
T R A I N I N G A F U L LY C O N V O L U T I O N A L N E U R A L N E T W O R K
W I T H I N C O M P L E T E , I M P E R F E C T A N D I M B A L A N C E D

G R O U N D T R U T H O N R O O F - T Y P E S E G M E N TAT I O N

philipp schuegraf

Professor: Prof. Dr. David Spieler
Supervisor: Dr. Ksenia Bittner

University: University of Applied Sciences Munich
Department: Department for Mathematics and Computer Science

Cooperation Partner: German Aerospace Center, Earth Observation Center

Date of submission: 01.04.2021





A B S T R A C T

Nowadays, satellites constantly supply world-wide coverage of large-scale,
Very High-Resolution (VHR) satellite imagery. The interpretation of such
imagery is very expensive if done by a human. However, modern deep
learning methods automatically extract semantically meaningful features
for image interpretation if trained on a set of input-output pairs of high
quality. In 3D reconstruction, the automatic prediction of the roof-type is
an open problem. Even though some research has been done to predict the
roof-type, either the number of classes was limited to flat and non-flat [1],
or the acquisition of the ground truth was done by manually labeling many
buildings [2]. But roof-type information is publicly available through the in-
ternet, such as contained in the CityGML [3] dataset of Berlin, Germany. On
the other hand, such datasets have only very few samples of some classes,
contain mislabeling and are incomplete. But there are methods for deal-
ing with class-imbalance, such as the focal loss [4] and inverse frequency
weights and recently, an adaption of the loss function in deep learning has
been proposed, which makes the training of an Fully Convolutional Neural
Network (FCN) more robust to errors in the ground truth [5]. Furthermore,
Semi-Supervised Learning (SSL) was extended from classification to seman-
tic segmentation. For example, Virtual Adversarial Training (VAT) was eval-
uated for dense, pixel-wise classification on a benchmark dataset [6]. In this
thesis, these solutions are assembled into a combined loss LCOM to train a
DeepLabv3+ [7] for roof-type segmentation on an imbalanced, imperfect
and incomplete training dataset. The proposed method achieves consider-
able improvements and successfully predicts the roof-type in many cases.
But it also fails in some cases, which are visualized and discussed.
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1
I N T R O D U C T I O N

Nowadays, the biggest potential in the engineering discipline of remote
sensing lays in the rise of deep learning methods to make efficient and
effective use of the vast amount of both airborne and space-borne data.
Space-borne data, from satellites such as the WorldView spectral imaging
devices, is especially cost-efficient, since they can orbit the earth non-stop
for many years and supply a constant stream of Very High-Resolution (VHR)
imagery. For example, multi-view panchromatic images of a scene can be
used to create a Digital Surface Model (DSM) and the combination of a
high-resolution panchromatic image and a multi-spectral image can yield
a high-spatial and spectral-resolution pan-sharpened multi-spectral image.
The huge amount of image data from satellites poses a big challenge, which
is to extract semantic meaning from these images. Several engineering fields
require semantic information annotated to space-borne images to produce
value from them. These fields include urban planning and reconstruction,
disaster monitoring and 3D city modeling.

Modern deep learning methods are the State-of-the-Art (SOA) for many
computer vision tasks, such as image classification, semantic segmentation
and instance segmentation. It showed, that the success in computer vision
transfers to the field of remote sensing [8]. Although computer vision bench-
marks are performed on multi-media data, which is very different to space-
borne imagery, the spatial and spectral feature extraction mechanism of
recent deep learning methods also works in remote sensing. But there are
also show-stoppers for deep learning methods. Since most of these methods
are supervised, they require huge amounts of labeled data to achieve high
quality results. But different to the acquisition of imagery, it is expensive
in time and money to manually label data for large areas to obtain a good
ground truth for deep learning. There are also labeled datasets in remote
sensing, which are big, but are labeled incompletely. For example, there is
CityGML [3] data of Berlin, where only about 30 % of the buildings are
labeled with a roof-type (compare Figure 6). Furthermore, roof-type data
is often highly imbalanced (see Figure 6). Some roof-types occur much less
frequent then others, which causes standard deep learning approaches to
ignore minority classes. Another big challenge is incorrectly labeled data
(compare Figure 2). Many buildings are labeled incorrectly due to time dif-
ference between the acquisition of the satellite image and the annotation
of the roof-type, imperfect pre-processing and human error. Furthermore,
the prediction of classes that are characterized by the geometric appear-
ance, such as roof types in satellite images, requires the input to the deep

1



2 introduction

(a) mono-plane (b) gable (c) hip

Figure 1: The roof-types mono-plane, gable and hip. In (a), a mono-plane roof is
shown. Mono-plane roofs can also have an inclination. In (b), there is a
gable roof. In (c), a hip roof is shown. The hip class also includes half-
hip buildings, with only one triangular end, and the other end as in the
gable class. The mono-plane class is characterized by a single plane with
an arbitrary angle of less than 90°. The gable class is characterized by a
ridge line and equal angles of the neighboring planes. The hip class is
characterized by a ridge line and one or two isosceles triangles.

learning model to contain these features. Otherwise, the model’s predictive
power is strongly limited. This thesis proposes a method to tackle the three
issues 1) class imbalance, 2) incorrectly labeled data and 3) incompletely
labeled data.

There have been deep learning based methods before for roof-type classi-
fication from different image sources [9], [10], [2], [1]. Most of this work was
done on classifying instances of buildings, which requires instance localiza-
tion information of the buildings [9], [10], [2]. Also, semantic segmentation
of roof-types was performed, but only for the three classes like background,
flat and non-flat [1]. This thesis closes the gap between semantic segmenta-
tion of three classes and building roof-type classification with many classes,
attempting to segment the five classes background, mono-plane, gable, hip
and other (see Figure 1). The other class is any other class than background,
mono-plane, gable or hip, or a composition of multiple roof-types.

The following chapters are organized as follows: Chapter 2 gives an
overview of previous work on roof-type classification and semantic seg-
mentation, semi-supervised learning, class imbalance and incorrectly la-
beled data. Chapter 3 introduces the key concepts of the evaluated meth-
ods. Chapter 4 shows the evaluation procedure. Chapter 5 explains the data
preparation, the carried out experiments and the metrics used to quantita-
tively judge their success. Chapter 6 presents the results and 7 concludes
the thesis. Finally, Chapter 8 gives an outlook on possible further directions
of this research.
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(a) (b) (c)

Figure 2: A visualization of some incorrect labels in the roof-type segmentation
ground truth. In the background, there is an RGB image of a scene and
in the foreground, there is a polygon in either blue or red, represent-
ing the label of the building in the ground truth. Blue color represents
the unknown building class and red color the flat building class. In (a),
an unknown building was annotated, but in the RGB image, the corre-
sponding image is demolished. In (b) and (c), clearly non-flat buildings
are annotated as flat. In (c), the roof-type annotation does not overlap
completely with the building in the RGB image.





2
R E L AT E D W O R K

2.1 building roof-type classification

To this day, only very little work was done on the classification of building
roof-types. However, some efforts have been made to accomplish this hard
task.

Partovi et al. [2] investigate the potential of pretrained Convolutional
Neural Networks (CNNs) for roof-type classification and apply two different
methods to pan-sharpened RGB images. One of the methods refines an
ImageNet pretrained CNN [11] by hand-labeled building roof patches and
the other one uses deep features from a hidden layer of such a CNN and
passes these features to an Support Vector Machine (SVM). The roof-type
classes are flat, gable, half-hip, hip, pyramid, mansard and complex.

In Axelsson et al. [9] an ensemble of ten CNNs is trained to predict the
building roof-types flat and non-flat. As an input, different combinations of
spectral and height information is used, which include Near Infrared (NIR),
red, green and height. The combination of red, green and height scored the
best classification accuracy, whereas the combination of NIR, red and green
was only slightly worse. Passing only height information to the CNNs was
significantly less accurate.

Alidoost and Arefi [10] propose a CNN-based, automatic roof-type seg-
mentation algorithm. The segmentation is done by first extracting building
tiles by building mask generation and than classifying each building pixel
to a roof-type. They use both RGB and DSM data as the input. The train-
ing is carried out by first fine-tuning an ImageNet-pretrained CNN on the
RGB data and than further fine-tuning the model with the DSM data. The
extracted deep features are fused by selecting the class with the maximum
score among them.

Another approach by Bittner et al. [1] even achieved promising results on
roof-type segmentation, assigning to each pixel of a half-meter resolution
DSM either of the classes background, flat roof or non-flat roof in a multi-
task setting.

However, none of these works addresses the segmentation of more than
two roof-types and the background class.

5



6 related work

2.2 class imbalance

Class imbalance is a problem in deep learning, because standard loss func-
tions, such as the Cross-Entropy (CE) loss, can be minimized by always
favoring the dominant class.

In object detection, the location of an object in an image is predicted by
a model. The locations where no object is, are the dominant class, in this
case. Lin et al. [4] propose the focal loss function, which is a scaled CE loss
function, where the scale depends on how confident the model is about
its prediction. If the model is highly confident, the pixel’s influence on the
parameter update is scaled by a real power of 1 minus the confidence. The
confidence based scaling together with a weighting parameter leads to a
high increase in performance in object detection.

Class-imbalance was also previously addressed in remote sensing. In
road segmentation from aerial imagery, the number of non-road pixels is
much higher than that of road pixels. Henry et al. [5] use an adapted ver-
sion of the dice loss, to better balance the influence of each pixel in training,
such that road pixels do not get ignored by the training process.

2.3 semi-supervised learning and adversarial train-
ing

Missing annotations are another great challenge in roof-type datasets and
machine learning in general. Semi-Supervised Learning (SSL) together with
consistency regularization have been investigated by many researchers.

Yalniz et al. [12] present an approach on semi-supervised learning for
large-scale image classification. In their work, they propose to use a student-
teacher approach, where a teacher is trained on the labeled dataset and the
labels of the unlabeled dataset are inferred by the teacher. Then, the student
model is trained on both the labeled dataset and the originally unlabeled
dataset with the inferred labels.

Goodfellow et al. [13] reason about why small, worst-case perturbations
of inputs to classifiers can lead to highly confident but incorrect classifi-
cation results and propose a method called adversarial training to make
classifiers robust against such adversarial attacks. Even better, the adver-
sarial training has a regularizing effect on the classifier, such that its test
accuracy increases.

In their work, Bai and Urtasun [14] use a workflow consisting of Fully
Convolutional Neural Networks (FCNs) and a CNN to regularize building
boundaries in an adversarial setting. They use masks generated by a Mask-
RCNN and ideal masks from Open Street Map (OSM) as inputs and gen-
erate refined masks as an in-between product in the adversarial setting,
where the discriminator classifies whether the regularized mask is a real
mask or a fake one. The refined building footprints are more regular than
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those produced by the Mask-RCNN and also have a higher Intersection
over Union (IoU). Zorzi and Fraundorfer [15] observed a similar effect.

2.3.1 Virtual Adversarial Training

Adversarial training as in Goodfellow et al. [13] requires knowledge of the
class label. Since this is not always given, Virtual Adversarial Training (VAT)
was developed by Miyato et al. [16] and gradually extended and improved
[17], [18].

In Miyato et al. [16] the authors use VAT to improve the Local Distribu-
tional Smoothness (LDS) of CNN (see Subsection 3.1.1). This way, the model
becomes more robust against adversarial attacks and generalizes better to
previously unseen data. VAT has relatively low computational cost. To com-
pute the approximated gradient of the LDS for a neural network, only two
pairs of forward and backward propagations are necessary. VAT, compared
to adversarial training, generates adversarial examples without using the
label information and therefore is applicable to the semi-supervised setting.
Miyato et al. [17] apply VAT on supervised and semi-supervised benchmark
tasks in the text domain. But in the text domain, one-hot encoded word rep-
resentations are used. That is why it is inappropriate to apply small pertur-
bations to the input directly. Instead, Miyato et al. [17] add adversarial and
virtual adversarial perturbations to the word embeddings. Miyato et al. [18]
improved VAT, such that only two forward and backward passes are needed
to compute the gradient of the virtual adversarial loss. The authors apply
the entropy minimization principle, which makes their approach to VAT
achieve state-of-the-art performance for semi-supervised learning tasks.

Most of the work in the research area of SSL was contributed to clas-
sification tasks, whereas semi-supervised semantic segmentation was also
recently studied more [19], [20], [21], [6].

In French et al. [6], VAT was extended to semantic segmentation by re-
garding the adversarial consistency regularization loss as a spatial map and
averaging the LDS values over the map. However, in this thesis, the consis-
tency loss is computed by the outputs of only one neural network, where
in French et al. [6], a student-teacher approach is used.

2.4 imperfect ground truth

The quality of the ground truth is very important for the performance of
deep learning methods. Handling imperfect ground truth in deep learning
for remote sensing is a very young, but promising field.

In Henry et al. [5], the problem of imperfect ground truth is tackled by
replacing the usual CE loss by a soft-bootstrapped adapted dice loss, which
replaces the ground truth by a weighted average of the ground truth and
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a model’s predictions. That way, the learning target is shifted, such that it
does not ignore what the model has already learned. Furthermore, they ap-
ply artificial noise to the ground truth, to rectify the topological noise. With
the rectified noise, the model becomes more robust to such noise. Combin-
ing the soft-bootstrapped adapted dice loss with the artificial noise leads to
a strong improvement in quantitative evaluation of a deep learning based
approach to road segmentation from aerial imagery.



3
B A C K G R O U N D

3.1 introduction to semi-supervised learning

Deep Neural Networks are nowadays very popular in applications with
labeled datasets Dl. In the case of fully labeled datasets, the learning pro-
cedure is called supervised. Since it is often hard to acquire labels for data,
the size |Dl| of labeled datasets is limited. Nowadays, the acquisition of
huge unlabeled datasets Du is usually easy. Therefore it is possible that
learning based on both labeled and unlabeled datasets D = Dl ∪Du is an
improvement over learning on only on Dl. In this section, the conditions
under which such methods work are examined and different approaches
are presented. This section is based on the surveys of Ouali et al. [22] and
Engelen and Hoos [23].

Learning with a dataset D which contains both labeled and unlabeled
data is called SSL. The labeled portion Dl can be very small compared to
the total amount of data. This is due to the relative hardness of creating
labels compared to the acquisition of huge datasets. The aim of SSL is to
leverage the unlabeled portion Du to improve the performance over a fully
supervised algorithm using only Dl. In general, Dl gives information about
the conditional density p(y|x), where y is the true label of a data sample
x ∼ p(x), coming from the data distribution p(x) and Du supplies inside into
the structure of p(x). The conditional density function p(y|x) is what is in-
tended to be inferred by a parametric prediction function fθ with trainable
parameters θ. In supervised learning, only p(y|x) is approximated, whereas
in SSL, p(x) is leveraged to incorporate information of the density distribu-
tion of the data, which can improve the decision boundary.

SSL requires several assumptions to hold. These assumptions are espe-
cially important for the generalization from the training data to unseen test
cases. These are assumptions are

• (a) The Smoothness Assumption Two close points x1 and x2, which
lie in a high-density region of the data, have close corresponding out-
puts y1 and y2 [24].

• (b) The Cluster Assumption Two points x1 and x2 in the same cluster
are of the same class [24].

• (c) The Manifold Assumption The high-dimensional data is located
on a low-dimensional manifold [24].

9
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Details about these assumptions are given in Chapelle et al. [24].
The main question here is when it improves performance to incorporate

unlabeled data. The question has no easy answer. Instead, as usual in ma-
chine learning, SSL is yet another approach to given problems, which has to
be evaluated and compared to supervised methods but is not an automatic
upgrade to them.

Intrinsically SSL-methods have in common, that they optimize a loss func-
tion which include terms for labeled and unlabeled data. They extend su-
pervised methods by including unlabeled data in the objective function.

Perturbation-based methods use the smoothness-assumption of SSL. If an
input is locally perturbed, than the output should not greatly vary. This
robustness does not rely on the true label of the data points, which allows
the incorporation of unlabeled data. One extension to a supervised method
exploiting the smoothness-assumption would be to add a distance measure
of the outputs of a data point and its perturbed version. Neural networks
allow the incorporation of unlabeled data by an additional unsupervised
loss term, which makes it straightforward to extend them to the SSL setting.

3.1.1 Virtual Adversarial Training

Perturbation-based methods apply general perturbations to each input, to
augment the data, pushing the trained model to have smooth outputs
in random directions, which can improve the generalization performance.
This way, the direction in the input space, where the model of the label prob-
ability p(y|x) is most sensitive to, which is called the adversarial direction,
might be neglected. Inspired by the work of Goodfellow et al. [13], where
the model is trained to be invariant to the input in the adversarial direction,
Miyato et al. [18] propose VAT as a regularization technique, that trains the
model to be invariant to the input in the adversarial and random directions.
VAT is called virtual, because the adversarial direction is approximated from
unlabeled data, which puts it into the realm of SSL. To train the model to be
identically smooth around each data sample, VAT smooths the output dis-
tribution in its most adversarial direction [22]. Given the data sample x, we
want to obtain the adversarial perturbation radv, which alters the model’s
prediction most [22]. First, a Gaussian noise r is sampled, equally dimen-
sioned as the input x and then its gradient gradr of a loss between fθ(x)
and fθ(x+ r), where fθ is the model parameterized by θ, is computed with
respect to x. As the distance measure, the Kullback-Leibler (KL) divergence

dKL(P,Q) =
∑
x∈X

P(x)× log P(x)
Q(x)

, (1)
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where P and Q are random distributions and X is the dataset, is applied.
Then, radv is computed by normalizing and scaling gradr by ε [22]. The
computation is summarized by the following sequence of computations:

r ∼ N(0,
ξ√

dim(x)I
), (2)

gradr = ∇dKL(fθ(x), fθ(x+ r)), (3)

radv = ε
gradr

||gradr||
, (4)

where N(0, κ) is the zero-centered normal distribution with the normal-
ized co-variance matrix κ.

These steps are the first iteration of the approximation of radv, which
can be improved by setting radv = r and then repeating the computations
in Equations 3 and 4. Given the heavy computational load of this proce-
dure, including a forward and a backward pass through the model, only
the first iteration will be used in practice. Next, the unsupervised loss is
computed as the KL divergence between the prediction of the model for the
unperturbed and the prediction of the model for the perturbed input

Lu(x) =
1

|D|

∑
x∈Du

dKL(fθ(x), fθ(x+ radv)), (5)

which is scaled by α and added to the classification loss Ll to compute
the loss

L = Ll +αLu (6)

VAT can easily be extended to semantic segmentation by averaging Lu
over all pixels of the predicted class scores.

3.2 fully convolutional neural networks

FCNs are the SOA for semantic segmentation in general and for remote sens-
ing problems. In this Section, their main structural components, training
and architecture are emphasized.
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3.2.1 Structure of Fully Convolutional Neural Networks

FCN’s core components are convolutional layers and transposed convolu-
tional layers. The convolutional layers are linear, parametric transforma-
tions which extract features of different levels of abstraction [25]. Convo-
lutional layers apply multi-dimensional kernels to multi-channel 2D-arrays
cl−1 to extract features. The output of a convolution layer

clm,n = σ(

q∑
i=−q

r∑
j=−r

wi,jc
l−1
m+i,n+j + bi,j) (7)

is a weighted sum, where q = H−1
2 , r = W−1

2 , w are matrices of weights
with height H and width W, and b is the bias. Because convolution de-
creases the size of its input, padding is applied if the input dimension
shall be preserved. In each convolutional layer, H−12 zeros at the borders
of the input can be padded to preserve the size of the input in the fea-
ture map. Transposed convolutional layers are also parameterized through
kernels and work very similar to convolutional layers. Transposed convolu-
tional layers often have a stride to increase the resolution of their input. As
it is not easy to dimension the convolutional and transposed convolutional
layers properly, often the number of channels is chosen to be rather too big
than too small and then, regularization is applied to avoid overfitting. Here,
overfitting is caused by an FCN which has a very high capacity, such that it
adapts almost perfectly to the training data but performs poorly on unseen
data.

As mentioned earlier, to make an FCN applicable to tasks with a non-
linear dependence of the output on the input, non-linear activation func-
tions are applied to the output of the convolutional and transposed con-
volutional layers. A common activation function is tanh : R → [−1, 1]. Its
range makes it particularly useful if the output needs to be positive and
negative. In some regions in its domain, the derivative of the tanh function
goes to zero, which is unfavorable in gradient-based training procedures
[25]. Thus, the rectified linear unit ReLU, which has a constant, non-zero
derivative for positive inputs, is a common choice in FCN architectures.

To increase their receptive field, FCNs often use maximum pooling layers
which sub-sample their input. In this way, the spatial context is aggregated
and objects covering larger areas can be recognized even with small kernels,
i. e. if H and W are small.

To obtain class probabilities, the scores fθ(x)i are fed to the softmax
function

σ(fθ(x)) =
efθ(x)i∑K
j=1 e

fθ(x)j
(8)
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for i = 1, ...,K, where σ(fθ(x))i refers to the i-th element of the softmax
function, K is the number of classes. To compute the classification output
per pixel, the argmax function is applied, assigning to each pixel

imax = arg max
i

(σ(fθ(x))). (9)

3.2.2 Training of Fully Convolutional Neural Networks

For training a FCN, a loss function (see 3.2.3) L is applied to the softmax-
output σ(fθ(x)). Using back-propagation, the gradient ∇w,bL of the loss
with respect to the weights w and the bias b is computed. L measures the
dissimilarity between the output of a neural network and the corresponding
label. Training is the search for a locally optimal point in parameter-space
with respect to L. The magnitude of the gradient is not definitely connected
to the localization of a minimum, which is why an empirically determined
learning rate α is used to re-scale the parameter update. To avoid the train-
ing algorithm to oscillate around local optimal solutions, momentum can
be introduced. Let g(i) be ∇w,bL at iteration i and µ be the momentum
hyper-parameter, which controls how much the gradient of the weight up-
date of the previous iteration contributes to the current weight update, then
the parameter update ∆θ(i) is computed by

∆θ(i) = (1− µ)αg(i) + µ∆θ(i−1). (10)

The training of a differentiable FCN f̂ is commonly done by (i.) comput-
ing the gradient ∇θL(f̂(x),y, θ) of a loss function L(f̂(x),y, θ) with respect
to the FCN’s parameters θ and (ii.) moving θ in the parameter space in
the direction of the gradient computed in (i.). If this gradient becomes too
large, the optimization algorithm might diverge. As a mean against that,
gradient norm clipping reduces the magnitude of the gradient, such that it
does not become bigger than a threshold. In gradient based optimizers, the
back-propagation algorithm [26] (for and introduction to back-propagation,
see Goodfellow et al. [25], p. 197 ff.) is used. It utilizes the chain-rule of
calculus to compute the gradient in (i.). In mini-batch optimization algo-
rithms, there is a trade-off between the quality of the gradient estimate and
the computational efficiency. In most cases, the gradient is averaged over
a mini-batch of size Nbs, where 1 6 Nbs 6 Nsamples, where Nsamples is
the number of rows of samples in the training data. In the optimization
algorithm ADAM [27], the first and second order moments are used, which
incorporates higher-order information into ∆θ along the path of preceding
locations in the parameter space. Incorporating higher order information is
an effective means to reduce oscillation around a local minimum, because



14 background

it heuristically scales the parameter updates such that their magnitudes are
linked to the distance to the local minimum.

3.2.3 Loss Functions

This thesis includes the empirical exploration of different loss functions for
different purposes. These loss functions are the CE loss

LCE(x,y,p) = −

NBS∑
b=1

Ncls∑
i=1

ybi log(pbi), (11)

the soft-bootstrapped CE loss [5]

LSBCE(x,y,p,β) = −

Nbs∑
b=1

Ncl∑
i=1

(βybi + (1−β)pbi) log(pbi), (12)

the focal loss [4]

LFOC(x,y,p,γ) = −

Nbs∑
b=1

Ncl∑
i=1

(1− pbi)
γybi log(pbi), (13)

and the weighted loss

LBAL(x,y,p,w, λ) =
1

ΣW

Nbs∑
b=1

Ncl∑
i=1

wbiL(x,y,p, λ)bi, (14)

where pbi = σ(fθ(xb))i, fθ is a neural network parameterized by θ, xb is a
sample input to the neural network, ybi ∈ {0, 1} is a element of the one-hot-
encoded label vector y, wbi is the loss weight of class i and at batch index
b, β and γ are control hyper-parameters, λ ∈ {β,γ}, L(...)bi is either LCE,
LSBCE or LFOC, σ is the softmax activation function (see Equation 8) and
ΣW =

∑Nbs
b=1

∑Ncl
i=1 wbi to make LBAL a weighted average of loss values.

The generic loss function in Equation 14 is applicable to classification
tasks, but can be extended to the semantic segmentation loss

LSEG(x,y,p,w, λ) =
1

HW

H∑
r=1

W∑
c=1

L(x, ŷrc, p̂rc,w, λ), (15)

where p̂ and ŷ are tensors, which contain for each pixel in a two dimen-
sional grid a class-wise softmax output (p̂) or a one-hot-encoded matrix
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of dimension Nbs ×Ncl (ŷ), by summation over the vertical index r, where
0 < r 6 H and over the horizontal index c, where 0 < c 6W (see Equation
15). Two more loss functions, which are specialized on semantic segmenta-
tion are the adapted dice loss [5]

LDICE(x,y,p) =
1

Ncl

Ncl∑
i=1

(1−
1+ 2

∑Npix
u=1 piuyiu

1+
∑Npix
u=1 p

2
iu + y

2
iu

) (16)

and the soft bootstrapped adapted dice loss [5]

LSBD(x,y,p,β) =
1

Ncl

Ncl∑
i=1

(1−
1+ 2

∑Npix
u=1 piu(βyiu + (1−β)piu)

1+
∑Npix
u=1 p

2
iu + (βyiu + (1−β)piu)2

), (17)

where piu and yiu are 0 if pixel u in a batch belongs to class if j 6= i and
1 otherwise and Npix = NbsHW is the number of pixels in a given batch.
Since LDICE and LSBD are averaged over the class dimension, weighting of
the classes can also easily applied, by multiplying each member of the sum
by an arbitrary weight and dividing by ΣW instead of Ncl.

It is a big problem in deep learning if the ground truth contains many
missed classifications. Based on a large enough data set and model that
generalizes well, a model can be robust against errors in the ground truth,
but only to an extent. The soft-bootstrapped CE loss LSBCE [5] and the soft-
bootstrapped dice loss LSBD [5] take into account that the prediction of the
model, based on the previous training iterations, might be more accurate
than the ground truth by replacing the ground truth with a linear combina-
tion of y and p. The parameter β regulates the contribution of the ground
truth to that term. Note that LSBCE(x,y,p, 1.0) = LCE(x,y,p) There is also
a hard-bootstrapped loss [5], which replaces the probability vector p by the
one-hot-encoded vector p̂. But in Henry et al. [5], the soft version produced
better results in road segmentation from aerial imagery.

Also, the CE loss LCE is commonly used in semantic segmentation task.
But due imbalance of the ground truth, it leads to a model which focuses
only on the strongly represented classes and neglects the others. The fo-
cal loss LFOC makes the model learn in dependence of its confidence. The
more confident the model is, the less the value of LFOC is, such that rare
classes are emphasized, because they usually do not have high confidences
when training is done with LCE. The hyper-parameter γ controls by how
much the underrepresented classes are emphasized. For example, γ = 0

corresponds to LCE. The dice loss LDICE also puts an emphasis on the un-
derrepresented classes since its magnitude for each class is independent
from the number of pixels in the batch belonging to the class but depends
on the ratios of pixels in the batch which overlap with the ground truth for
each class.
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Another strategy to balance the classes during training is the application
of loss weights (see Equation 14). The loss weights can be costumed (see
Subsection 3.2.4) to empirically produce well-balanced results.

3.2.4 Loss Weights

There are infinitely many ways to compute loss weights for LBAL. In this
thesis, the square-root inverse

(wroot)bi =
1√
freqi

, (18)

inverse

(winv)bi =
1

freqi
, (19)

and squared inverse weights

(wsqr)bi =
1

freq2i
, (20)

are compared. The three strategies are based on the frequency of class i

freqi =
cli∑

j = 1Nclclj
, (21)

where cli is, in the case of semantic segmentation, the number of pixels
corresponding to class i in the ground truth. For both strategies, the quality
of the parameter updates during optimization depends on the distribution
of classes in each batch. Therefore, increasing Nbs makes the distribution of
classes in each optimization step better represent the distribution of classes
in the training data, from which the loss weights are computed.

3.2.5 Network Architectures

The choice of the network architecture can have an impact on the perfor-
mance of deep learning algorithm. The ResNet101-DeepLabv3+ and Dense
Unet architectures are examples of FCNs, which have been successfully ap-
plied to remote sensing problems [1], [5].
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Figure 3: The Figure was taken from Chen et al. [7]. It represents the encoder de-
coder architecture of the DeepLabv3+ FCN.

3.2.5.1 ResNet101-DeepLabv3+

Equation 7 shows how the standard convolution is computed. The ResNet-
architecture [28] is a CNN, which relies on the convolution operation. In the
ResNet101-DeepLabv3+-architecture [7], the convolution is adapted, such
that its receptive field is increased. This is done by applying holes to the
convolutional filter. This version of the convolution is called atrous convo-
lution ("trous" is french for the english word holes). Atrous convolution

clm,n = σ(

q∑
i=−q

r∑
j=−r

wi,jc
l−1
m+ai,n+aj + bi,j) (22)

adds the hyperparameter a to the convolution. This way, the number of
parameters in the convolution does not change, but the receptive field can
be increased by setting a > 1. Furthermore, ResNet101-DeepLabv3+ uses
batch normalization (see [25]) to make the training faster. It does so by nor-
malizing the output of the convolution, before applying the non-linearity.
The new mean and standard deviation of the output of the convolution are
learnable parameters in the architecture. This makes it easier for the next
layer to adapt its parameters, such that they take into account the distribu-
tion of its input. Another technique used in the ResNet101-DeepLabv3+ is
the atrous spatial pyramid pooling, where atrous convolutions with mul-
tiple different values for a, a convolution with a scalar filter and global
average pooling are applied to the deep features of the ResNet101, with-
out the fully connected layers, in parallel, concatenated and then passed
through another convolutional layer with a scalar filter. The purpose of
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Figure 4: The Figure was taken from Henry et al. [5]. It shows, how in the Dense
Unet architecture, the encoder and decoder are connected by skip con-
nections on each level of spatial resolution.

atrous spatial pyramid pooling is to combine deep features, with a high se-
mantic expressiveness, at different receptive fields to further improve these
features value for discrimination between classes. To bring the features to
the same spatial resolution as the input, a small decoder module (see Figur
3) is applied, that incorporates lower level features from the ResNet101 at
a high spatial resolution to improve the boundaries of the segmentation
result. ResNet101-DeepLabv3+ does not apply transposed convolution. In-
stead it combines convolution with bilinear upsampling.

3.2.5.2 Dense Unet

Henry et al. [5] developed a symmetrical Unet architecture, which is based
on DenseNet [29]. DenseNet follows the finding that CNNs do not suffer the
vanishing gradient problem if they have short connections from the input
layer to intermediate and output layers. In DenseNet, every layer is con-
nected with every other layer by such short connections. They successfully
extended DenseNet to an Dense Unet, by using DenseNet as the encoder
part of the FCN and using a decoder which, on every level of resolution, has
symmetrical kernel sizes and number of filters, as well as connections as
the encoder. In their work, they used the Dense Unet for road segmentation
from aerial imagery. In this thesis, the Dense Unet is applied to roof-type
segmentation from space-borne imagery.
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M E T H O D S

4.1 network architecture

As the network architecture in this thesis, the DeepLabv3+ [7] FCN is uti-
lized with a single input channel and five output channels. DeepLabv3+ is a
common architecture for semantic segmentation task. It lays its focus on the
field of view for robust class separation. It produces segments with realistic
shape, but does not focus as much on the fine-grained object localization
as the DenseUnet [5] architecture, which has a deeper decoder with skip
connections from all levels of resolution in the encoder. With its decoder,
the DenseUnet can separate segments on a small scale, but for roof-type
segmentation in an urban environment, the segments are usually bigger
than roads on aerial images, where DenseUnet proved to be particularly
effective for road segmentation.

4.2 loss function

The loss function is the key element in this method for semantic segmenta-
tion of roof-types in complex urban environments with incomplete, imper-
fect and imbalanced ground truth. The combined loss function

LCOM = LSUP +LUNS (23)

is a sum of the supervised loss LSUP and the unsupervised loss LUNS.
LSUP depends on the output of the neural network and the corresponding
ground truth, whereas LUNS depends only on the output of the neural
network. Both LSUP and LUNS correspond to L in LSEG in Equation 15.
This means that they both receive a matrix of dimension Nbs ×Ncl for p
and y, respectively, but are than plugged into LSEG (see Equation 15) to
receive a scalar value for LCOM. More details on the two pixel-wise losses
are provided in the following two subsections.

19
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4.2.1 Supervised Loss

The supervised loss has to handle the problems of imbalanced data and
imperfect ground truth. To achieve this goal, LSBCE, LFOC and LBAL (see
Equations 12, 13, 14) are combined, such that

LSUP(x,y,p,β,γ) =
−1

ΣW

Nbs∑
b=1

Ncl∑
i=1

(ŵinv)bivγmβ log(pbi), (24)

where vγ = (1− pbi)
γ and mβ = (βybi + (1− β)pbi). This choice of the

loss includes two design choices to balances classes, which are weighting
each member of the sum by (winv)bi and making the influence of each pixel
dependent on how confident the network is about its prediction pbi. To
better handle imperfect ground truth, the target of the loss function, which
is usually the ground truth, is replaced by a combination of the ground
truth and the networks predictions, to incorporate the networks knowledge.
Since β controls the influence of the ground truth on the loss and the class
weight depends on the class of the target, (ŵinv)bi is the combination of the
networks class prediction and the ground truth, weighted by β.

4.2.2 Unsupervised Loss

To leverage many unlabeled buildings in the given dataset, an unsupervised
loss Lu (see Subsection 3.1.1 and Equation 5) is scaled by α > 0 and added
to LSUP to build the final loss LCOM. This is a regularization loss which
smooths the output of the neural network, especially in the adversarial
direction. This is accomplished by generating adversarial examples, which
can be understood as an attack on the network with the purpose to change
the output of the network as much as possible, by adding barely visible
noise to the input. Since in this thesis, VAT is used to regularize the network,
the invisibility of the noise is not stressed. In Figure 5, the effect of the
perturbation in the adversarial direction is visualized. At the ends of the
biggest building in the first row in column (b), the noise is the strongest.
Since the triangles at the end of that building, which are visible in the
first row in column (a), are characteristic for hip roofs, it makes sense that
the noise radv, which represents the vulnerability of the network toward
changes in the output, is strong at the triangles. In the rows two and four,
the noise is located mainly at the middle of the buildings, where, possibly,
the absence or presence of a ridge line would lead to a switch in output
from mono-plane to gable. The locations of the noise correspond to how
VAT alters the decision boundaries in the input space. It makes the network
focus on the characteristic features, which can lead to a more robust FCN.
Since the adversarial direction depends on the state of the parameters of
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the network, it is important to say, that these findings are all in regard of a
trained network. The adversarial noise of a network, which is initialized by
random parameters, before training, is not meaningful, because the network
outputs are random.
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(a) x (b) x+ radv (c) Lu(x)

Figure 5: A visualization of VAT for roof-type segmentation. In column (a), the in-
put height image is shown in gray-scale visualization. In column (b), the
perturbed version of the input, which alters the output of the network
most, is visualized. In column (c), the pixel-wise output of Lu is shown.
In the first, second and fourth row, the noise radv is strongest on some
buildings. In the third row, radv is very strong in the bottom right corner.
The loss Lu is the highest on some parts of the roofs in the first, second
and fourth row and has its maximum in the bottom right corner in the
third row.
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5.1 data preparation

5.1.1 Ground Truth

As the ground truth, a roof-type map was extracted from CityGML data
of Berlin, Germany. The roof-types included in the CityGML data are flat,
monopitch, skip pent, gable, hip, half-hip, mansard, pavilion, cone, cop-
ula, shed, arch, pyramid and complex. Since most of these roof-types occur
only very rare, the number of classes was reduced. The class shed, which
represents a roof that is flat but has an inclination can hardly be distin-
guished from the flat roof and is therefore merged with the flat class into
the mono-plane class. The classes hip and half-hip are merged into the hip
class, gable is another class and all other roof-types are merged into the
other/complex class. There are two more types of pixels, which are back-
ground and unknown. The background pixels correspond to pixels where
no building is located and the unknown ones represent the lack of infor-
mation of the roof-type in the CityGML data. The resolution of the ground
truth map is matched to the 0.3m of the input data from WV-4. In Figure 6,
a small crop from the ground truth is visualized. Besides the background,
unknown roofs are dominant in this Figure. The same is true for the com-
plete ground truth. The area for quantitative and qualitative evaluation in
the experiments is visualized in Figure 8. In this area, the ground truth was
manually corrected and completed, such that the metrics evaluated over
this area are an accurate measure of the performance of the different exper-
iments in Section 5.2. This area was selected to make sure that each of the
five classes background, mono-plane, gable, hip and other is included with
a not too small number of buildings. The corresponding distribution of pix-
els per class is given in Table 4. Another part of the data is held back during
training for validation. This area was selected to be large enough to contain
buildings of all considered classes with some variety and the distribution
of pixels in this area is given in Table 5.

5.1.2 Input Images

To represent building roofs, such that they can be discriminated well from
each other, a refined DSM is produced. First, a DSM is created by semi-global
matching of multiple WV-4, panchromatic images with a Ground Sampling
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Distance (GSD) of 0.3m. But in Figure 9 (a), the quality of the stereo DSM
is not good enough to predict the roof-type, since the building in that im-
age could be confused with a mono-plane or gable roof. The 3D model
in Figure 9 (c) represents the geometry of a hip roof much better. But the
CityGML data is usually not available for any arbitrary city or region in
the world, whereas the stereo DSM can easily be acquired from space-borne
imagery. So, instead of using either the stereo or the Level of Detail (LOD)
DSM, a refinement process is carried out on the input area. This step is done
by the method of Bittner et al. [30], where a Generative Adversarial Net-
work (GAN) is trained to refine a stereo DSM, using the LOD as the ground
truth. The training of the GAN is performed on a dataset which has no over-
lap with the dataset, that is used for training, validation or testing in roof
type segmentation in this thesis. This separation is necessary, since other-
wise the segmentation results might not be as good on previously unseen
data, where the refinement step is not training on that data. The refined
DSM in Figure 9 (b) is smoother than the stereo DSM, does not include vege-
tation and does not have the hole of the stereo DSM. But still, the geometry
is not a clearly visible as in the LOD and a strong bump replaces the hole. To
get more information about the refinement process, the reader is referred
to Bittner et al. [30]. The patches are generated by first selecting a random
index on a grid, and then cropping a window of height and width of 256
pixels each. This width and height corresponds to almost 77m, such that
each covers an area of around 5900m2. This is large enough to contain
most of the buildings completely. The patch size together with the random
shifting of the window to extract the patch, makes sure that during train-
ing, most of the buildings are seen completely by the network. The patches
are normalized to the interval [−1, 1] using the minimum and maximum
value of each single patch. This makes the values symmetric about zero
and independent of absolute height values, which leads to a greater gener-
alization capacity of the method, since the absolute height values of Berlin
do not apply to e. g. Munich, Germany, which lays several hundred me-
ters higher in altitude. During testing, the height and width of the input
was not changed, but the cropping of the patches was done by overlapping
neighboring patches by 128 pixels.

5.1.3 Data Configurations

For the different experiments, different splittings and degrees of anno-
tations are used. In Figure 10, the splitting is visualized and the sub-
areas are given the names TRAIN1, TRAIN2, TRAIN3, TRAIN4, TRAIN5,
VALIDATION and TEST .
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5.2 comparison of approaches

To evaluate the methods studied in this thesis, several experiments are per-
formed. For all experiments, training is done for 200 epochs, where for the
first 100 epochs the learning rate is constantly 2 × 10−4 and for the last
100 epoch, the learning rate is decayed linearly to 0. The optimizer Adam
(see Subsection 3.2.2) is used with the momentum parameters 0.5 and 0.999.
These hyper-parameters where chosen by informal search. Since the avail-
able data is limited to a small area, data augmentation is used to increase
the variety of the input data. To augment the data, random vertical and
horizontal shifting is applied, each with a probability of 50%. Also, the win-
dow to crop a patch from satellite image is shifted to the right and down by
a random number between 0 and the width and height of the patch. After
every 10000 patches during training, that is 313 optimization steps, valida-
tion is done on the validation data, which is neither included in the training
data, nor the test data. The validation is not used for early stopping, but
to monitor the development of the generalization during training, based on
one metric commonly for all experiments, regardless of the different loss
functions applied during training, to increase comparability of the different
losses. During validation and testing pixels of unknown roof-types are ig-
nored. In the training, unlabeled pixels are also ignored in the supervised
loss. In the test phase, the network output is averaged on overlapping areas
of neighboring patches and the final class is determined by the argmax of
the logits.

5.2.1 Class-Balancing

In Table 1, the distribution of the pixels over the classes of the data configu-
ration WV4 shows that by far most of the pixels belong to the background
class. Less than 1 % of the pixels belong to the gable or hip classes. That
means that in training, the model is presented some classes orders of mag-
nitudes more often and is therefore prone to ignoring the gable and hip
class. In the first step of the experimental evaluation, the focus lays on find-
ing a balancing strategy, which leads to results, which have good quality
for each of the classes, not only for the strongly represented classes.

5.2.1.1 Balancing with different Loss Functions

As the baseline DLv3+_CE for this batch of experiments, a DeepLabv3+
(see Subsubsection 3.2.5.1) is trained without any balancing strategy,
using the semantic segmentation CE loss (see Equations 11, 15). Further
experiments are done on the focal loss (see Equation 13), dice loss (see
Equation 16) and class weights in the dice, focal and CE loss. For these
experiments, the FCN is DeepLabv3+ and the batch size was chosen to be
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32, since a higher number of pixels in each batch better represents the
distribution of pixels over the classes in the training data. The configuration
of the other hyper-parameters can be found in Table 6, specifically the
rows DLv3+_CE, DLv3+_CEInvW, DLv3+_CEIRootW, DLv3+_CESqrW,
DLv3+_FOC05InvW, DLv3+_FOC10InvW, DLv3+_FOC20InvW,
DLv3+_DICE, DLv3+_DICEInvW, DLv3+_DICERootW and
DLv3+_DICESqrW.

5.2.1.2 Balancing by Annotation

To evaluate the influence of more annotations of the weak classes, an ad-
ditional area, which has already many annotated buildings of the strong
classes, is improved by manually labeling some of the gable and hip roofs.
Also, some buildings of the classes gable and hip, which where unlabeled
before, but lay in the area of the original training data, are annotated. The
new, improved distribution of the classes in the training data can be seen
in Table 2 (compare with Table 1) and is visualized in Figure 7 (compare
with Figure 6). The ratio of gable and hip labels is increased from 0.26% to
0.40% and 0.07% to 0.23%, respectively and visually there are many more
hip and gable roofs in the improved ground truth (see Figures 6, 7). With
this better balanced data, a DeepLabv3+ is trained with batch size 32. The
experiment DLv3+_CE_impr differs from DLv3+_CE only in the data con-
figuration, which is WV4impr instead of WV4.

5.2.2 DeepLabv3+ vs. DenseUnet

In the next step, DeepLabv3+ is compared to the DenseUnet (see Subsub-
section 3.2.5.2). The two architecture focus on different aspects of the se-
mantic segmentation. DeepLabv3+ dedicates most of his parameters to get
a high semantic resolution in the bottleneck, whereas DenseUnet focuses
more on the spatial resolution of the segments, by incorporating much
more higher resolution features in the decoder. For this experiments, the
batch size was chosen to be 32 for the DeepLabv3+ and 16 for the Dense-
Unet, since the DenseUnet has higher memory requirements during train-
ing. The loss function is chosen to be the focal loss with γ = 1 and inverse
frequency weights are applied. For this comparison, the improved ground
truth (WV4impr, see Table 2) is used. The other hyperparameters of the
experiments DLv3+_FOC10InvW_impr and DUN_FOC10InvW_impr are
given in Table 6.

5.2.3 Imperfect Ground Truth

To evaluate how a bootstrapped loss can lead to results which are
less dependent on the noise in the training data, the soft-bootstrapped
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focal loss LSBFOC with inverse frequency weights is used as the op-
timization target with five different values {0.5, 0.7, 0.8, 0.9, 0.99} for
β, γ = 1 and the results are compared for these values. The lower
the value of the β with the best results, the lower the quality of
the ground truth is. This experiment is performed on the improved
ground truth WV4impr with the other hyper-parameters as in the
rows DLv3+_SB99FOC10InvW_impr, DLv3+_SB90FOC10InvW_impr,
DLv3+_SB80FOC10InvW_impr, DLv3+_SB70FOC10InvW_impr and
DLv3+_SB50FOC10InvW_impr of Table 6.

5.2.4 Unlabeled Data

Since many of the buildings in the ground truth are still unlabeled, another
experiment is performed by applying VAT as in Subsection 4.2.2. First, a
baseline, DLv3+_SB99FOC10InvW_impr2, is trained on WV4unl with the
same loss and hyperparameters as DLv3+_SB99FOC10InvW_impr, with
batch size 16. With the experiments DLv3+_SB99FOC10InvW_impr2_vat,
DLv3+_SB99FOC10InvW_impr2_vat2, DLv3+_SB99FOC10InvW_impr2_vat3
and DLv3+_SB99FOC10InvW_impr2_vat4, the effect of the integration
of unlabeled data is investigated. The batch size for the labeled batch
is 16 and also 16 for the unlabeled batch, which is used to compute the
virtual adversarial segmentation loss. The labeled and the unlabeled batch
are different from each other and are sampled according to the data
configuration WV4unl. Since the unlabeled portion of WV4unl is about
twice as large as the labeled portion, the model will go through twice
as many iterations of the full labeled data as of the unlabeled data. The
hyper-parameters of the supervised loss are γ = 1 and beta = 0.99. For the
unsupervised part of the loss, Lu, ε = 10, ξ = 10 and α is in {1, 10, 100, 500}.

5.3 metrics

For the quantitative evaluation in this thesis, several metric are used. It is
important, that not a single metric can be the only one used for quantita-
tive evaluation, since different metrics describe different properties of the
results. True positive TPi, is the number of samples of class i which are also
classified to class i, true negative TNi is the number of samples of any class
but i and are not classified as class i, false positive FPi is the number of
samples of any class but i but are classified as class i and false negative FNi
is the number of samples of class i which are not classified as i. The first
metric used is the accuracy

acc =

∑Ncl
i=1 (TPi + TNi)

Ntest
, (25)
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where Ncl is the number of classes of the task and Ntest is the number of
pixels in the test set. But the accuracy is not suitable to judge the success of
testing on imbalanced data, because a class that is big enough can reward
a model which predicts only this class for all pixels. For instance, a class
which contains 99% of the pixels, gives such a model an accuracy of 99%.
The precision

preci =
TPi

TPi + FPi
, (26)

recall

reci =
TPi

TPi + FNi
, (27)

specifity

speci =
TNi

TNi + FPi
, (28)

F1-score

(F1)i = 2×
preci × reci
preci + reci

(29)

and balanced accuracy

(accb)i =
speci + reci

2
(30)

are computed as vectors with one component for each class and are com-
mon metrics for semantic segmentation. They do not have the downside
of the accuracy in terms of imbalanced test data. The precision of class i,
preci, shows how well the model avoids producing false positives, whereas
the recall of class i, reci shows, how well the model avoids false negatives.
The specificity of class i, speci, similar as the precision, punishes any false
positives, but favors true negatives over true positives. The F1-score (F1)i
and the balanced accuracy (accb)i each consider two of precision, recall
and negativity. The F1-score is the harmonic mean of precision and recall
and is therefore drawn towards the minimum of preci, reci, what makes
this metric a strong indicator for a balanced model. The balanced accuracy
(accb)i is the arithmetic mean of specificity and recall, such that it increases
with the amount of true positives and true negatives, but is not as strongly
influenced by a single one of the false positives and false negatives being
large, when compared to the F1-score. To judge the quantitative result of
each experiment, the arithmetic mean over the classes F1 of (F1)i and accb
of (accb)i is given.
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background flat gable hip complex/other unknown Σ

ABS 670528308 62811577 2253788 581249 30368636 89089922 855633480

REL 0,7837 0,0734 0,0026 0,0007 0,0355 0,1041 1,0000

Table 1: The distribution of the pixels per class in the training data (data configu-
ration WV4). In row ABS, the number of pixels belonging to each of the 5

classes and the unknown number of pixels is given. In the row REL, the
ratio of pixels belonging to each class is given. In the column Σ, the sum
of each row is given.

background flat gable hip complex/other unknown Σ

ABS 728876721 67017759 3644476 2160572 32103489 88792664 922595681

REL 0,7900 0,0726 0,0040 0,0023 0,0348 0,0962 1,0000

Table 2: The distribution of the pixels per class in the training data with additional
annotated gable and hip roofs (data configuration WV4impr). In row ABS,
the number of pixels belonging to each of the 5 classes and the unknown
number of pixels is given. In the row REL, the ratio of pixels belonging to
each class is given. In the column Σ, the sum of each row is given.

Sub-Areas background flat gable hip complex/other unknown Σ

TRAIN
1,5

ABS 214980240 15483050 3303708 1995147 5929601 19570455 261262201

REL 0,8229 0,0593 0,0126 0,0076 0,0227 0,0749 1

TRAIN
2,3,4

ABS 0.07490733 48450713 3256524 1594476 23274881 64456563 661333480

REL 0,7867 0,0733 0,0049 0,0024 0,0352 0,0975 1

ALL
ABS 735280563 63933763 6560232 3589623 29204482 84027018 922595681

REL 0,797 0,0693 0,0071 0,0039 0,0317 0,0911 1

Table 3: The distribution of the pixels per class in the training data configuration
WV4unl. In row ABS, the number of pixels belonging to each of the 5

classes and the unknown number of pixels is given. In the row REL, the
ratio of pixels belonging to each class is given. In the column Σ, the sum
of each row is given.

background flat gable hip complex/other unknown Σ

ABS 4788047 1269177 433769 87877 966609 5961 7551440

REL 0,6341 0,1681 0,0574 0,0116 0,1280 0,0008 1,0000

Table 4: The distribution of the pixels per class in the test data. In row ABS, the
number of pixels belonging to each of the 5 classes and the unknown
number of pixels is given. In the row REL, the ratio of pixels belonging to
each class is given. In the column Σ, the sum of each row is given.
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background flat gable hip complex/other unknown Σ

ABS 46896205 10187112 511995 58895 5339230 6084643 69078080

REL 0,6789 0,1475 0,0074 0,0009 0,0773 0,0880 1,0000

Table 5: The distribution of the pixels per class in the validation data. In row ABS,
the number of pixels belonging to each of the 5 classes and the unknown
number of pixels is given. In the row REL, the ratio of pixels belonging to
each class is given. In the column Σ, the sum of each row is given.

Figure 6: A small area of the ground truth. White: background, magenta: mono-
plane, blue: gable, cyan: hip, green: other, red: unknown.
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Figure 7: A small area of the ground truth with additionally labeled gable and hip
roofs. White: background, magenta: mono-plane, blue: gable, cyan: hip,
green: other, red: unknown.

Name Data Arch BS BS_unl Weights Loss Gamma Beta Vat Alpha Instance Masking

DLv3+_CE WV4 DeepLabv3+ 32 - - LCE - - No - No
DLv3+_CEInvW WV4 DeepLabv3+ 32 - winv LCE - - No - No
DLv3+_CERootW WV4 DeepLabv3+ 32 - wroot LCE - - No - No
DLv3+_CESqrW WV4 DeepLabv3+ 32 - wsqr LCE - - No - No

DLv3+_FOC05InvW WV4 DeepLabv3+ 32 - winv LFOC 0.5 - No - No
DLv3+_FOC10InvW WV4 DeepLabv3+ 32 - winv LFOC 1.0 - No - No
DLv3+_FOC20InvW WV4 DeepLabv3+ 32 - winv LFOC 2.0 - No - No

DLv3+_DICE WV4 DeepLabv3+ 32 - - LDICE - - No - No
DLv3+_DICEInvW WV4 DeepLabv3+ 32 - winv LDICE - - No - No
DLv3+_DICERootW WV4 DeepLabv3+ 32 - wroot LDICE - - No - No
DLv3+_DICESqrW WV4 DeepLabv3+ 32 - wsqr LDICE - - No - No

DLv3+_CE_impr WV4impr DeepLabv3+ 32 - - LCE - - No - No

DLv3+_FOCE10InvW_improved WV4impr DeepLabv3+ 32 - winv LFOC 1.0 - No - No
DUN_FOC10InvW_imroved WV4impr DenseUnet 32 - winv LFOC 1.0 - No - No

DLv3+_SB99FOC10InvW_improved WV4impr DeepLabv3+ 32 - winv LSBFOC 1.0 0.99 No - No
DLv3+_SB90FOC10InvW_improved WV4impr DeepLabv3+ 32 - winv LSBFOC 1.0 0.9 No - No
DLv3+_SB80FOC10InvW_improved WV4impr DeepLabv3+ 32 - winv LSBFOC 1.0 0.8 No - No
DLv3+_SB70FOC10InvW_improved WV4impr DeepLabv3+ 32 - winv LSBFOC 1.0 0.7 No - No
DLv3+_SB50FOC10InvW_improved WV4impr DeepLabv3+ 32 - winv LSBFOC 1.0 0.5 No - No

DLv3+_SB99FOC10InvW_impr2 WV4unl DeepLabv3+ 16 16 winv LSBFOC 1.0 0.99 Yes 1 No
DLv3+_SB99FOC10InvW_impr2_vat1 WV4unl DeepLabv3+ 16 16 winv LSBFOC 1.0 0.99 Yes 1 No
DLv3+_SB99FOC10InvW_impr2_vat2 WV4unl DeepLabv3+ 16 16 winv LSBFOC 1.0 0.99 Yes 10 No
DLv3+_SB99FOC10InvW_impr2_vat3 WV4unl DeepLabv3+ 16 16 winv LSBFOC 1.0 0.99 Yes 100 No
DLv3+_SB99FOC10InvW_impr_vat4 WV4unl DeepLabv3+ 16 16 winv LSBFOC 1.0 0.99 Yes 500 No

Table 6: The table with the configuration of the experiments in this thesis. The
other hyperparameters, which do not vary across experiments are given
in Section 5.2. The column Loss refers to the L in Equation 15, since all the
experiments are on semantic segmentation.
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(a) Ground Truth Testarea

(b) Refined DSM Testarea

Figure 8: In this figure, the testarea for quantitative and qualitative evaluation in
Section 5.2 is visualized. In (a), the ground truth for this area can be seen.
White: background, magenta: mono-plane, blue: gable, cyan: hip, green:
other, red: unknown. In (b), the refined DSM is visualized with colors
ranging from dark-blue to green to red, with red as the highest value.
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(a) stereo (b) refined (c) lod

Figure 9: A comparison of three different DSMs from the same scene. In (a), a hole
is visible on the roof, which stems from the semi-global matching. In (b),
the refined version does not have the hole, but an artefact is visible in
the area of the hole. In (c), the planes have neither artefacts nor holes.
The main structure of the roof geometry is visible in all three images, but
much clearer in the LOD, as compared to the stereo and refined DSM.

Configuration Sub-Areas Labeled Sub-Areas Unlabeled Level of Annotation

WV4 TRAIN1, 2, 3, 4 - 1

WV4impr TRAIN1, 2, 3, 4, 5 - 2

WV4unl TRAIN1, 5 TRAIN2, 3, 4 3

Table 7: Three different configurations of the training data, each including a subset
of {TRAIN1, TRAIN2, TRAIN3, TRAIN4, TRAIN5}. The level of annotation
indicates how much extra effort was invested to label buildings. In level of
annotation 1, no more labeled buildings are included than in the original
CityGML data of Berlin. In level of annotation 2, additional buildings are
labeled, based on level of annotation 1. In level of annotation 3, additional
buildings are labeled, based on level of annotation 2. See Figure 10 for a
visualization of the locations of the different areas.
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Figure 10: The study area is split into seven sub-areas. These areas are five areas for
training, one area for validation and one area for testing. In this figure,
the splitting is visualized schematically.



6
R E S U LT S & D I S C U S S I O N

6.1 class-balancing

In Subsection 5.2.1, twelve experiments are described. The values of the
metrics (see Section 5.3) for these experiments are given in Table 8 and a vi-
sual comparison of the results is presented in Figure 11. The baseline experi-
ment DLv3+_CE achieves an (F1)i of 1.3 and 2.1 for the minority classes like
gable and hip. In Figure 11 (a), gable and hip are assigned almost nowhere,
despite these classes are clearly visible in the ground truth in Figure 11

(m). This confirms the assumption, that the CE loss is not suitable to train
an FCN for roof-type segmentation on the five selected classes on a data
set with a class distribution as in Table 1. Among the three experiments
DLv3+_CEInvW, DLv3+_CERootW and DLv3+_CESqrW, DLv3+_CEInvW
achieves the best performance quantitatively in Table 8 and looks most
similar to the ground truth in Figure 11. The reci values for gable and
hip are much lower in DLv3+_CERootW than in DLv3+_CERInvW and
much higher in DLv3+_CESqrW than in DLv3+_CEInvW. Also, preci for
gable and hip is much lower in DLv3+_CESqrW than in DLv3+_CEInvW.
This shows, that class weights (wroot)bi do not favor the underrepresented
classes enough and class weights (wsqr)bi strongly overemphasize the un-
derrepresented classes, which leads to many false positives for the minority
classes.

The visual results of the experiments DLv3+_FOC05InvW,
DLv3+_FOC10InvW and DLv3+_FOC20InvW in Figures 11 (e), (f) and (g)
look very similar in many places. But quantitatively, DLv3+_FOC10InvW
has the highest accb and F1 scores of the three. The comparison of the
results on the hip roof in the bottom right of the Figures 11 (e), (f), (g) and
(m) shows, that in (f) and (g) the roof is segmented with gable (blue) and
other (green) in (e), whereas this roof is a hip roof in the ground truth
in (m). Since hip roofs have a section of a ridge line (compare Figure 1),
they are more similar to gable than to any other class. Therefore, the seg-
mentation as gable is favored over any other segmentation. This indicates
that the variation of γ in DLv3+_FOC05InvW, DLv3+_FOC10InvW and
DLv3+_FOC20InvW has an impact on the overall performance. Comparing
DLv3+_FOC10InvW (Figure 11 (f)) and DLv3+_InvW (Figure 11 (b))
visually, the segments of DLv3+_InvW look slightly more homogeneous,
but DLv3+_InvW has better average (F1)i scores for the minority classes.
Visually, when looking at almost square building below the three parallel
hip roofs at the top middle position, DLv3+_FOC10InvW classifies most

35
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of this buildings pixels as gable, which matches the ground truth and
DLv3+_CEInvW segments the roof as mono-plane. Therefore, the focal loss
leads to more balanced results than the CE loss.

Different than for the experiments with the CE loss (DLv3+_CE,
DLv3+_CEInvW, DLv3+_CERootW and DLv3+_CESqrW), for the ex-
periments with the DICE loss (DLv3+_DICE, DLv3+_DICEInvW,
DLv3+_DICERootW and DLv3+_DICESqrW), the application of class
weights to the class-wise outputs of the DICE loss leads to a degradation
in performance, both quantitatively (see Table 8) and qualitatively (see Fig-
ures 11 (h), (i), (j), (k)). It is also apparent, that in the visual output of
DLv3+_DICE, many buildings are classified as background, which is also
true for DLv3+_DICERootW. Comparing the results of the experiments
with the DICE loss to DLv3+_FOC10InvW, it shows, that the focal loss is
more suitable to balance classes than the DICE loss.

Comparing the results of the experiments DLv3+_CE and
DLv3+_CE_impr (compare Table 8 and Figures 11 (a) and (l), the re-
sults of DLv3+_CE_impr has a higher mean balanced accuracy accb and a
much higher mean F1. The same is true for the minority classes. Especially
the recall of the hip class is increased from 1.1 to 23.3. This also expresses
in the visual results in Figure 11 (l), where the three parallel hip roofs in
the top middle position are correctly segmented. In Figure 11 (a), the hip
class does not show. These results indicate that the additionally labeled
hip roof in the data configuration WV4impr lead to an improvement in
the balancing of the output distribution of an FCN trained with the cross
entropy loss without balancing strategies. Although the results of e. g.
DLv3+_FOC10InvW have better mean and per-class metrics, the three
parallel hip roofs in the top middle position are less over-smoothed in
Figure 11 (l) than in Figure 11 (f). This might be caused by the weights
applied to each class, which lay in different orders of magnitude and
make the training more difficult. Therefore, improving the ground truth
by balancing it is the strategy which ultimately leads to the best overall
results.

6.2 deeplabv3+ vs . denseunet

Quantitatively, the masks generated by the DeepLabv3+ as trained
in DLv3+_FOC10InvW_impr and the DenseUnet as trained in
DUN_FOC10InvW_impr are very similar, but DLv3+_FOC10InvW_impr
has a significant advantage in the F1 score for the hip class, which
exceeds the one of DUN_FOC10InvW_impr by 11% (compare Table 9).
Visually, the roof-type segments in Figure 12 (b) are over-smoothed when
compared to those in the ground truth in Figure 12 (a), but are more
consistent, that is, more homogeneous. In Figure 12 (c) the shapes of the
roof segments look more similar to those in the ground truth, but are less
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homogeneous. The differences in the level of homogeneity and accuracy
of roof boundaries between the two networks most likely stem from their
different decoding strategy. The DenseUnet arcitecture (see Subsubsection
3.2.5.2), uses feature maps from each level of resolution in the encoder to
incorporate spatial information into the decoder, which leads to a very
detailed separation of segments, for both the separation of background
and roof and the separation of different roof-types. The DeepLabv3+
architecture (compare Subsubsection 3.2.5.1) only uses one connection
from feature maps with low spatial, but high semantic resolution in the
end of the encoder to improve feature localization. Also, DeepLabv3+
uses atrous spatial pyramid pooling to increase the field of view, which
leads to consistent roof segments, as the network incorporates more of the
surrounding pixels to classify each pixel. For roof-type segmentation, the
consistency of the segments is more important, since the outline can be
improved by post-processing using building footprints.

6.3 imperfect ground truth

In the CityGML data of Berlin, the roof-type is assigned incorrectly in
many places. This noise makes it harder for an FCN to learn to seg-
ment roof-types. Next to balancing the roof-type imbalance, the loss
LSUP (see Equation 24) takes into account, that the training is robust to
inconsistencies to a degree, and replaces the ground truth by a combi-
nation of the ground truth and the networks predictions. In Table 10,
the quantitative results for different values of β in LSUP are given. For
β = 0.99 and β = 0.9, the mean F1 score is the highest at 58.5%. The
mean accb is the highest for β = 0.99. The visual comparison of the
results of DLv3+_SB99FOC10InvW_impr, DLv3+_SB90FOC10InvW_impr,
DLv3+_SB80FOC10InvW_impr, DLv3+_SB70FOC10InvW_impr and
DLv3+_SB50FOC10InvW_impr in Figures 13 (b), (c), (d), (e) and (f) all
look very similar (INCLUDE PLACES WHERE THEY LOOK SIMILAR)
but as β increases, the gable roofs in Figure 13 (a) are detected less
often, which matches the decreasing value of reci for the gable class.
These results suggest that the bootstrapping may negatively effect the
class balancing. If the network sees too few gable and hip roofs at the
beginning of the training the bootstrapped class weight ŵinv in Equation
24 is biased toward the more frequent mono-plane and other class, because
the networks predictions do not include the gable and hip class. But
comparing DLv3+_SB99FOC10InvW_impr to DLv3+_FOC10InvW_impr,
the bootstrapped version of the focal loss achieves higher accb, F1 and (F1)i
for the gable and hip class. This shows, that leveraging the networks in-
trinsic robustness to noise in the ground truth improves the generalization
capacity of the DeepLabv3+.
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6.4 unlabeled data

The quantitative results for the experiments on VAT for roof-type segmen-
tation (see Subsection 5.2.4) are presented in Table 11. In the experiment
DLv3+_SB99FOC10InvW_impr2_vat2, the influence of Lu was scaled by
α = 10. This leads to an improvement of 3.2% in F1 over the fully supervised
DLv3+_SB99FOC10InvW_impr2, which corresponds to α = 0. The boost in
performance by adding an unsupervised loss is not surprising, since this
regularization term allows the DeepLabv3+ to learn features from data it
would not see in the fully supervised setting. For α > 10, the F1 becomes
even lower than for α = 0. This indicates, that if the influence of Lu is
to high, the learning of LSUP is degraded. Among the experiments with
α > 0, α = 10 has the highest accb and F1. Next, the results of the ex-
periment DLv3+_SB99FOC10InvW_impr2_vat2 are set in context with the
corresponding pairs of input and ground truth.

example 1 Example 1 is visualized in Figure 14. The comparison in the
Figure shows that, due to the availability of the most important features in
the input, the network has learned to predict the hip class correctly. The
Figure shows a building without other buildings in direct neighborhood,
which might make it easier for the network to predict the hip class correctly,
since hip roofs are often without direct neighborhood in the training data
(compare Figure 7).

example 2 In Figure 15, a hip roof is visualized. The ridge line is clearly
visible in the input and the prediction of the network is correct and matches
with the ground truth. This example shows, that the network has learned
to recognize a gable roof, even if the inclination of the planes is low.

example 3 Figure 16 shows an example in the test area, where the
CityGML data disagrees with the RGB and the input. The input to the
network features multiple different mono-plane roofs, which pixels are all
predicted to be mono-plane. But since there are multiple mono-plane roofs,
the building is entirely annotated as other. Two possible, non-excluding in-
terpretations for the network’s predictions are i. that each individual mono-
plane roof was segmented correctly or ii. that the division into the classes
and therefore the modeling of the problem is not optimal.

example 4 Figure 17 shows another place where the network correctly
identifies the gable class. In Example 4, gable roofs with complex features
or their respective surfaces are included and the network robustly segments
these roofs as gable.
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example 5 In Figure 18, a hip roof without direct neighbors is correctly
segmented. The resultant segment is much smoother than both the ground
truth and the input, which is due to the specific decoder of the DeepLabv3+,
which does not incorporate spatial information from early layers in the
encoder.

example 6 Example 6 is visualized in Figure 19. The Figure shows a
building with multiple mono-planes and that the network predicts a mix
of mono-plane and other, which is certainly a better prediction than the
annotation hip, which is derived from the LOD. This example shows, that
the method described in Chapter 4 produces roof-type maps which, in some
places, provides more accurate roof-types than the CityGML data.

example 7 In Figure 20, an example of a hip roof, which was not pre-
dicted correctly by the network, is shown. There are two reasons described
in the Figure, which makes it hard for the network to identify the hip roof
correctly. i. the triangles at the ends of the roof have only very little incli-
nation and their boundaries are very weak. Hence, even though the main
characteristics of a hip roof are featured in the input, they are not strong
enough for the network to identify. ii., the ridge line is corrupted by a bump
in the middle of the building. This bump stems from the stereo DSM and
could not be fixed completely by the refinement process (compare Figure
9). This shows, that the network is only robust to noise in the input to a
certain degree.

example 8 In Example 8, the case of a gable roof, which is segmented
as a hip roof is studied (see Figure 21). Only what is visible in Figure 21

is the basis for the incorrect prediction of the network, since the building
is located at the lower end of the test area (compare Figure 8). Therefore,
it is not possible, that the network sees a triangular shape at the other
end of the building. The input features the important ridge line, which is
a characteristic of both gable and hip roofs. This shows, that the network
can not always distinguish if a ridge line belongs to a gable, or a hip roof.
Thus, the decision boundary between gable and hip in the space of the
high-dimensional input of the network sometimes crosses a high-density
area, which indicates, that the smoothness assumption in Section 3.1 is not
completely satisfied.

example 9 In Figure 22, a hip roof in direct neighborhood to mono-
plane roofs is visualized. The separation of the buildings in the CityGML
data, which is represented by the annotation of these two buildings as gable
and other, is neither intuitive nor optimal for 3D reconstruction. The predic-
tion includes mostly gable and other roofs. The network does not recognize
the hip characteristics, but segments the hip roof mostly as gable. The gable
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segment even exceed the lower boundary of the hip roofs and covers the
mono-plane roofs. This Example shows, that the network i. confuses hip
and gable roofs and ii. extends segments over reasonable boundaries.
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Name Class preci reci speci (accb)i (F1)i accb F1

DLv3+_CE
gable 46,4 0,7 100 50,3 1,3

65,8 39,1
hip 39,1 1,1 100 50,5 2,1

DLv3+_CEInvW
gable 32,4 38,8 95,1 66,9 35,3

75,7 54,3
hip 26 33,3 98,9 66,1 29,2

DLv3+_CERootW
gable 40,4 11,2 99 17,6 17,6

70 45,8
hip 12,4 1,9 99,8 3,4 3,4

DLv3+_CESqrW
gable 9,2 86,6 48,2 67,4 16,7

56,7 12,2
hip 1,8 37,1 75,8 56,5 3,4

DLv3+_FOC05InvW
gable 26,2 32,7 94,4 63,5 29,1

74,4 52,6
hip 32,9 33 99,2 66,1 33

DLv3+_FOC10InvW
gable 28,1 36,4 94,3 65,4 31,7

75,5 53,8
hip 29,5 38,4 98,9 68,6 33,4

DLv3+_FOC20InvW
gable 24,5 34,9 93,4 64,2 28,8

74 51,7
hip 27,8 32 99 65,5 29,8

DLv3+_DICE
gable 10,8 0,6 99,7 50,2 1,2

64,2 44,2
hip 95,5 21,5 100 60,8 35,1

DLv3+_DICEInvW
gable 61 4,9 99,8 52,4 9,1

64,7 36,7
hip 0 0 100 0 0

DLv3+_DICERootW
gable 65 0,7 100 50,4 1,5

64,3 39,1
hip 80,1 2,1 100 51,1 4,2

DLv3+_DICESqrW
gable 49,2 8,1 99,5 53,8 13,9

62,8 36

hip 56,2 3,5 100 51,7 6,6

DLv3+_CE_impr
gable 76,5 2,9 99,9 51,4 5,6

69,2 47,7
hip 81,3 23,3 99,9 61,6 36,2

Table 8: The quantitative results of the Experiments on class-balancing from Sub-
section 5.2.1. The per-class metrics are only listed for the classes gable and
hip, since these are the underrepresented classes and hard to learn from
the given data. The overall metrics accb and F1 are the arithmetic mean
over all five classes.
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Name Class preci reci speci (accb)i (F1)i accb F1

DLv3+_FOC10InvW_impr

background 98,2 85,7 97,3 91,5 91,6

75,3 55,9
flat 59,1 52,7 92,6 72,7 55,7

gable 37,9 36,1 96,4 66,3 37

hip 56 35 99,7 67,3 43,1
other 40,3 74 83,9 79 52,2

DUN_FOC10InvW_impr

background 98,3 86,3 97,4 91,8 91,9

75,1 55,6
flat 54,8 70,6 88,3 79,4 61,7

gable 47,1 34 97,7 65,8 39,5
hip 42,3 25,9 99,6 62,7 32,1

other 45,2 62,9 88,8 75,9 52,6

Table 9: The quantitative results of the Experiments on architecture from Subsec-
tion 5.2.2. The per-class metrics are listed for the classes background,
mono-plane, gable, hip and other.The overall metrics accb and F1 are the
arithmetic mean over all five classes.

Name Class preci reci speci (accb)i (F1)i accb F1

DLv3+_SB99FOC10InvW_impr
gable 46,4 41,3 97,1 69,2 43,7

76,9 58,5
hip 49,6 40,4 99,5 69,9 44,5

DLv3+_SB90FOC10InvW_impr
gable 45,1 36,4 97,3 66,8 40,3

75,8 58,5
hip 61,7 36,4 99,7 68,1 45,8

DLv3+_SB80FOC10InvW_impr
gable 49,7 18,7 98,8 58,8 27,1

73,9 55,9
hip 72,2 28,7 99,9 64,3 41,2

DLv3+_SB70FOC10InvW_impr
gable 58,7 19,3 99,2 59,2 29

73,3 55,2
hip 63,3 25,2 99,8 62,5 36,1

DLv3+_SB50FOC10InvW_impr
gable 55,9 11,3 99,5 55,4 18,9

72,1 53,5
hip 90,7 23,3 100 61,6 37,1

Table 10: The quantitative results of the Experiments on imperfect ground truth
from Section 5.2.3. The per-class metrics are only listed for the classes
gable and hip, since these are the underrepresented classes and hard
to learn from the given data. The overall metrics accb and F1 are the
arithmetic mean over all five classes.
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(a) DLv3+_CE (b) DLv3+_CEInvW (c) DLv3+_CERootW

(d) DLv3+_CESqrW (e) DLv3+_FOC05InvW (f) DLv3+_FOC10InvW

(g) DLv3+_FOC20InvW (h) DLv3+_DICE (i) DLv3+_DICEInvW

(j) DLv3+_DICERootW (k) DLv3+_DICESqrW (l) DLv3+_CE_impr

(m) Ground Truth (n) RGB (o) LOD

Figure 11: A visualization of a small area from the results of the experiments on
class-balancing over the test area. White: background, magenta: mono-
plane, blue: gable, cyan: hip, green: other. Best viewed zoomed in. In
(a), (i), (j), almost none of the pixels where assigned to the minority
classes gable and hip. In (d), the minority classes have many false posi-
tives when compared to the ground truth in (m) and the buildings are
not separated from the ground truth. In (b), (c), (e), (f), (g), (h), (k) and
(l), all classes are present and the buildings are separated from the back-
ground.
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Name Class preci reci speci (accb)i (F1)i accb F1

DLv3+_SB99FOC10InvW_impr2

gable 48 42,1 97,5 67,9 42,7
73,6 52,5

hip 41,4 38,4 99,7 60 27,3

DLv3+_SB90FOC10InvW_impr2_vat
gable 45,1 44,5 96,7 70,6 44,8

74,8 54,5
hip 37,9 27,8 99,5 63,3 32,1

DLv3+_SB99FOC10InvW_impr2_vat2
gable 52 38,6 97,8 68,2 44,3

75,3 55,7
hip 38,8 31,6 99,4 65,5 34,8

DLv3+_SB99FOC10InvW_impr2_vat3
gable 33,2 65 92 78,5 44

74,1 51,2
hip 42,9 31,8 99,5 65,7 36,5

DLv3+_SB99FOC10InvW_impr2_vat4
gable 45,4 31,6 97,7 64,6 37,2

66,3 43,5
hip 16,3 18,3 98,9 58,6 17,3

Table 11: The quantitative results of the Experiments from Section 5.2.4. The per-
class metrics are only listed for the classes gable and hip, since these are
the underrepresented classes and hard to learn from the given data. The
overall metrics accb and F1 are the arithmetic mean over all five classes.

(a) Ground Truth (b) DLv3+_FOC10InvW_impr

(c) DUN_FOC10InvW_impr (d) LOD

Figure 12: A visualization of a small area from the results of the experiments on ar-
chitecture over the test area. White: background, magenta: mono-plane,
blue: gable, cyan: hip, green: other. Best viewed zoomed in. In (a), the
ground truth is shown. In (b), the segments look homogeneous in many
places, but the boundaries of the building segments exceeds the bound-
aries in the ground truth. In (c), the shapes of the roof boundaries are
very similar to the ground truth, but the segments are not homogeneous
in many places.
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(a) Ground Truth (b) DLv3+_SB99FOC10InvW_impr

(c) DLv3+_SB90FOC10InvW_impr (d) DLv3+_SB80FOC10InvW_impr

(e) DLv3+_SB70FOC10InvW_impr (f) DLv3+_SB50FOC10InvW_impr

(g) RGB (h) LOD

Figure 13: A visualization of a small area from the results of the experiments on
imperfect ground truth over the test area. White: background, magenta:
mono-plane, blue: gable, cyan: hip, green: other. Best viewed zoomed
in.
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(a) RGB (b) LOD (c) input (d) prediction (e) Ground Truth

Figure 14: Visualization of a building in the test area. In (a) and (b), the character-
istics of a hip roof are clearly visible. In (c), the main characteristics of
a hip roof are degraded but still featured. The prediction in (d) shows a
hip roof (cyan), which matches the ground truth. Best viewed zoomed
in.

(a) RGB (b) LOD (c) input (d) prediction (e) Ground Truth

Figure 15: Visualization of a building in the test area. In (a) and (b), the character-
istics of a gable roof are clearly visible. In (c), the main characteristics of
a gable roof are also featured. The prediction in (d) shows a gable roof
(blue), which matches the ground truth. Best viewed zoomed in.

(a) RGB (b) LOD (c) input (d) prediction (e) Ground Truth

Figure 16: Visualization of a building in the test area. In (a), (b) and (c), the char-
acteristics of a mono-plane roof are clearly visible. In (a) and (c), there
are multiple different mono-plane roofs, which all belong to the same
building, which is why the building was labeled as class other (green) in
(e). The prediction in (d) shows, that the network has labeled the entire
building as mono-plane. Best viewed zoomed in.
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(a) RGB (b) LOD (c) input (d) prediction (e) Ground Truth

Figure 17: Visualization of a building in the test area. In (a), (b) and (c), two gable
roofs are visible. There is a small part in (b), where the longer building
is flat on the right half of the ridge line. This part is labeled as mono-
plane (magenta) in (e). In (d), the network assigns gable to both of the
buildings, including the part with the flat shares. Best viewed zoomed
in.

(a) RGB (b) LOD (c) input (d) prediction (e) Ground Truth

Figure 18: Visualization of a building in the test area. In (a) and (b), the character-
istics of a hip roof are clearly visible. In (c), the main characteristics of
a hip roof are degraded but still featured. The prediction in (d) shows a
hip roof (cyan), which matches the ground truth. Best viewed zoomed
in.

(a) RGB (b) LOD (c) input (d) prediction (e) Ground Truth

Figure 19: Visualization of a building in the test area. In (a) and (c), the building
features multiple levels of flat roofs, such that the building belongs into
the other class. In (b), the building features characteristics of a tent roof,
which is very similar to the hip roof and was therefore annotated as hip
(cyan) in (e). The network’s prediction in (d) is a mix of mono-plane and
other. Best viewed zoomed in.
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(a) RGB (b) LOD (c) input (d) prediction (e) Ground Truth

Figure 20: Visualization of a building in the test area. In (a) and (b), the character-
istics of a hip roof are visible and in (e), the building is labeled as hip
(cyan). In (c), the triangles of the hip roof are still visible, but might not
be clear enough. Furthermore, there is a huge bump visible in (c), which
is also visible in Figure 9 (b). In (d), the output of the network assigns
a mix of gable (blue) and other (green) to the building. Best viewed
zoomed in.
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(a) RGB

(b) LOD

(c) input

(d) prediction

(e) Ground Truth

Figure 21: Visualization of a building in the test area. In (a), (b) and (c), a gable
roof is visible. In (e), the building is annotated as gable (blue). In (b),
the network predicts the building to have characteristics of gable (blue),
other (green) and hip (cyan), but the hip class dominates. Best viewed
zoomed in.
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(a) RGB (b) LOD (c) input (d) prediction (e) Ground Truth

Figure 22: Visualization of a building in the test area. In (a) and (b), the biggest
buildings has a triangular end and a ridge line and a smaller flat build-
ing is next to the triangular end. In (c), the triangle barely visible. In (e),
the hip (cyan) roof and the mono-plane (magenta) building are not di-
vided into a hip and a mono-plane roof, but a gable (blue) and an other
(green) roof. In the predictions in (d), the hip roof is labeled as gable
and the mono-plane roof is labeled as a mix of other and mono-plane.
Best viewed zoomed in.
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C O N C L U S I O N

Modern satellites, such as World-View-1 (WV-1) and World-View-4 (WV-4),
supply a huge amount of Very High-Resolution (VHR) satellite imagery. The
quality of these images is high enough to visualize various features of build-
ings. For instance, stereo Digital Surface Models (DSMs) can be improved
by deep learning methods to obtain a refined DSM. In 3D reconstruction,
these features are nowadays exploited by deep learning methods. One of
the open problems in 3D reconstruction is the classification of the roof-type
of a building instance. As a step towards achieving this goal, dense clas-
sification of roof-types can be an intermediate step and later be combined
with instance-level methods. In this thesis, a method for dealing with im-
balanced, imperfect and incomplete ground truth during the training of
an Fully Convolutional Neural Network (FCN) is evaluated. In this Chap-
ter, the findings of the experiments, which are described in Chapter 5 and
evaluated in Chapter 6, are summarized.

• Weighting in the Cross-Entropy (CE) loss balances the classes better
than no weighting. Especially the inverse frequency weighting encour-
ages the model to not neglect the minority classes like gable and hip,
which it otherwise does. Furthermore, the focal loss brings a visually
visible improvement and puts more emphasize on the rarest minority
class like hip than the CE loss. Also, adding buildings of the minor-
ity classes to the training data improves the segmentation of minority
classes like gable and hip.

• For tackling the problem of imperfect ground truth, the soft-
bootstrapped CE loss improves the qualitative and quantitative results
for roof-type segmentation. Especially the minority classes profit from
this error-robust loss function, which is connected to the assumption
that errors weigh much heavier if only few examples of a class are
available.

• For a very small labeled, and a large unlabeled dataset, Virtual Adver-
sarial Training (VAT) improves the performance of a DeepLabv3+ on
roof-type segmentation.

• The proposed method is successful in many places, but fails to predict
the correct roof-type in many other cases, e. g. if the input data has
defects. In many cases, the two minority classes gable and hip are
confused due to common features.
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52 conclusion

Finally, deep learning with imbalanced, imperfect and incomplete data
can only work in certain boundaries, which are explored in this thesis.
To obtain significantly better results in roof-type segmentation, a training
dataset must be used which has a higher quality than the one described in
Chapters 1 and 5.
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F U T U R E W O R K

Roof-type segmentation’s goal is to provide highly accurate predictions of
the roof-type for 3D building reconstruction. With the results presented in
this thesis, this can not be accomplished (see Chapter 7). To improve the
roof-type segmentation, there are multiple possible solutions, which are
based on the findings of this thesis.

8.1 extra annotations

As the experiments DLv3+_CEInvW_impr and
DLv3+_SB99FOC10InvW_impr2_vat2 in Chapters 5 and 6 showed,
small improvements in the ground truth, in terms of balance and ra-
tio of labeled data can instantly improve the quality of the roof-type
segments. Therefore, the investment of labeling more buildings pays
off, especially when combined with VAT, which can regularize an FCN,
such that it learns from a small labeled and a big unlabeled dataset
to achieve an increase in performance if compared with the fully su-
pervised experiment DLv3+_SB99FOC10InvW_impr2 and a comparable
performance as an FCN trained on a much greater labeled dataset as in
DLv3+_SB99FOC10InvW_impr. Therefore, increasing the density of labels
in an area comparable to TRAIN1 and TRAIN5 in Figure 10, might lead to
a big increase in performance.

8.2 improved validation data

The quality of the validation data in this thesis was not sufficient to explain
the performance of the FCN on the test set, since the validation data labels
are incomplete an erroneous, as was the rest of the labels before a small
test area was corrected and completed and training data was extended for
the minority classes gable and hip. To optimize the hyper-parameter search,
and especially the number of epochs, an improved validation ground truth
could lead to a boost in performance.

8.3 incorporating spectral data

As described in Chapter 6 the proposed methods often fails due to miss-
ing features in the input height data. Spectral data often includes features,
which are not visible in height data. A combination of multiple data sources,
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even of multiple resolutions, can increase the performance of FCNs for roof-
type segmentation which Bittner et al. [30] and Schuegraf and Bittner [31]
have verified in their work. This raises the question if a combination of
multiple data sources can lead to an improved performance in roof-type
segmentation. The results of Peng et al. [21] show that Deep Co-Training
can improve the performance of semi-supervised semantic segmentation
by using multiple different input representations. However, instead of ad-
versarial examples as in Peng et al. [21], Deep Co-Training might be most
suitable for roof-type segmentation with a spectral input in addition to the
height input.

8.4 instance segmentation

To reconstruct cities in 3D, the roof-type has to be known for building
instances, not pixels. The Mask-RCNN architecture [32] can separate in-
stances from each other. This can be leveraged for 3D reconstruction in
many ways. Two of them are (i.) computing a building instance map and
combining it with the roof-type segmentation results and (ii.) directly clas-
sify the roof-types within the Mask-RCNN network.

8.5 multi-task learning

In their work Bittner et al. [1] show that training a common encoder to-
gether with one decoder for DSM refinement and roof-type segmentation
can improve the performance on both tasks. Also, the method proposed
in Bittner et al. [1] does not need a refined DSM as input, which improves
the quality of the features if the ground truth for the refinement is limited
because it overlaps with the ground truth for the roof-type segmentation,
compared to separately training on a small part of the area with the ground
truth for refinement and then using the refined DSM for roof-type segmen-
tation. Hence, a multi-task approach could further improve the roof-type
segmentation results, even for multiple imbalanced, incomplete and erro-
neous classes.

8.6 improved semi-supervised semantic segmenta-
tion

The choice of the algorithm for semi-supervised semantic segmentation in
this thesis was made based on the intuition that a network, which is robust
to attacks, generalizes better. However, there are other approaches to semi-
supervised learning, which achieve better metrics on benchmark datasets
[19], [21], [20], [6]. An exhaustive study, using relatively small, but corrected
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and complete, ground truth data, with additional unlabeled data, might
lead to solid improvements in roof-type segmentation.
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