norway, and Russia are available. The strongest average erosion was
observed for the United States (Alaska) (0.75 m), followed by Russia (0.62 m). The weakest
average erosion could be observed for Norway (Scandinavian Peninsula) (0.01 m). The
strongest average build-up values were observed for Svalbard and Jan Mayen (0.07 m) and
the weakest, again, for Norway (0 m). Maximum annual erosion was observed for Russia
(67 m), followed by the United States (Alaska) (62.5 m). Maximum build-up values are
also attributed to Russia (53.25 m), followed by Svalbard and Jan Mayen (52.67 m). Both
the 98th percentile and the sd of erosion were highest for the United States with 10.25 m
and 3.45 m, respectively. The 98th percentile for build-up was 0 m across all countries.
The highest sd build-up is shown for Svalbard and Jan Mayen (1.62 m). In total, 12.24% of
segments indicated an average annual erosion rate of 3.8 m and a combined 17.83 km2 of
eroded land area per year, while 1.05% of segments featured an average annual build-p rate
of 2.3 m and a combined annual build-up area of 1.02 km2 across the entire investigated
Arctic coastline. A total annual land loss of 17.84 km2 and a total build-up area of 1.02 km2
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per year were observed across the entire covered coastline based on the proposed data
and methods.

Table 4. Change Vector Analysis (CVA)-based annual erosion and build-up statistics per country
and based on 400 m segments. The average, maximum, and the standard deviation (sd) are given.
In addition, the percentage of segments with coastal change is provided. Build-up statistics are written
in parentheses. Statistics are based on all segments, including segments with no coastal change.

Country Mean Max SD Perc.

United States (Alaska) 0.75 m (0.01 m) 62.5 m (14.75 m) 3.45 m (0.25 m) 17.82% (1.05%)
Canada 0.24 m (0.01 m) 40 m (18.25 m) 1.42 m (0.27 m) 11.82% (0.67%)
Norway (Svalbard and Jan Mayen) 0.09 m (0.07 m) 39.33 m (52.67 m) 1.01 m (1.62 m) 4.06% (1.11%)
Norway (Scandinavian Peninsula) 0.01 m (0 m) 18 m (5 m) 0.21 m (0.08 m) 0.53% (0.32%)
Russia 0.62 m (0.04 m) 67 m (53.25 m) 3.01 m (0.65 m) 16.61% (1.68%)

In addition, erosion rates derived from S1 and CVA were compared to coastal erosion
estimates from the ACD. A total of 36.8% of ACD segments overlap with Arctic coastal
areas investigated in the framework of this study. Therefore, comparisons are limited to
those areas. CVA-based erosion and build-up numbers were combined and the average
coastal change was computed for each ACD segment. Out of the remaining 484 ACD
Arctic coastal segments, a total of 69.4% featured annual erosion rates that deviate less than
0.5 m from the CVA-based coastal change. Another 13% of segments featured differences
of 0.5–1 m, 9.9% of segments showed differences between 1 and 2 m, and 7.6% exceeded
2 m in the difference of annual coastal change.

4. Discussion
4.1. A Deep Learning-Based Circum-Arctic Coastline Product

In this study, a novel circum-Arctic monitoring framework for quantifying annual
erosion rates of permafrost coasts was presented. C-Band SAR data in the form of S1
GRD backscatter images in IW swath mode was combined with DL CNNs and CVA to
generate a high-quality Arctic coastline product and quantify coastal change with high
resolution and on an annual basis. Working with annual (June–September) S1 composites
lowered the amount of speckle, reduced geolocation uncertainty of individual satellite
scenes [79,80], and further limited the influence of sea ice contamination [14]. Annual S1
composites comprise both median and sd backscatter information. As seen in Figure 4,
median backscatter was generally higher over land and lower over water, whereas the sd
of backscatter intensity behaved inversely to the median. The higher sd of backscatter over
water can be associated with frequent changes of the sea surface texture due to wind-driven
capillary waves and gravity waves [81,82].

This backscatter behavior could be exploited for the generation of a DL-based Arctic
coastline product by using the annual S1-RGB composites as inputs for nine different
Convolutional Neural Networks (CNN) U-Net architectures. A major limitation of CNN-
based algorithms is the need for vast amounts of training data [83]. In order to overcome
this limitation, pre-trained Networks based on the ImageNet database (14 Mio. images)
were used. Furthermore, augmentation was applied on the manually digitized reference
areas covering 1038 km of coastline separated into 10 different Arctic regions. Thus,
the amount of reference data was artificially increased seven-fold. Moreover, additional
training and testing data were generated by using the OSM Arctic coastline product.
Although the quality of the OSM data varies across different Arctic regions as reported in
Philipp et al. [40], the additional amount of reference data outweighed the fluctuations in
data quality. Neural networks are reported to be more error resistant compared to linear
regression models [47]. An accuracy of 90% using a CNN could be achieved even though
roughly one-third of the training data was erroneous [48]. Klein and Rossin [84] observed
even a slight performance increase by introducing moderate amounts of errors (5–15%) in
the training data to their Neural Network model [84]. Another limitation is identifying
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the most suitable network architecture and depth for a given task [85]. Instead of relying
on a single model, the results of nine different model architectures were combined in this
study to generate the most representative output across a variety of different network
types. All models produced training accuracies ≥0.9838 and validation accuracies ≥0.9785
(Table A1). The segmentation between the sea and the terrestrial area was therefore largely
successful across all models. Statistics within a 500 m buffer around the reference coastline
also reveal high accuracy values for the final combined binary segmentation map (Table 2).
Both training and validation sites feature overall accuracy values of ≥0.944. The final
DL coastline product had a median deviation to the reference coastline of ±6.3 in the
case of the manually digitized sites, and a deviation of ±29.6 m in the case of OSM sites.
The higher deviation of the predicted coastline to the OSM line can be explained by the
greater variety of coastal areas covered by the OSM reference data and the previously
mentioned fluctuations in OSM data quality. Comparisons between the DL and OSM
coastline products are visualized in Figure 9. On the one hand, DL outperforms the OSM
coastline in the case of some areas by providing more accurate and up-to-date information.
On the other hand, due to limitations of available S1 imagery for generating the DL coastline
product, data coverage of OSM is significantly better. Moreover, smaller islands (<0.2 km2)
were removed during post-processing of the DL coastline, but are often present in the
OSM dataset. Adjusting the minimum threshold for the object removal could lead to fewer
excluded islands, but at the risk of introducing higher noise levels.

Investigations on the impact of tidal changes revealed good agreement between the
average MTL for S1 acquisition dates and the actual average MTL within the observed time
span based on data from four buoy stations (Figure 10). The higher the number of available
S1 scenes for a given region, the lower the deviation of the average MTL for S1 acquisition
dates to the actual average MTL. Therefore, the number of available satellite scenes may
have a noteworthy influence on the accuracy of the average coastline position in the S1
annual composite images. That said, spatially more distributed and an overall higher
amount of buoy data across the entire Arctic is needed to provide profound statements on
the effect of tidal changes on Arctic coastlines. This applies especially to flat sandy coasts,
where tidal changes can have a significant impact on the position of the border between
sea and land. The number of available images per pixel represents therefore a valuable
quality layer in these areas. Furthermore, computing median and sd composites for flat
sandy coasts may lead to images with soft and difficult-to-distinguish transition zones
between sea area and terrestrial area, which can have a negative impact on the accuracy of
the predicted coastline.

4.2. Quantifying Coastal Change via Change Vector Analysis

The contrasting behavior between the median and sd backscatter for sea and terrestrial
areas was further exploited in the CVA on coastal change. Maximum average annual
erosion per country of 0.75 m (United States), and overall maximum erosion rates of up
to 62.5 m (Russia) based on 400 m segments were revealed. The overall weakest erosion
and build-up was observed in Norway. This can be attributed to the mostly lithified coasts
that are less prone to erosion in this region [14]. The strongest average annual build-up
(0.07 m) was reported for Svalbard and Jan Mayen, which may be explained by movements
of small remaining glaciers that were not covered by the GLIMS database. Other build-ups
can also be attributed to the accumulation of sandy deposits near coastlines and river
deltas. The extracted erosion rates show good agreement with the findings of previous
literature. Strong annual erosion of 20–50 m along Drew Point were observed via the CVA
analysis. This matches with numbers published by Jones et al. [29] and Wang et al. [86],
who reported erosion numbers for subsets of this area ranging between 6.7 and 22.6 m,
and 30.8 and 51.4 m per year, respectively. Obu et al. [12] observed maximum coastal
retreat rates of 10–17 m between 2012 and 2013 for the Bell Bluff site on Herschel Island
in Canada, which agrees with findings of annual change based on the proposed CVA
approach (12.5–15 m per year). The authors further communicated little to no (0–1 m)
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coastal erosion along Kay Point near Herschel Island, which matches numbers from this
study (0 m) [12]. Irrgang et al. [87] reported an average annual erosion rate of 0.7 ± 0.2 m
for a 210 km long section of the Yukon coast in Canada on the basis of historical aerial and
high-resolution satellite imagery from the 1950s until 2011. The proposed data and methods
from this study suggest an average annual erosion of 0.5 m for the same area, which is
in the equivalent order of magnitude as observed by Irrgang et al. [87]. Another study
by [10] reported relatively small annual erosion rates of less than 1 m along the west coast
of the Buor Khaya Peninsula in Russia, which also agrees with the findings in this study.
In addition, over two-thirds of overlapping segments between CVA-based coastal change of
this study and the ACD database feature coastal change rates with less than 0.5 m deviation,
and therefore suggesting an overall good level of agreement between the two datasets. The
strongest coastal change per sea was quantified for the Beaufort Sea in both the CVA coastal
change analysis and the ACD database. Differences between the observed coastal change
rates in this study and the ACD database can be attributed to differences in the observed
temporal window, the applied spatial resolution, and uncertainties in both datasets.

4.3. Limitations and Future Potentials

The proposed methods and data provide a valuable tool for quantifying coastal erosion
and build-up rates. However, the quality of the analysis heavily depends on the amount
of available satellite data, which varies over time and space [88,89]. Figure 2 visualizes
the varying data availability for different regions across the Arctic. Large parts of Russia
and some regions in Canada feature relatively small amounts of available data, whereas
the data frequency over Europe is relatively high. As of the time of writing this article,
data is exclusively generated by S1A due to an on-board anomaly of the S1B satellite
since 23 December 2021 [90]. Until the launch of S1C, limited data availability might
have negative effects on the continuous analysis of the proposed monitoring framework.
Quality layers in the form of the number of available images (Figure 8), number of sea
ice days (Figure 6), model agreement (Figure 7), and the presence/absence of glaciers are
provided on a pixel basis and may act as helpful proxies for assessing the applicability of the
proposed methods and data, and the quality of the output products. The application of CVA
in combination with S1 backscatter imagery was limited to areas with less than 50% sea ice
days and more than 10 observations within the observed time span from June–September
in order to minimize noise and miss-classifications. It also has to be mentioned that coastal
change can only be meaningfully quantified, if the present erosion or build-up is larger
than the resolution of the applied satellite data, in this case 10 m. The applied threshold
values for CVA analysis, as proposed in Philipp et al. [40], led to best results for the tested
areas, but optimal threshold values may vary depending on the coastal region, amount of
available satellite data, and sea ice contamination. Especially for areas with low amounts of
images and high sea-ice concentration, adjustment of the threshold values may be necessary
to achieve the best results. In this context, the magnitude of change information acts as a
valuable tool for differentiating between noise and actual change. Future data will allow
for longer time series investigations. In this regard, the temporal window for the creation of
composites could be extended over 2 years for areas with poor data availability. However,
using a longer observation period for the creation of a single composite also increases the
variation within this composite. Thus, there is a trade-off between having more data and
having more uncertainty due to stronger changes across individual scenes used to generate a
single composite image. Furthermore, by intersecting the extracted coastal change rates with
additional information about the geomorphological parameters, such as lithification stage
and ground ice content of Arctic coasts, as provided in the ACD by Lantuit et al. [14], may
help to further understand varying erosion rates of permafrost coasts. Lastly, the long-term
effects of the Fennoscandian land uplift [91] and the influence of sea level rise [27] on the
proposed data and methods, especially for flat sandy coasts, should be investigated in
future analyses. Although the proposed methods and data were applied and validated
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exclusively within the Arctic permafrost domain, there is a high potential for transferability
of this coastal monitoring approach to different latitudes.

5. Conclusions

In this study, Sentinel-1 (S1) Ground Range Detected (GRD) backscatter images in
Interferometric Wide (IW) swath mode were combined with Deep Learning (DL) and
Change Vector Analysis (CVA) in order to investigate erosion and build-up of permafrost
coasts on a circum-Arctic scale. Annual median and standard deviation (sd) backscatter
images were hereby utilized to generate a DL reference coastline and were further used as
an input for CVA-based coastal change quantification. The following main conclusions can
be drawn from this study:

• Despite fluctuations in data quality, OpenStreetMap (OSM) proved to be a feasible ad-
ditional input for training Convolutional Neural Networks (CNN) U-Net architectures
on the segmentation between sea and terrestrial areas in Arctic environments.

• DL in combination with annual median and sd backscatter from S1 allowed for the
computation of a high-quality reference coastline with a total length of 161,600 km.
A median accuracy of ±6.3 m to the manually digitized reference coastline and a
median agreement of ±29.6 m to the OSM reference coastline was achieved.

• A good agreement between the average Mean Tidal Level (MTL) from S1 acquisition
dates and the actual MTL was observed (±0.02–0.23 m). The higher the number
of available S1 scenes, the smaller the gap between the MTL represented by the S1
acquisition dates and the actual average MTL for a given observation period.

• The inverse behavior of median and sd backscatter over sea and terrestrial areas could
be successfully exploited for the CVA analysis. However, the quality and applicability
of the analysis strongly depend on the number of available scenes, the present coast
type, and total sea ice duration during the observed temporal window.

• Maximum annual erosion rates of up to 67 m were observed in Russia, followed by
62.5 m in Alaska. Overall average annual erosion was highest in the United States
with 0.75 m, followed by Russia with 0.62 m. The weakest average annual erosion was
observed in Norway (0.01 m). The Beaufort Sea featured the overall strongest annual
average erosion of 1.12 m across all seas. Statistics are hereby based on all segments,
including segments without coastal change.

• In total, 12.24% of the entire investigated Arctic coastline indicated an average an-
nual erosion rate of 3.8 m and a combined 17.83 km2 of eroded land area per year,
while 1.05% of the coastline featured an average annual build-up rate of 2.3 m and a
combined annual build-up area of 1.02 km2.

• Quality layers in the form of the number of available images, number of sea ice
days, model agreement, and the presence/absence of glaciers are provided on a pixel
basis. The aforementioned quality layers may act as helpful proxies for assessing the
applicability of the proposed methods and data, and the quality of the output products.

The proposed data and methods proved to be powerful tools for generating a high-
quality Arctic coastline product, and for quantifying annual coastal change rates of Arctic
permafrost coasts. The approach may also be feasible for different latitudes. The generated
output products may further act as a means to quantify the loss of frozen ground, and for
estimating carbon emissions in permafrost-affected coastal environments in future studies.
The final circum-Arctic DL coastline product, CVA-based magnitude of change maps,
and the associated quality layers will be made freely and openly available via the Earth
Observation Center (EOC) Geoservice of the German Aerospace Center (DLR).
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Appendix A

Table A1. Accuracy statistics and epochs of final segmentation maps per model after additional
training with OpenStreetMap (OSM) data. The epoch with the highest validation accuracy was
chosen as a representation for each model. Accuracy and loss values were rounded to the fourth
decimal place.

Model Epoch Training Acc. Training Loss Validation Acc. Validation Loss

DenseNet121 18 0.9894 0.0311 0.9796 0.1003
Inception-ResNet v 20 0.9933 0.0175 0.9796 0.1160
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Table A1. Cont.

Model Epoch Training Acc. Training Loss Validation Acc. Validation Loss

Inception v3 29 0.9952 0.0121 0.9785 0.1508
ResNet34 4 0.9838 0.0488 0.9790 0.0696
ResNet50 27 0.9900 0.0276 0.9787 0.1000
ResNeXt50 23 0.9885 0.0323 0.9805 0.0844
SE-ResNeXt50 20 0.9941 0.0155 0.9799 0.1080
VGG16 29 0.9945 0.0143 0.9787 0.1283
VGG19 12 0.9900 0.0289 0.9787 0.0881
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