Transport policy in the age of autonomous vehicles

Technische Universität Dresden

Transitioning to shared electric automated mobility: The need for a transport policy shock

Dr. -Ing. Dimitrios Milakis Institute of Transport Research, German Aerospace Center (DLR)

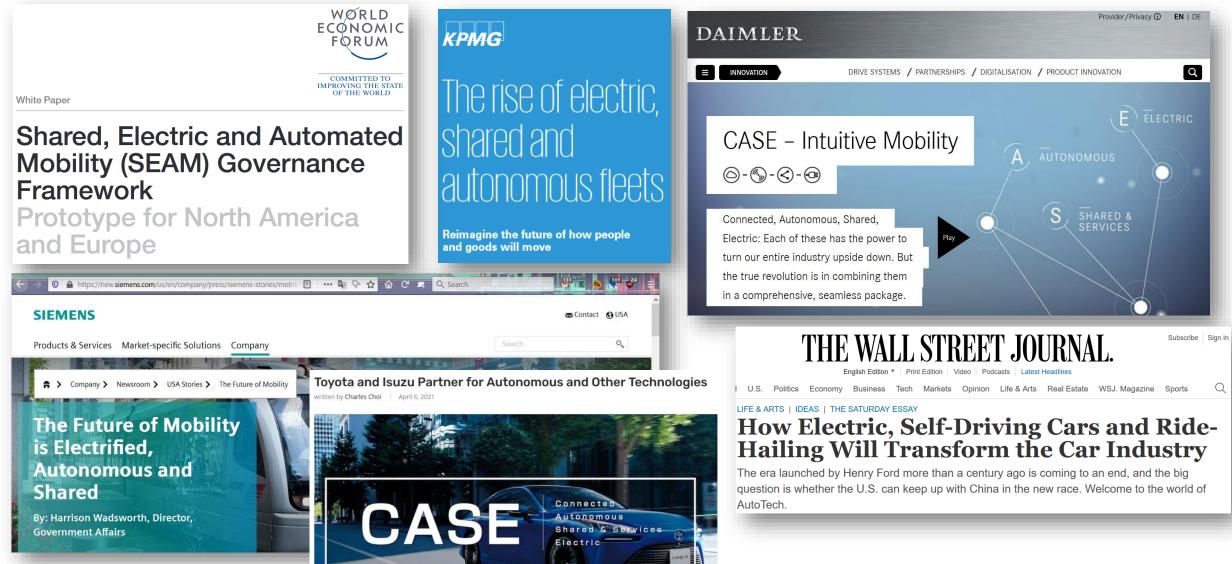
Dresden, 3-4 May 2023

Presentation outline

- 1. Introduction
- 2. Method
- 3. Conceptual model: Possible transitions towards private and shared electric automated mobility

4. Analysis

- 4.1 Niche level: market development of shared (pooled) mobility
- 4.2 Regime level: attitudes key actors towards shared automated electric vehicles
- 4.3 Landscape level: pressures towards shared electric automated vehicles


5. The transport policy shock

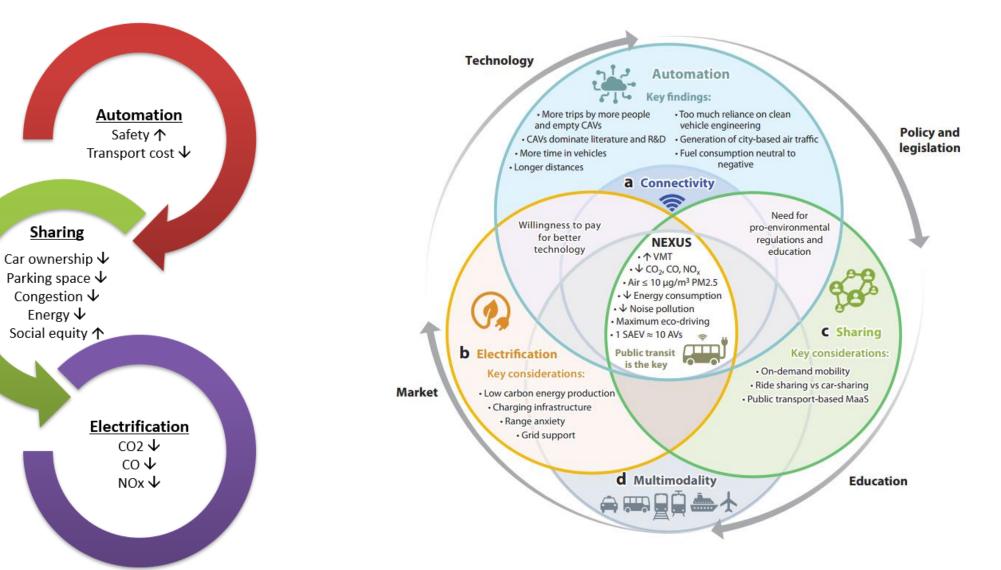
6. Conclusions

1. Introduction

Three revolutions of automobility (electric-shared-automated): market and policy

(Milakis, van Arem, van Wee, 2017; Milakis & Müller, 2021; Nikitas, Thomopoulos, Milakis, 2021)

Sharing


Parking space Ψ

Congestion Ψ

Energy ↓

Social equity ↑

Three revolutions of automobility (electric-shared-automated): scientific evidence

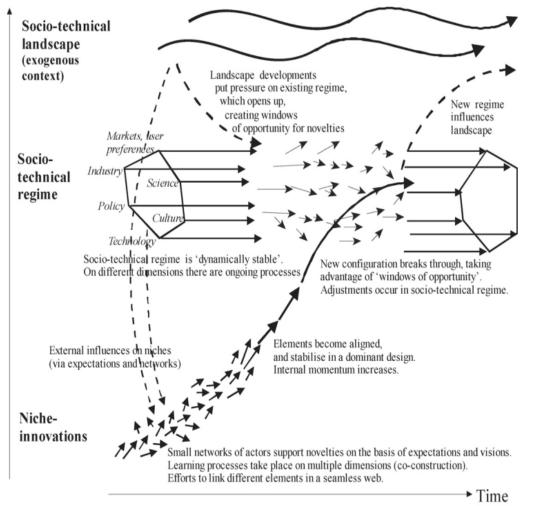
To what extent the current private automobility regime will be reconfigured into a private electric automated automobility regime or substituted by a shared (particularly pooled) electric automated automobility regime?

2. Method

Step 1

Conceptual model based on the multi-level theoretical perspective of technological transitions: niche, regime, landscape levels (Geels, 2002):

- Timing (e.g., state of niche-developments).
- Nature (e.g., reinforcing or disrupting impact) of the emerging transition of private automobility regime.


Step 2

Review the relevant literature that underpins this conceptual model at each analytical level:

- Niche level: business landscape and prospects of the shared (pooled) mobility market.
- Regime level: key actors' (i.e., vehicle manufacturers, users and societal groups and public authorities) preferences and motivations towards shared (solo and pooled) electric AVs.
- Landscape level: type and intensity of pressures to the private automobility regime from different actors.

2. Methods

Increasing structuration of activities in local practices

Transition pathway	Niche readiness	Regime impact	Landscape pressure
Transformation	Not sufficiently developed	Reinforced	Moderate
Reconfiguration	Sufficiently developed	Reinforced	Moderate
De-/Re-alignment	Not sufficiently developed	Disrupted	Divergent, large, sudden
Substitution	Sufficiently developed	Disrupted	Divergent, large, sudden

Table 1: Variation of niche readiness, regime reaction and landscape pressure intensity in the four technological transition pathways.

Figure 1: The multi-level perspective on technological transitions.

3. Conceptual model

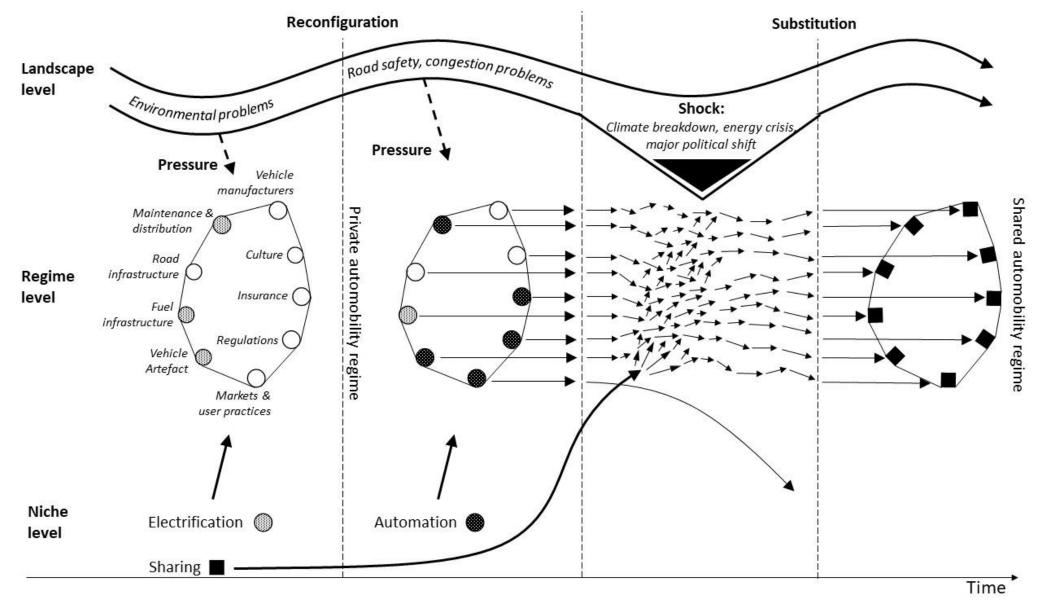
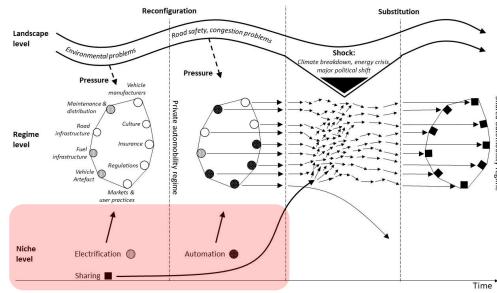


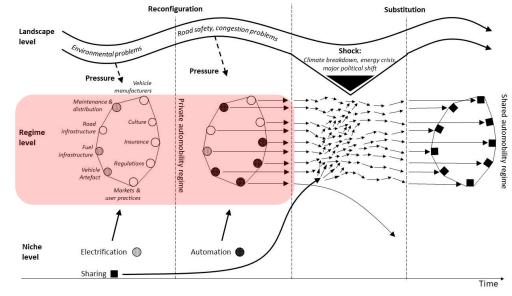
Figure 2: Conceptual model of the possible transition pathways of the private automobility regime.



4. Analysis Niche level

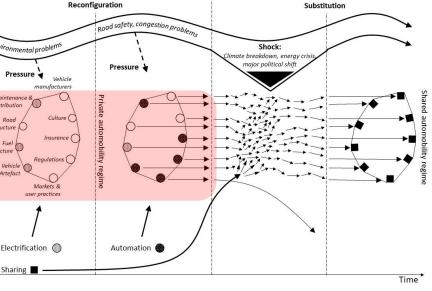
□ On-demand ride-pooling market: niche in the transport market.

- Major OEMs: business model diversification, mobility providers (Daimler with Via and moovel; Ford with Chariot and Transloc).
 Gradually withdrew after 2010 (small fleet size, AVs distant, bond with private cars, not good match with public transport authorities).
- The ride-pooling market: emerging phase (about 500 services running), with B2G projects dominating and B2C projects disappearing (Foljanty, 2022).
- B2G projects: USA, Germany and Japan; funded for 12 months; small fleets less than 10 vehicles.



4. Analysis Regime level: Vehicle Manufacturers

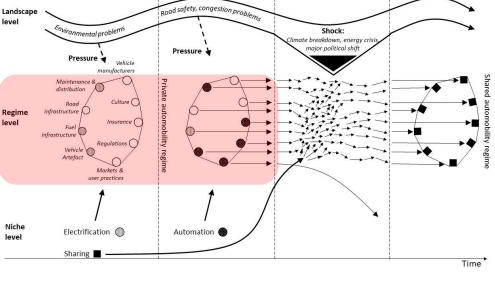
- Vehicle manufacturers shift towards electric powertrains; limited plans for shared mobility.
- Increased shared mobility: decline in vehicle sales in the private segment (1 free-floating shared car reduces: new sales by 3 vehicles per year Schmidt (2020), associated with 2.1 to 5.3 sold old cars in Germany, Jochem et al., 2020).
- Substantial expansion of shared automated mobility services: commercial clients could change from "friendly competitors" to "threatening competitors" which could put pressure on vehicle prices.



- □ Travel cost, comfort, and travel time: critical determinants of mode choice, including ride-pooling, in the AVs era.
- The total cost of ownership for private AVs (ca. 0.2 €/Km) is lower than shared AVs (solo and pooled; ca. 0.3 €/Km) (Bösch et al., 2018)
- Car ownership together with time usefulness balance out travel cost benefits of shared automated mobility options (Wadud and Mattioli, 2021; Wadud and Chintakayala, 2021).

Regime level: Users and societal groups (instrumental factors)

Landscape


The preference for private ownership of AVs is largely driven by:
 -the inherent attractiveness of ownership (convenience, independence, habit/inertia, private space),
 -the aversion to sharing (inconvenience, privacy concerns,

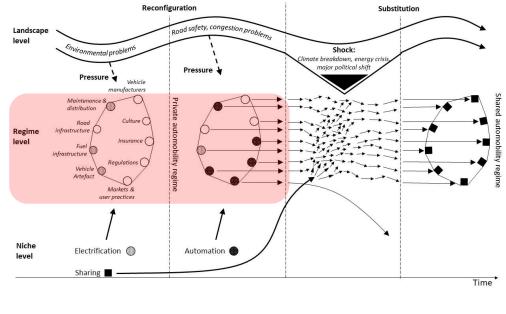
insecurity, discomfort).

Shared mobility habits: rather fragile and less ingrained compared to habits of car ownership (Doody et al., 2021).

4. Analysis

Regime level: Users and societal groups (affective factors)

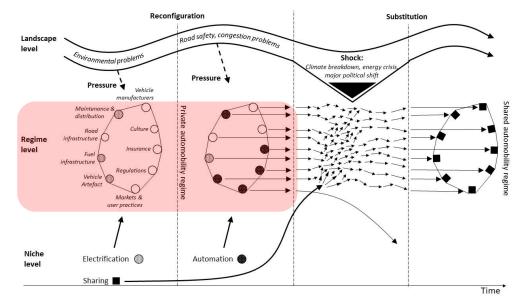
Reconfiguration


Substitution

- Car ownership and use: deeply embedded in society as a hegemonic ideology that informs people's sense of identity and status (socio-economic status, subjective identity, superiority, proprietorship, individuality, and masculinity) (Mohammadzadeh, 2021).
- Symbolic dimensions of car ownership: likely to be maintained or strengthened by vehicle electrification and automation and weakened by shared mobility (Sovacool and Axsen, 2018).

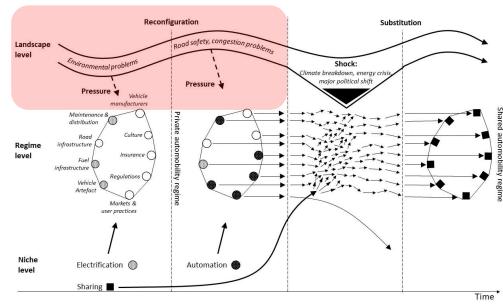
4. Analysis

Regime level: Users and societal groups (symbolic factors)



4. Analysis Regime level: Public authorities

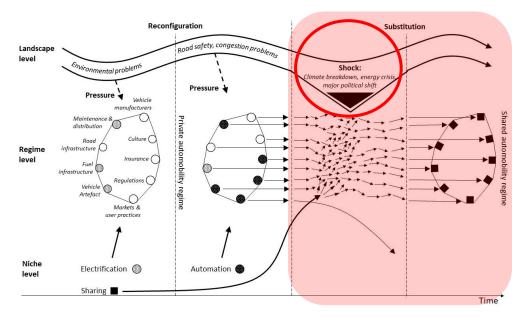
- Public authorities face challenges and lag in governing the transition towards shared AVs.
- Potential loss or reconsideration of transportation-related revenues: sales and property taxes, license plate and registration fees, parking tickets, and traffic fines.
- □ Complex governance landscape: negotiations with a complex network of new actors and structural changes in administration.



4. Analysis Landscape level

Private automobility regime: moderate pressure from the sociotechnical landscape (citizens, national transport policy strategies, OEM's reports), primarily due to safety, congestion, and environmental problems in the transport sector.

- Vehicle electrification and automation: regime's effective response.
- Landscape pressures: enhancement of social equity, improvement of public health and well-being, reclamation of urban space, reduction of urban sprawl, and promotion of active lifestyles are considered milder.



5. The policy shock

Substitution pathway of private automobility towards a shared automobility regime: "shock", "avalanche change", "disruptive change".

- Substantial pressure on the regime: climate breakdown, severe energy crisis, significant political shift in favor of collective mobility (policy shock).
- Policy shock (macroeconomics): unexpected changes (monetary policy, fiscal policy, trade policy) in government policy that can have a significant impact on the economy.
- Impact depends: initial state of the economy, the magnitude and timing of the shock, and the response of households and businesses.

Transport Policy Shock		Magnitude			
		Low	Medium	High	
Type	Economic	Congestion pricing: higher fees for SOVs, discounts for ride-pooling vehicles. Cost-effective, attractive ride- pooling services (lower travel time, congestion)	Cost-effective ride-pooling services (longer	Free or heavily subsidized ride-pooling services: companies and individuals, especially for low-income or disadvantaged populations. Affordable ride-pooling services.	
	Infrastructural	Reduced parking availability: urban areas. Attractive ride-pooling services.	Zoning restrictions: limit available parking in newly constructed buildings and require a minimum number of ride-pooling spots. Attractive ride-pooling services.	Reduced road infrastructure: reducing the number of lanes on certain roads for private vehicles and replace them with dedicated ride-pooling lanes. Attractive ride-pooling services (lower travel time, congestion).	
	Regulatory	Public transportation partnerships: partner with ride-pooling companies to integrate their services with existing high capacity public transportation systems. Enhanced accessibility and affordability for users.	pooling services. Captive market, efficient and	Car ownership restrictions: limit the number of cars that individuals are allowed to own in urban areas. Attractive ride-pooling services.	
	Marketing				
	Education				
	Technology				
	Social				

Note: unanticipated implications, timing, and packaging of policies.

6. Conclusions

- Shared electric AVs: silver bullet for the sustainable transition of automobility; evidence suggests that the most likely transition pathway will involve a majority of privately-owned electric AVs.
- □ Niche level: shared mobility is still in an early emerging phase.
- Regime level: key stakeholders (i.e., vehicle manufacturers, users and society groups, public authorities) could resist a shift from private to shared automated electric automated mobility due to concerns about sales, competition, and user preferences, revenue losses, complex transition.
- □ Landscape level: main pressure related to safety, congestion, and environment; the private automobility regime reacts by automating/electrifying fleets. Landscape pressures addressed by a shift towards shared mobility services are seen as milder and less influential to the regime.
- A critical landscape-level shock could open up a pathway to a shared electric automated automobility regime; further research is needed to investigate the shock-conditions that may trigger such a transition.

References

- Bösch, P. M., Becker, F., Becker, H., Axhausen, K. W. (2018). Cost-based analysis of autonomous mobility services. Transport Policy, 64, 76-91.
- Doody, B. J., Schwanen, T., Loorbach, D. A., Oxenaar, S., Arnfalk, P., Svennevik, E. M. C., . . . Farstad, E. (2021). Entering, enduring and exiting: the durability of shared mobility arrangements and habits. Mobilities, 1-17.
- Foljanty, L. (2022). The On-Demand Ridepooling Market in 2022 further growth or signs of saturation?>. Retrieved from https://www.linkedin.com/pulse/on-demand-ridepooling-market-2022-further-growth-signs-lukas foljanty/?trackingId=eBICzgljSM6nADFpAy%2FzzQ%3D%3D&utm source=pocket mylist
- Geels, F. W. (2002). Technological transitions as evolutionary reconfiguration processes: a multi-level perspective and a case-study. Research Policy, 31, 1257-1274.
- o Geels, F. W., Schot, J. (2007). Typology of sociotechnical transition pathways. Research Policy, 36, 399-417.
- Jochem, P., Frankenhauser, D., Ewald, L., Ensslen, A., Fromm, H. (2020). Does free-floating carsharing reduce private vehicle ownership? The case of SHARE NOW in European cities. Transportation Research Part A: Policy and Practice, 141, 373-395.
- Milakis, D. van Arem, B., van Wee, B., (2017). Policy and society related implications of automated driving: A review of literature a directions for future research. Journal of Intelligent Transportation Systems: Technology, Planning and Operations, 21 (4), 324-348.
- Milakis, D., Müller, S., 2021. The societal dimension of the automated vehicles transition: Towards a research agenda. Cities 113: 103144.
- Milakis, D., Seibert, D., (2023). The illusion of the shared electric automated vehicles transition. Working Paper. Institute of Transport Research, German Aerospace Center (DLR).
- Mohammadzadeh, M. (2021). Sharing or owning autonomous vehicles? Comprehending the role of ideology in the adoption of autonomous vehicles in the society of automobility. Transportation Research Interdisciplinary Perspectives, 9, 100294.
- Nikitas, A., Thomopoulos, N., Milakis, D., (2021). The Environmental and Resource Dimensions of Automated Transport: A Nexus for Enabling Vehicle Automation to Support Sustainable Urban Mobility. Annual Review of Environment and Resources, 46, 167-192.
- Schmidt, P. (2020). The effect of car sharing on car sales. International Journal of Industrial Organization, 71, 102622.
- Sovacool, B. K., Axsen, J. (2018). Functional, symbolic and societal frames for automobility: Implications for sustainability transitions. Transportation Research Part A: Policy and Practice, 118, 730-746.
- Wadud, Z., Chintakayala, P. K. (2021). To own or not to own That is the question: The value of owning a (fully automated) vehicle.
 Transportation Research Part C: Emerging Technologies, 123, 102978.
- Wadud, Z., Mattioli, G. (2021). Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants. Transportation Research Part A: Policy and Practice(151), 228-244.
- 19